mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 04:02:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			2378 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2378 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AAC decoder
 | |
|  * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 | |
|  * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 | |
|  *
 | |
|  * AAC LATM decoder
 | |
|  * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
 | |
|  * Copyright (c) 2010      Janne Grunau <janne-ffmpeg@jannau.net>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * AAC decoder
 | |
|  * @author Oded Shimon  ( ods15 ods15 dyndns org )
 | |
|  * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * supported tools
 | |
|  *
 | |
|  * Support?             Name
 | |
|  * N (code in SoC repo) gain control
 | |
|  * Y                    block switching
 | |
|  * Y                    window shapes - standard
 | |
|  * N                    window shapes - Low Delay
 | |
|  * Y                    filterbank - standard
 | |
|  * N (code in SoC repo) filterbank - Scalable Sample Rate
 | |
|  * Y                    Temporal Noise Shaping
 | |
|  * N (code in SoC repo) Long Term Prediction
 | |
|  * Y                    intensity stereo
 | |
|  * Y                    channel coupling
 | |
|  * Y                    frequency domain prediction
 | |
|  * Y                    Perceptual Noise Substitution
 | |
|  * Y                    Mid/Side stereo
 | |
|  * N                    Scalable Inverse AAC Quantization
 | |
|  * N                    Frequency Selective Switch
 | |
|  * N                    upsampling filter
 | |
|  * Y                    quantization & coding - AAC
 | |
|  * N                    quantization & coding - TwinVQ
 | |
|  * N                    quantization & coding - BSAC
 | |
|  * N                    AAC Error Resilience tools
 | |
|  * N                    Error Resilience payload syntax
 | |
|  * N                    Error Protection tool
 | |
|  * N                    CELP
 | |
|  * N                    Silence Compression
 | |
|  * N                    HVXC
 | |
|  * N                    HVXC 4kbits/s VR
 | |
|  * N                    Structured Audio tools
 | |
|  * N                    Structured Audio Sample Bank Format
 | |
|  * N                    MIDI
 | |
|  * N                    Harmonic and Individual Lines plus Noise
 | |
|  * N                    Text-To-Speech Interface
 | |
|  * Y                    Spectral Band Replication
 | |
|  * Y (not in this code) Layer-1
 | |
|  * Y (not in this code) Layer-2
 | |
|  * Y (not in this code) Layer-3
 | |
|  * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
 | |
|  * Y                    Parametric Stereo
 | |
|  * N                    Direct Stream Transfer
 | |
|  *
 | |
|  * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 | |
|  *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
 | |
|            Parametric Stereo.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| #include "fft.h"
 | |
| #include "fmtconvert.h"
 | |
| #include "lpc.h"
 | |
| 
 | |
| #include "aac.h"
 | |
| #include "aactab.h"
 | |
| #include "aacdectab.h"
 | |
| #include "cbrt_tablegen.h"
 | |
| #include "sbr.h"
 | |
| #include "aacsbr.h"
 | |
| #include "mpeg4audio.h"
 | |
| #include "aacadtsdec.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <errno.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #if ARCH_ARM
 | |
| #   include "arm/aac.h"
 | |
| #endif
 | |
| 
 | |
| union float754 {
 | |
|     float f;
 | |
|     uint32_t i;
 | |
| };
 | |
| 
 | |
| static VLC vlc_scalefactors;
 | |
| static VLC vlc_spectral[11];
 | |
| 
 | |
| static const char overread_err[] = "Input buffer exhausted before END element found\n";
 | |
| 
 | |
| static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
 | |
| {
 | |
|     // For PCE based channel configurations map the channels solely based on tags.
 | |
|     if (!ac->m4ac.chan_config) {
 | |
|         return ac->tag_che_map[type][elem_id];
 | |
|     }
 | |
|     // For indexed channel configurations map the channels solely based on position.
 | |
|     switch (ac->m4ac.chan_config) {
 | |
|     case 7:
 | |
|         if (ac->tags_mapped == 3 && type == TYPE_CPE) {
 | |
|             ac->tags_mapped++;
 | |
|             return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
 | |
|         }
 | |
|     case 6:
 | |
|         /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
 | |
|            instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
 | |
|            encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
 | |
|         if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
 | |
|             ac->tags_mapped++;
 | |
|             return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
 | |
|         }
 | |
|     case 5:
 | |
|         if (ac->tags_mapped == 2 && type == TYPE_CPE) {
 | |
|             ac->tags_mapped++;
 | |
|             return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
 | |
|         }
 | |
|     case 4:
 | |
|         if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
 | |
|             ac->tags_mapped++;
 | |
|             return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
 | |
|         }
 | |
|     case 3:
 | |
|     case 2:
 | |
|         if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
 | |
|             ac->tags_mapped++;
 | |
|             return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
 | |
|         } else if (ac->m4ac.chan_config == 2) {
 | |
|             return NULL;
 | |
|         }
 | |
|     case 1:
 | |
|         if (!ac->tags_mapped && type == TYPE_SCE) {
 | |
|             ac->tags_mapped++;
 | |
|             return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
 | |
|         }
 | |
|     default:
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Check for the channel element in the current channel position configuration.
 | |
|  * If it exists, make sure the appropriate element is allocated and map the
 | |
|  * channel order to match the internal FFmpeg channel layout.
 | |
|  *
 | |
|  * @param   che_pos current channel position configuration
 | |
|  * @param   type channel element type
 | |
|  * @param   id channel element id
 | |
|  * @param   channels count of the number of channels in the configuration
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static av_cold int che_configure(AACContext *ac,
 | |
|                          enum ChannelPosition che_pos[4][MAX_ELEM_ID],
 | |
|                          int type, int id,
 | |
|                          int *channels)
 | |
| {
 | |
|     if (che_pos[type][id]) {
 | |
|         if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
 | |
|             return AVERROR(ENOMEM);
 | |
|         ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr);
 | |
|         if (type != TYPE_CCE) {
 | |
|             ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
 | |
|             if (type == TYPE_CPE ||
 | |
|                 (type == TYPE_SCE && ac->m4ac.ps == 1)) {
 | |
|                 ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         if (ac->che[type][id])
 | |
|             ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
 | |
|         av_freep(&ac->che[type][id]);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Configure output channel order based on the current program configuration element.
 | |
|  *
 | |
|  * @param   che_pos current channel position configuration
 | |
|  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static av_cold int output_configure(AACContext *ac,
 | |
|                             enum ChannelPosition che_pos[4][MAX_ELEM_ID],
 | |
|                             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
 | |
|                             int channel_config, enum OCStatus oc_type)
 | |
| {
 | |
|     AVCodecContext *avctx = ac->avctx;
 | |
|     int i, type, channels = 0, ret;
 | |
| 
 | |
|     if (new_che_pos != che_pos)
 | |
|     memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
| 
 | |
|     if (channel_config) {
 | |
|         for (i = 0; i < tags_per_config[channel_config]; i++) {
 | |
|             if ((ret = che_configure(ac, che_pos,
 | |
|                                      aac_channel_layout_map[channel_config - 1][i][0],
 | |
|                                      aac_channel_layout_map[channel_config - 1][i][1],
 | |
|                                      &channels)))
 | |
|                 return ret;
 | |
|         }
 | |
| 
 | |
|         memset(ac->tag_che_map, 0,       4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
 | |
| 
 | |
|         avctx->channel_layout = aac_channel_layout[channel_config - 1];
 | |
|     } else {
 | |
|         /* Allocate or free elements depending on if they are in the
 | |
|          * current program configuration.
 | |
|          *
 | |
|          * Set up default 1:1 output mapping.
 | |
|          *
 | |
|          * For a 5.1 stream the output order will be:
 | |
|          *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
 | |
|          */
 | |
| 
 | |
|         for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|             for (type = 0; type < 4; type++) {
 | |
|                 if ((ret = che_configure(ac, che_pos, type, i, &channels)))
 | |
|                     return ret;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
 | |
| 
 | |
|         avctx->channel_layout = 0;
 | |
|     }
 | |
| 
 | |
|     avctx->channels = channels;
 | |
| 
 | |
|     ac->output_configured = oc_type;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 | |
|  *
 | |
|  * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
 | |
|  * @param sce_map mono (Single Channel Element) map
 | |
|  * @param type speaker type/position for these channels
 | |
|  */
 | |
| static void decode_channel_map(enum ChannelPosition *cpe_map,
 | |
|                                enum ChannelPosition *sce_map,
 | |
|                                enum ChannelPosition type,
 | |
|                                GetBitContext *gb, int n)
 | |
| {
 | |
|     while (n--) {
 | |
|         enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
 | |
|         map[get_bits(gb, 4)] = type;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode program configuration element; reference: table 4.2.
 | |
|  *
 | |
|  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
 | |
|                       enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
 | |
|                       GetBitContext *gb)
 | |
| {
 | |
|     int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
 | |
|     int comment_len;
 | |
| 
 | |
|     skip_bits(gb, 2);  // object_type
 | |
| 
 | |
|     sampling_index = get_bits(gb, 4);
 | |
|     if (m4ac->sampling_index != sampling_index)
 | |
|         av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
 | |
| 
 | |
|     num_front       = get_bits(gb, 4);
 | |
|     num_side        = get_bits(gb, 4);
 | |
|     num_back        = get_bits(gb, 4);
 | |
|     num_lfe         = get_bits(gb, 2);
 | |
|     num_assoc_data  = get_bits(gb, 3);
 | |
|     num_cc          = get_bits(gb, 4);
 | |
| 
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 4); // mono_mixdown_tag
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 4); // stereo_mixdown_tag
 | |
| 
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
 | |
| 
 | |
|     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
 | |
|     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
 | |
|     decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
 | |
|     decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
 | |
| 
 | |
|     skip_bits_long(gb, 4 * num_assoc_data);
 | |
| 
 | |
|     decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
 | |
| 
 | |
|     align_get_bits(gb);
 | |
| 
 | |
|     /* comment field, first byte is length */
 | |
|     comment_len = get_bits(gb, 8) * 8;
 | |
|     if (get_bits_left(gb) < comment_len) {
 | |
|         av_log(avctx, AV_LOG_ERROR, overread_err);
 | |
|         return -1;
 | |
|     }
 | |
|     skip_bits_long(gb, comment_len);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set up channel positions based on a default channel configuration
 | |
|  * as specified in table 1.17.
 | |
|  *
 | |
|  * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static av_cold int set_default_channel_config(AVCodecContext *avctx,
 | |
|                                       enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
 | |
|                                       int channel_config)
 | |
| {
 | |
|     if (channel_config < 1 || channel_config > 7) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
 | |
|                channel_config);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* default channel configurations:
 | |
|      *
 | |
|      * 1ch : front center (mono)
 | |
|      * 2ch : L + R (stereo)
 | |
|      * 3ch : front center + L + R
 | |
|      * 4ch : front center + L + R + back center
 | |
|      * 5ch : front center + L + R + back stereo
 | |
|      * 6ch : front center + L + R + back stereo + LFE
 | |
|      * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
 | |
|      */
 | |
| 
 | |
|     if (channel_config != 2)
 | |
|         new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
 | |
|     if (channel_config > 1)
 | |
|         new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
 | |
|     if (channel_config == 4)
 | |
|         new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
 | |
|     if (channel_config > 4)
 | |
|         new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
 | |
|         = AAC_CHANNEL_BACK;  // back stereo
 | |
|     if (channel_config > 5)
 | |
|         new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
 | |
|     if (channel_config == 7)
 | |
|         new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode GA "General Audio" specific configuration; reference: table 4.1.
 | |
|  *
 | |
|  * @param   ac          pointer to AACContext, may be null
 | |
|  * @param   avctx       pointer to AVCCodecContext, used for logging
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
 | |
|                                      GetBitContext *gb,
 | |
|                                      MPEG4AudioConfig *m4ac,
 | |
|                                      int channel_config)
 | |
| {
 | |
|     enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
 | |
|     int extension_flag, ret;
 | |
| 
 | |
|     if (get_bits1(gb)) { // frameLengthFlag
 | |
|         av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (get_bits1(gb))       // dependsOnCoreCoder
 | |
|         skip_bits(gb, 14);   // coreCoderDelay
 | |
|     extension_flag = get_bits1(gb);
 | |
| 
 | |
|     if (m4ac->object_type == AOT_AAC_SCALABLE ||
 | |
|         m4ac->object_type == AOT_ER_AAC_SCALABLE)
 | |
|         skip_bits(gb, 3);     // layerNr
 | |
| 
 | |
|     memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
|     if (channel_config == 0) {
 | |
|         skip_bits(gb, 4);  // element_instance_tag
 | |
|         if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
 | |
|             return ret;
 | |
|     } else {
 | |
|         if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
 | |
|             return ret;
 | |
|     }
 | |
|     if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
 | |
|         return ret;
 | |
| 
 | |
|     if (extension_flag) {
 | |
|         switch (m4ac->object_type) {
 | |
|         case AOT_ER_BSAC:
 | |
|             skip_bits(gb, 5);    // numOfSubFrame
 | |
|             skip_bits(gb, 11);   // layer_length
 | |
|             break;
 | |
|         case AOT_ER_AAC_LC:
 | |
|         case AOT_ER_AAC_LTP:
 | |
|         case AOT_ER_AAC_SCALABLE:
 | |
|         case AOT_ER_AAC_LD:
 | |
|             skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
 | |
|                                     * aacScalefactorDataResilienceFlag
 | |
|                                     * aacSpectralDataResilienceFlag
 | |
|                                     */
 | |
|             break;
 | |
|         }
 | |
|         skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode audio specific configuration; reference: table 1.13.
 | |
|  *
 | |
|  * @param   ac          pointer to AACContext, may be null
 | |
|  * @param   avctx       pointer to AVCCodecContext, used for logging
 | |
|  * @param   m4ac        pointer to MPEG4AudioConfig, used for parsing
 | |
|  * @param   data        pointer to AVCodecContext extradata
 | |
|  * @param   data_size   size of AVCCodecContext extradata
 | |
|  *
 | |
|  * @return  Returns error status or number of consumed bits. <0 - error
 | |
|  */
 | |
| static int decode_audio_specific_config(AACContext *ac,
 | |
|                                         AVCodecContext *avctx,
 | |
|                                         MPEG4AudioConfig *m4ac,
 | |
|                                         const uint8_t *data, int data_size)
 | |
| {
 | |
|     GetBitContext gb;
 | |
|     int i;
 | |
| 
 | |
|     init_get_bits(&gb, data, data_size * 8);
 | |
| 
 | |
|     if ((i = ff_mpeg4audio_get_config(m4ac, data, data_size)) < 0)
 | |
|         return -1;
 | |
|     if (m4ac->sampling_index > 12) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
 | |
|         return -1;
 | |
|     }
 | |
|     if (m4ac->sbr == 1 && m4ac->ps == -1)
 | |
|         m4ac->ps = 1;
 | |
| 
 | |
|     skip_bits_long(&gb, i);
 | |
| 
 | |
|     switch (m4ac->object_type) {
 | |
|     case AOT_AAC_MAIN:
 | |
|     case AOT_AAC_LC:
 | |
|         if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
 | |
|             return -1;
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
 | |
|                m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return get_bits_count(&gb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * linear congruential pseudorandom number generator
 | |
|  *
 | |
|  * @param   previous_val    pointer to the current state of the generator
 | |
|  *
 | |
|  * @return  Returns a 32-bit pseudorandom integer
 | |
|  */
 | |
| static av_always_inline int lcg_random(int previous_val)
 | |
| {
 | |
|     return previous_val * 1664525 + 1013904223;
 | |
| }
 | |
| 
 | |
| static av_always_inline void reset_predict_state(PredictorState *ps)
 | |
| {
 | |
|     ps->r0   = 0.0f;
 | |
|     ps->r1   = 0.0f;
 | |
|     ps->cor0 = 0.0f;
 | |
|     ps->cor1 = 0.0f;
 | |
|     ps->var0 = 1.0f;
 | |
|     ps->var1 = 1.0f;
 | |
| }
 | |
| 
 | |
| static void reset_all_predictors(PredictorState *ps)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < MAX_PREDICTORS; i++)
 | |
|         reset_predict_state(&ps[i]);
 | |
| }
 | |
| 
 | |
| static void reset_predictor_group(PredictorState *ps, int group_num)
 | |
| {
 | |
|     int i;
 | |
|     for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
 | |
|         reset_predict_state(&ps[i]);
 | |
| }
 | |
| 
 | |
| #define AAC_INIT_VLC_STATIC(num, size) \
 | |
|     INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
 | |
|          ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
 | |
|         ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
 | |
|         size);
 | |
| 
 | |
| static av_cold int aac_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AACContext *ac = avctx->priv_data;
 | |
| 
 | |
|     ac->avctx = avctx;
 | |
|     ac->m4ac.sample_rate = avctx->sample_rate;
 | |
| 
 | |
|     if (avctx->extradata_size > 0) {
 | |
|         if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
 | |
|                                          avctx->extradata,
 | |
|                                          avctx->extradata_size) < 0)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | |
| 
 | |
|     AAC_INIT_VLC_STATIC( 0, 304);
 | |
|     AAC_INIT_VLC_STATIC( 1, 270);
 | |
|     AAC_INIT_VLC_STATIC( 2, 550);
 | |
|     AAC_INIT_VLC_STATIC( 3, 300);
 | |
|     AAC_INIT_VLC_STATIC( 4, 328);
 | |
|     AAC_INIT_VLC_STATIC( 5, 294);
 | |
|     AAC_INIT_VLC_STATIC( 6, 306);
 | |
|     AAC_INIT_VLC_STATIC( 7, 268);
 | |
|     AAC_INIT_VLC_STATIC( 8, 510);
 | |
|     AAC_INIT_VLC_STATIC( 9, 366);
 | |
|     AAC_INIT_VLC_STATIC(10, 462);
 | |
| 
 | |
|     ff_aac_sbr_init();
 | |
| 
 | |
|     dsputil_init(&ac->dsp, avctx);
 | |
|     ff_fmt_convert_init(&ac->fmt_conv, avctx);
 | |
| 
 | |
|     ac->random_state = 0x1f2e3d4c;
 | |
| 
 | |
|     // -1024 - Compensate wrong IMDCT method.
 | |
|     // 60    - Required to scale values to the correct range [-32768,32767]
 | |
|     //         for float to int16 conversion. (1 << (60 / 4)) == 32768
 | |
|     ac->sf_scale  = 1. / -1024.;
 | |
|     ac->sf_offset = 60;
 | |
| 
 | |
|     ff_aac_tableinit();
 | |
| 
 | |
|     INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
 | |
|                     ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
 | |
|                     ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
 | |
|                     352);
 | |
| 
 | |
|     ff_mdct_init(&ac->mdct, 11, 1, 1.0);
 | |
|     ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
 | |
|     // window initialization
 | |
|     ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
 | |
|     ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
 | |
|     ff_init_ff_sine_windows(10);
 | |
|     ff_init_ff_sine_windows( 7);
 | |
| 
 | |
|     cbrt_tableinit();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Skip data_stream_element; reference: table 4.10.
 | |
|  */
 | |
| static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
 | |
| {
 | |
|     int byte_align = get_bits1(gb);
 | |
|     int count = get_bits(gb, 8);
 | |
|     if (count == 255)
 | |
|         count += get_bits(gb, 8);
 | |
|     if (byte_align)
 | |
|         align_get_bits(gb);
 | |
| 
 | |
|     if (get_bits_left(gb) < 8 * count) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR, overread_err);
 | |
|         return -1;
 | |
|     }
 | |
|     skip_bits_long(gb, 8 * count);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
 | |
|                              GetBitContext *gb)
 | |
| {
 | |
|     int sfb;
 | |
|     if (get_bits1(gb)) {
 | |
|         ics->predictor_reset_group = get_bits(gb, 5);
 | |
|         if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
 | |
|         ics->prediction_used[sfb] = get_bits1(gb);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Individual Channel Stream info; reference: table 4.6.
 | |
|  *
 | |
|  * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 | |
|  */
 | |
| static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
 | |
|                            GetBitContext *gb, int common_window)
 | |
| {
 | |
|     if (get_bits1(gb)) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
 | |
|         memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|         return -1;
 | |
|     }
 | |
|     ics->window_sequence[1] = ics->window_sequence[0];
 | |
|     ics->window_sequence[0] = get_bits(gb, 2);
 | |
|     ics->use_kb_window[1]   = ics->use_kb_window[0];
 | |
|     ics->use_kb_window[0]   = get_bits1(gb);
 | |
|     ics->num_window_groups  = 1;
 | |
|     ics->group_len[0]       = 1;
 | |
|     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|         int i;
 | |
|         ics->max_sfb = get_bits(gb, 4);
 | |
|         for (i = 0; i < 7; i++) {
 | |
|             if (get_bits1(gb)) {
 | |
|                 ics->group_len[ics->num_window_groups - 1]++;
 | |
|             } else {
 | |
|                 ics->num_window_groups++;
 | |
|                 ics->group_len[ics->num_window_groups - 1] = 1;
 | |
|             }
 | |
|         }
 | |
|         ics->num_windows       = 8;
 | |
|         ics->swb_offset        =    ff_swb_offset_128[ac->m4ac.sampling_index];
 | |
|         ics->num_swb           =   ff_aac_num_swb_128[ac->m4ac.sampling_index];
 | |
|         ics->tns_max_bands     = ff_tns_max_bands_128[ac->m4ac.sampling_index];
 | |
|         ics->predictor_present = 0;
 | |
|     } else {
 | |
|         ics->max_sfb               = get_bits(gb, 6);
 | |
|         ics->num_windows           = 1;
 | |
|         ics->swb_offset            =    ff_swb_offset_1024[ac->m4ac.sampling_index];
 | |
|         ics->num_swb               =   ff_aac_num_swb_1024[ac->m4ac.sampling_index];
 | |
|         ics->tns_max_bands         = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
 | |
|         ics->predictor_present     = get_bits1(gb);
 | |
|         ics->predictor_reset_group = 0;
 | |
|         if (ics->predictor_present) {
 | |
|             if (ac->m4ac.object_type == AOT_AAC_MAIN) {
 | |
|                 if (decode_prediction(ac, ics, gb)) {
 | |
|                     memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|                     return -1;
 | |
|                 }
 | |
|             } else if (ac->m4ac.object_type == AOT_AAC_LC) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
 | |
|                 memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|                 return -1;
 | |
|             } else {
 | |
|                 av_log_missing_feature(ac->avctx, "Predictor bit set but LTP is", 1);
 | |
|                 memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ics->max_sfb > ics->num_swb) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
 | |
|                ics->max_sfb, ics->num_swb);
 | |
|         memset(ics, 0, sizeof(IndividualChannelStream));
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode band types (section_data payload); reference: table 4.46.
 | |
|  *
 | |
|  * @param   band_type           array of the used band type
 | |
|  * @param   band_type_run_end   array of the last scalefactor band of a band type run
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_band_types(AACContext *ac, enum BandType band_type[120],
 | |
|                              int band_type_run_end[120], GetBitContext *gb,
 | |
|                              IndividualChannelStream *ics)
 | |
| {
 | |
|     int g, idx = 0;
 | |
|     const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         int k = 0;
 | |
|         while (k < ics->max_sfb) {
 | |
|             uint8_t sect_end = k;
 | |
|             int sect_len_incr;
 | |
|             int sect_band_type = get_bits(gb, 4);
 | |
|             if (sect_band_type == 12) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
 | |
|                 sect_end += sect_len_incr;
 | |
|             sect_end += sect_len_incr;
 | |
|             if (get_bits_left(gb) < 0) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, overread_err);
 | |
|                 return -1;
 | |
|             }
 | |
|             if (sect_end > ics->max_sfb) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                        "Number of bands (%d) exceeds limit (%d).\n",
 | |
|                        sect_end, ics->max_sfb);
 | |
|                 return -1;
 | |
|             }
 | |
|             for (; k < sect_end; k++) {
 | |
|                 band_type        [idx]   = sect_band_type;
 | |
|                 band_type_run_end[idx++] = sect_end;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode scalefactors; reference: table 4.47.
 | |
|  *
 | |
|  * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 | |
|  * @param   band_type           array of the used band type
 | |
|  * @param   band_type_run_end   array of the last scalefactor band of a band type run
 | |
|  * @param   sf                  array of scalefactors or intensity stereo positions
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
 | |
|                                unsigned int global_gain,
 | |
|                                IndividualChannelStream *ics,
 | |
|                                enum BandType band_type[120],
 | |
|                                int band_type_run_end[120])
 | |
| {
 | |
|     const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
 | |
|     int g, i, idx = 0;
 | |
|     int offset[3] = { global_gain, global_gain - 90, 100 };
 | |
|     int noise_flag = 1;
 | |
|     static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb;) {
 | |
|             int run_end = band_type_run_end[idx];
 | |
|             if (band_type[idx] == ZERO_BT) {
 | |
|                 for (; i < run_end; i++, idx++)
 | |
|                     sf[idx] = 0.;
 | |
|             } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
 | |
|                 for (; i < run_end; i++, idx++) {
 | |
|                     offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                     if (offset[2] > 255U) {
 | |
|                         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                                "%s (%d) out of range.\n", sf_str[2], offset[2]);
 | |
|                         return -1;
 | |
|                     }
 | |
|                     sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
 | |
|                 }
 | |
|             } else if (band_type[idx] == NOISE_BT) {
 | |
|                 for (; i < run_end; i++, idx++) {
 | |
|                     if (noise_flag-- > 0)
 | |
|                         offset[1] += get_bits(gb, 9) - 256;
 | |
|                     else
 | |
|                         offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                     if (offset[1] > 255U) {
 | |
|                         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                                "%s (%d) out of range.\n", sf_str[1], offset[1]);
 | |
|                         return -1;
 | |
|                     }
 | |
|                     sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
 | |
|                 }
 | |
|             } else {
 | |
|                 for (; i < run_end; i++, idx++) {
 | |
|                     offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                     if (offset[0] > 255U) {
 | |
|                         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                                "%s (%d) out of range.\n", sf_str[0], offset[0]);
 | |
|                         return -1;
 | |
|                     }
 | |
|                     sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode pulse data; reference: table 4.7.
 | |
|  */
 | |
| static int decode_pulses(Pulse *pulse, GetBitContext *gb,
 | |
|                          const uint16_t *swb_offset, int num_swb)
 | |
| {
 | |
|     int i, pulse_swb;
 | |
|     pulse->num_pulse = get_bits(gb, 2) + 1;
 | |
|     pulse_swb        = get_bits(gb, 6);
 | |
|     if (pulse_swb >= num_swb)
 | |
|         return -1;
 | |
|     pulse->pos[0]    = swb_offset[pulse_swb];
 | |
|     pulse->pos[0]   += get_bits(gb, 5);
 | |
|     if (pulse->pos[0] > 1023)
 | |
|         return -1;
 | |
|     pulse->amp[0]    = get_bits(gb, 4);
 | |
|     for (i = 1; i < pulse->num_pulse; i++) {
 | |
|         pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
 | |
|         if (pulse->pos[i] > 1023)
 | |
|             return -1;
 | |
|         pulse->amp[i] = get_bits(gb, 4);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Temporal Noise Shaping data; reference: table 4.48.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
 | |
|                       GetBitContext *gb, const IndividualChannelStream *ics)
 | |
| {
 | |
|     int w, filt, i, coef_len, coef_res, coef_compress;
 | |
|     const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
 | |
|     const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
 | |
|     for (w = 0; w < ics->num_windows; w++) {
 | |
|         if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
 | |
|             coef_res = get_bits1(gb);
 | |
| 
 | |
|             for (filt = 0; filt < tns->n_filt[w]; filt++) {
 | |
|                 int tmp2_idx;
 | |
|                 tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
 | |
| 
 | |
|                 if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
 | |
|                     av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
 | |
|                            tns->order[w][filt], tns_max_order);
 | |
|                     tns->order[w][filt] = 0;
 | |
|                     return -1;
 | |
|                 }
 | |
|                 if (tns->order[w][filt]) {
 | |
|                     tns->direction[w][filt] = get_bits1(gb);
 | |
|                     coef_compress = get_bits1(gb);
 | |
|                     coef_len = coef_res + 3 - coef_compress;
 | |
|                     tmp2_idx = 2 * coef_compress + coef_res;
 | |
| 
 | |
|                     for (i = 0; i < tns->order[w][filt]; i++)
 | |
|                         tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Mid/Side data; reference: table 4.54.
 | |
|  *
 | |
|  * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 | |
|  *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 | |
|  *                      [3] reserved for scalable AAC
 | |
|  */
 | |
| static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
 | |
|                                    int ms_present)
 | |
| {
 | |
|     int idx;
 | |
|     if (ms_present == 1) {
 | |
|         for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
 | |
|             cpe->ms_mask[idx] = get_bits1(gb);
 | |
|     } else if (ms_present == 2) {
 | |
|         memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef VMUL2
 | |
| static inline float *VMUL2(float *dst, const float *v, unsigned idx,
 | |
|                            const float *scale)
 | |
| {
 | |
|     float s = *scale;
 | |
|     *dst++ = v[idx    & 15] * s;
 | |
|     *dst++ = v[idx>>4 & 15] * s;
 | |
|     return dst;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef VMUL4
 | |
| static inline float *VMUL4(float *dst, const float *v, unsigned idx,
 | |
|                            const float *scale)
 | |
| {
 | |
|     float s = *scale;
 | |
|     *dst++ = v[idx    & 3] * s;
 | |
|     *dst++ = v[idx>>2 & 3] * s;
 | |
|     *dst++ = v[idx>>4 & 3] * s;
 | |
|     *dst++ = v[idx>>6 & 3] * s;
 | |
|     return dst;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef VMUL2S
 | |
| static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
 | |
|                             unsigned sign, const float *scale)
 | |
| {
 | |
|     union float754 s0, s1;
 | |
| 
 | |
|     s0.f = s1.f = *scale;
 | |
|     s0.i ^= sign >> 1 << 31;
 | |
|     s1.i ^= sign      << 31;
 | |
| 
 | |
|     *dst++ = v[idx    & 15] * s0.f;
 | |
|     *dst++ = v[idx>>4 & 15] * s1.f;
 | |
| 
 | |
|     return dst;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef VMUL4S
 | |
| static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
 | |
|                             unsigned sign, const float *scale)
 | |
| {
 | |
|     unsigned nz = idx >> 12;
 | |
|     union float754 s = { .f = *scale };
 | |
|     union float754 t;
 | |
| 
 | |
|     t.i = s.i ^ (sign & 1<<31);
 | |
|     *dst++ = v[idx    & 3] * t.f;
 | |
| 
 | |
|     sign <<= nz & 1; nz >>= 1;
 | |
|     t.i = s.i ^ (sign & 1<<31);
 | |
|     *dst++ = v[idx>>2 & 3] * t.f;
 | |
| 
 | |
|     sign <<= nz & 1; nz >>= 1;
 | |
|     t.i = s.i ^ (sign & 1<<31);
 | |
|     *dst++ = v[idx>>4 & 3] * t.f;
 | |
| 
 | |
|     sign <<= nz & 1; nz >>= 1;
 | |
|     t.i = s.i ^ (sign & 1<<31);
 | |
|     *dst++ = v[idx>>6 & 3] * t.f;
 | |
| 
 | |
|     return dst;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Decode spectral data; reference: table 4.50.
 | |
|  * Dequantize and scale spectral data; reference: 4.6.3.3.
 | |
|  *
 | |
|  * @param   coef            array of dequantized, scaled spectral data
 | |
|  * @param   sf              array of scalefactors or intensity stereo positions
 | |
|  * @param   pulse_present   set if pulses are present
 | |
|  * @param   pulse           pointer to pulse data struct
 | |
|  * @param   band_type       array of the used band type
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
 | |
|                                        GetBitContext *gb, const float sf[120],
 | |
|                                        int pulse_present, const Pulse *pulse,
 | |
|                                        const IndividualChannelStream *ics,
 | |
|                                        enum BandType band_type[120])
 | |
| {
 | |
|     int i, k, g, idx = 0;
 | |
|     const int c = 1024 / ics->num_windows;
 | |
|     const uint16_t *offsets = ics->swb_offset;
 | |
|     float *coef_base = coef;
 | |
| 
 | |
|     for (g = 0; g < ics->num_windows; g++)
 | |
|         memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
 | |
| 
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         unsigned g_len = ics->group_len[g];
 | |
| 
 | |
|         for (i = 0; i < ics->max_sfb; i++, idx++) {
 | |
|             const unsigned cbt_m1 = band_type[idx] - 1;
 | |
|             float *cfo = coef + offsets[i];
 | |
|             int off_len = offsets[i + 1] - offsets[i];
 | |
|             int group;
 | |
| 
 | |
|             if (cbt_m1 >= INTENSITY_BT2 - 1) {
 | |
|                 for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                     memset(cfo, 0, off_len * sizeof(float));
 | |
|                 }
 | |
|             } else if (cbt_m1 == NOISE_BT - 1) {
 | |
|                 for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                     float scale;
 | |
|                     float band_energy;
 | |
| 
 | |
|                     for (k = 0; k < off_len; k++) {
 | |
|                         ac->random_state  = lcg_random(ac->random_state);
 | |
|                         cfo[k] = ac->random_state;
 | |
|                     }
 | |
| 
 | |
|                     band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
 | |
|                     scale = sf[idx] / sqrtf(band_energy);
 | |
|                     ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
 | |
|                 }
 | |
|             } else {
 | |
|                 const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
 | |
|                 const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
 | |
|                 VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
 | |
|                 OPEN_READER(re, gb);
 | |
| 
 | |
|                 switch (cbt_m1 >> 1) {
 | |
|                 case 0:
 | |
|                     for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                         float *cf = cfo;
 | |
|                         int len = off_len;
 | |
| 
 | |
|                         do {
 | |
|                             int code;
 | |
|                             unsigned cb_idx;
 | |
| 
 | |
|                             UPDATE_CACHE(re, gb);
 | |
|                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 | |
|                             cb_idx = cb_vector_idx[code];
 | |
|                             cf = VMUL4(cf, vq, cb_idx, sf + idx);
 | |
|                         } while (len -= 4);
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case 1:
 | |
|                     for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                         float *cf = cfo;
 | |
|                         int len = off_len;
 | |
| 
 | |
|                         do {
 | |
|                             int code;
 | |
|                             unsigned nnz;
 | |
|                             unsigned cb_idx;
 | |
|                             uint32_t bits;
 | |
| 
 | |
|                             UPDATE_CACHE(re, gb);
 | |
|                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 | |
|                             cb_idx = cb_vector_idx[code];
 | |
|                             nnz = cb_idx >> 8 & 15;
 | |
|                             bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
 | |
|                             LAST_SKIP_BITS(re, gb, nnz);
 | |
|                             cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
 | |
|                         } while (len -= 4);
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case 2:
 | |
|                     for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                         float *cf = cfo;
 | |
|                         int len = off_len;
 | |
| 
 | |
|                         do {
 | |
|                             int code;
 | |
|                             unsigned cb_idx;
 | |
| 
 | |
|                             UPDATE_CACHE(re, gb);
 | |
|                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 | |
|                             cb_idx = cb_vector_idx[code];
 | |
|                             cf = VMUL2(cf, vq, cb_idx, sf + idx);
 | |
|                         } while (len -= 2);
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case 3:
 | |
|                 case 4:
 | |
|                     for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                         float *cf = cfo;
 | |
|                         int len = off_len;
 | |
| 
 | |
|                         do {
 | |
|                             int code;
 | |
|                             unsigned nnz;
 | |
|                             unsigned cb_idx;
 | |
|                             unsigned sign;
 | |
| 
 | |
|                             UPDATE_CACHE(re, gb);
 | |
|                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 | |
|                             cb_idx = cb_vector_idx[code];
 | |
|                             nnz = cb_idx >> 8 & 15;
 | |
|                             sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
 | |
|                             LAST_SKIP_BITS(re, gb, nnz);
 | |
|                             cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
 | |
|                         } while (len -= 2);
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 default:
 | |
|                     for (group = 0; group < g_len; group++, cfo+=128) {
 | |
|                         float *cf = cfo;
 | |
|                         uint32_t *icf = (uint32_t *) cf;
 | |
|                         int len = off_len;
 | |
| 
 | |
|                         do {
 | |
|                             int code;
 | |
|                             unsigned nzt, nnz;
 | |
|                             unsigned cb_idx;
 | |
|                             uint32_t bits;
 | |
|                             int j;
 | |
| 
 | |
|                             UPDATE_CACHE(re, gb);
 | |
|                             GET_VLC(code, re, gb, vlc_tab, 8, 2);
 | |
| 
 | |
|                             if (!code) {
 | |
|                                 *icf++ = 0;
 | |
|                                 *icf++ = 0;
 | |
|                                 continue;
 | |
|                             }
 | |
| 
 | |
|                             cb_idx = cb_vector_idx[code];
 | |
|                             nnz = cb_idx >> 12;
 | |
|                             nzt = cb_idx >> 8;
 | |
|                             bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
 | |
|                             LAST_SKIP_BITS(re, gb, nnz);
 | |
| 
 | |
|                             for (j = 0; j < 2; j++) {
 | |
|                                 if (nzt & 1<<j) {
 | |
|                                     uint32_t b;
 | |
|                                     int n;
 | |
|                                     /* The total length of escape_sequence must be < 22 bits according
 | |
|                                        to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
 | |
|                                     UPDATE_CACHE(re, gb);
 | |
|                                     b = GET_CACHE(re, gb);
 | |
|                                     b = 31 - av_log2(~b);
 | |
| 
 | |
|                                     if (b > 8) {
 | |
|                                         av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
 | |
|                                         return -1;
 | |
|                                     }
 | |
| 
 | |
|                                     SKIP_BITS(re, gb, b + 1);
 | |
|                                     b += 4;
 | |
|                                     n = (1 << b) + SHOW_UBITS(re, gb, b);
 | |
|                                     LAST_SKIP_BITS(re, gb, b);
 | |
|                                     *icf++ = cbrt_tab[n] | (bits & 1<<31);
 | |
|                                     bits <<= 1;
 | |
|                                 } else {
 | |
|                                     unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
 | |
|                                     *icf++ = (bits & 1<<31) | v;
 | |
|                                     bits <<= !!v;
 | |
|                                 }
 | |
|                                 cb_idx >>= 4;
 | |
|                             }
 | |
|                         } while (len -= 2);
 | |
| 
 | |
|                         ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 CLOSE_READER(re, gb);
 | |
|             }
 | |
|         }
 | |
|         coef += g_len << 7;
 | |
|     }
 | |
| 
 | |
|     if (pulse_present) {
 | |
|         idx = 0;
 | |
|         for (i = 0; i < pulse->num_pulse; i++) {
 | |
|             float co = coef_base[ pulse->pos[i] ];
 | |
|             while (offsets[idx + 1] <= pulse->pos[i])
 | |
|                 idx++;
 | |
|             if (band_type[idx] != NOISE_BT && sf[idx]) {
 | |
|                 float ico = -pulse->amp[i];
 | |
|                 if (co) {
 | |
|                     co /= sf[idx];
 | |
|                     ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
 | |
|                 }
 | |
|                 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_always_inline float flt16_round(float pf)
 | |
| {
 | |
|     union float754 tmp;
 | |
|     tmp.f = pf;
 | |
|     tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
 | |
|     return tmp.f;
 | |
| }
 | |
| 
 | |
| static av_always_inline float flt16_even(float pf)
 | |
| {
 | |
|     union float754 tmp;
 | |
|     tmp.f = pf;
 | |
|     tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
 | |
|     return tmp.f;
 | |
| }
 | |
| 
 | |
| static av_always_inline float flt16_trunc(float pf)
 | |
| {
 | |
|     union float754 pun;
 | |
|     pun.f = pf;
 | |
|     pun.i &= 0xFFFF0000U;
 | |
|     return pun.f;
 | |
| }
 | |
| 
 | |
| static av_always_inline void predict(PredictorState *ps, float *coef,
 | |
|                                      float sf_scale, float inv_sf_scale,
 | |
|                     int output_enable)
 | |
| {
 | |
|     const float a     = 0.953125; // 61.0 / 64
 | |
|     const float alpha = 0.90625;  // 29.0 / 32
 | |
|     float e0, e1;
 | |
|     float pv;
 | |
|     float k1, k2;
 | |
|     float   r0 = ps->r0,     r1 = ps->r1;
 | |
|     float cor0 = ps->cor0, cor1 = ps->cor1;
 | |
|     float var0 = ps->var0, var1 = ps->var1;
 | |
| 
 | |
|     k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
 | |
|     k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
 | |
| 
 | |
|     pv = flt16_round(k1 * r0 + k2 * r1);
 | |
|     if (output_enable)
 | |
|         *coef += pv * sf_scale;
 | |
| 
 | |
|     e0 = *coef * inv_sf_scale;
 | |
|     e1 = e0 - k1 * r0;
 | |
| 
 | |
|     ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
 | |
|     ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
 | |
|     ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
 | |
|     ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
 | |
| 
 | |
|     ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
 | |
|     ps->r0 = flt16_trunc(a * e0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply AAC-Main style frequency domain prediction.
 | |
|  */
 | |
| static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
 | |
| {
 | |
|     int sfb, k;
 | |
|     float sf_scale = ac->sf_scale, inv_sf_scale = 1 / ac->sf_scale;
 | |
| 
 | |
|     if (!sce->ics.predictor_initialized) {
 | |
|         reset_all_predictors(sce->predictor_state);
 | |
|         sce->ics.predictor_initialized = 1;
 | |
|     }
 | |
| 
 | |
|     if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
 | |
|         for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
 | |
|             for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
 | |
|                 predict(&sce->predictor_state[k], &sce->coeffs[k],
 | |
|                         sf_scale, inv_sf_scale,
 | |
|                         sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
 | |
|             }
 | |
|         }
 | |
|         if (sce->ics.predictor_reset_group)
 | |
|             reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
 | |
|     } else
 | |
|         reset_all_predictors(sce->predictor_state);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode an individual_channel_stream payload; reference: table 4.44.
 | |
|  *
 | |
|  * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 | |
|  * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_ics(AACContext *ac, SingleChannelElement *sce,
 | |
|                       GetBitContext *gb, int common_window, int scale_flag)
 | |
| {
 | |
|     Pulse pulse;
 | |
|     TemporalNoiseShaping    *tns = &sce->tns;
 | |
|     IndividualChannelStream *ics = &sce->ics;
 | |
|     float *out = sce->coeffs;
 | |
|     int global_gain, pulse_present = 0;
 | |
| 
 | |
|     /* This assignment is to silence a GCC warning about the variable being used
 | |
|      * uninitialized when in fact it always is.
 | |
|      */
 | |
|     pulse.num_pulse = 0;
 | |
| 
 | |
|     global_gain = get_bits(gb, 8);
 | |
| 
 | |
|     if (!common_window && !scale_flag) {
 | |
|         if (decode_ics_info(ac, ics, gb, 0) < 0)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
 | |
|         return -1;
 | |
|     if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     pulse_present = 0;
 | |
|     if (!scale_flag) {
 | |
|         if ((pulse_present = get_bits1(gb))) {
 | |
|             if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
 | |
|             return -1;
 | |
|         if (get_bits1(gb)) {
 | |
|             av_log_missing_feature(ac->avctx, "SSR", 1);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
 | |
|         apply_prediction(ac, sce);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 | |
|  */
 | |
| static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
 | |
| {
 | |
|     const IndividualChannelStream *ics = &cpe->ch[0].ics;
 | |
|     float *ch0 = cpe->ch[0].coeffs;
 | |
|     float *ch1 = cpe->ch[1].coeffs;
 | |
|     int g, i, group, idx = 0;
 | |
|     const uint16_t *offsets = ics->swb_offset;
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb; i++, idx++) {
 | |
|             if (cpe->ms_mask[idx] &&
 | |
|                     cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
 | |
|                                               ch1 + group * 128 + offsets[i],
 | |
|                                               offsets[i+1] - offsets[i]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         ch0 += ics->group_len[g] * 128;
 | |
|         ch1 += ics->group_len[g] * 128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * intensity stereo decoding; reference: 4.6.8.2.3
 | |
|  *
 | |
|  * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 | |
|  *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 | |
|  *                      [3] reserved for scalable AAC
 | |
|  */
 | |
| static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
 | |
| {
 | |
|     const IndividualChannelStream *ics = &cpe->ch[1].ics;
 | |
|     SingleChannelElement         *sce1 = &cpe->ch[1];
 | |
|     float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
 | |
|     const uint16_t *offsets = ics->swb_offset;
 | |
|     int g, group, i, k, idx = 0;
 | |
|     int c;
 | |
|     float scale;
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb;) {
 | |
|             if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
 | |
|                 const int bt_run_end = sce1->band_type_run_end[idx];
 | |
|                 for (; i < bt_run_end; i++, idx++) {
 | |
|                     c = -1 + 2 * (sce1->band_type[idx] - 14);
 | |
|                     if (ms_present)
 | |
|                         c *= 1 - 2 * cpe->ms_mask[idx];
 | |
|                     scale = c * sce1->sf[idx];
 | |
|                     for (group = 0; group < ics->group_len[g]; group++)
 | |
|                         for (k = offsets[i]; k < offsets[i + 1]; k++)
 | |
|                             coef1[group * 128 + k] = scale * coef0[group * 128 + k];
 | |
|                 }
 | |
|             } else {
 | |
|                 int bt_run_end = sce1->band_type_run_end[idx];
 | |
|                 idx += bt_run_end - i;
 | |
|                 i    = bt_run_end;
 | |
|             }
 | |
|         }
 | |
|         coef0 += ics->group_len[g] * 128;
 | |
|         coef1 += ics->group_len[g] * 128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a channel_pair_element; reference: table 4.4.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
 | |
| {
 | |
|     int i, ret, common_window, ms_present = 0;
 | |
| 
 | |
|     common_window = get_bits1(gb);
 | |
|     if (common_window) {
 | |
|         if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
 | |
|             return -1;
 | |
|         i = cpe->ch[1].ics.use_kb_window[0];
 | |
|         cpe->ch[1].ics = cpe->ch[0].ics;
 | |
|         cpe->ch[1].ics.use_kb_window[1] = i;
 | |
|         ms_present = get_bits(gb, 2);
 | |
|         if (ms_present == 3) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
 | |
|             return -1;
 | |
|         } else if (ms_present)
 | |
|             decode_mid_side_stereo(cpe, gb, ms_present);
 | |
|     }
 | |
|     if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
 | |
|         return ret;
 | |
|     if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
 | |
|         return ret;
 | |
| 
 | |
|     if (common_window) {
 | |
|         if (ms_present)
 | |
|             apply_mid_side_stereo(ac, cpe);
 | |
|         if (ac->m4ac.object_type == AOT_AAC_MAIN) {
 | |
|             apply_prediction(ac, &cpe->ch[0]);
 | |
|             apply_prediction(ac, &cpe->ch[1]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     apply_intensity_stereo(cpe, ms_present);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const float cce_scale[] = {
 | |
|     1.09050773266525765921, //2^(1/8)
 | |
|     1.18920711500272106672, //2^(1/4)
 | |
|     M_SQRT2,
 | |
|     2,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Decode coupling_channel_element; reference: table 4.8.
 | |
|  *
 | |
|  * @return  Returns error status. 0 - OK, !0 - error
 | |
|  */
 | |
| static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
 | |
| {
 | |
|     int num_gain = 0;
 | |
|     int c, g, sfb, ret;
 | |
|     int sign;
 | |
|     float scale;
 | |
|     SingleChannelElement *sce = &che->ch[0];
 | |
|     ChannelCoupling     *coup = &che->coup;
 | |
| 
 | |
|     coup->coupling_point = 2 * get_bits1(gb);
 | |
|     coup->num_coupled = get_bits(gb, 3);
 | |
|     for (c = 0; c <= coup->num_coupled; c++) {
 | |
|         num_gain++;
 | |
|         coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
 | |
|         coup->id_select[c] = get_bits(gb, 4);
 | |
|         if (coup->type[c] == TYPE_CPE) {
 | |
|             coup->ch_select[c] = get_bits(gb, 2);
 | |
|             if (coup->ch_select[c] == 3)
 | |
|                 num_gain++;
 | |
|         } else
 | |
|             coup->ch_select[c] = 2;
 | |
|     }
 | |
|     coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
 | |
| 
 | |
|     sign  = get_bits(gb, 1);
 | |
|     scale = cce_scale[get_bits(gb, 2)];
 | |
| 
 | |
|     if ((ret = decode_ics(ac, sce, gb, 0, 0)))
 | |
|         return ret;
 | |
| 
 | |
|     for (c = 0; c < num_gain; c++) {
 | |
|         int idx  = 0;
 | |
|         int cge  = 1;
 | |
|         int gain = 0;
 | |
|         float gain_cache = 1.;
 | |
|         if (c) {
 | |
|             cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
 | |
|             gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
 | |
|             gain_cache = powf(scale, -gain);
 | |
|         }
 | |
|         if (coup->coupling_point == AFTER_IMDCT) {
 | |
|             coup->gain[c][0] = gain_cache;
 | |
|         } else {
 | |
|             for (g = 0; g < sce->ics.num_window_groups; g++) {
 | |
|                 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
 | |
|                     if (sce->band_type[idx] != ZERO_BT) {
 | |
|                         if (!cge) {
 | |
|                             int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
 | |
|                             if (t) {
 | |
|                                 int s = 1;
 | |
|                                 t = gain += t;
 | |
|                                 if (sign) {
 | |
|                                     s  -= 2 * (t & 0x1);
 | |
|                                     t >>= 1;
 | |
|                                 }
 | |
|                                 gain_cache = powf(scale, -t) * s;
 | |
|                             }
 | |
|                         }
 | |
|                         coup->gain[c][idx] = gain_cache;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 | |
|  *
 | |
|  * @return  Returns number of bytes consumed.
 | |
|  */
 | |
| static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
 | |
|                                          GetBitContext *gb)
 | |
| {
 | |
|     int i;
 | |
|     int num_excl_chan = 0;
 | |
| 
 | |
|     do {
 | |
|         for (i = 0; i < 7; i++)
 | |
|             che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
 | |
|     } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
 | |
| 
 | |
|     return num_excl_chan / 7;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode dynamic range information; reference: table 4.52.
 | |
|  *
 | |
|  * @param   cnt length of TYPE_FIL syntactic element in bytes
 | |
|  *
 | |
|  * @return  Returns number of bytes consumed.
 | |
|  */
 | |
| static int decode_dynamic_range(DynamicRangeControl *che_drc,
 | |
|                                 GetBitContext *gb, int cnt)
 | |
| {
 | |
|     int n             = 1;
 | |
|     int drc_num_bands = 1;
 | |
|     int i;
 | |
| 
 | |
|     /* pce_tag_present? */
 | |
|     if (get_bits1(gb)) {
 | |
|         che_drc->pce_instance_tag  = get_bits(gb, 4);
 | |
|         skip_bits(gb, 4); // tag_reserved_bits
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     /* excluded_chns_present? */
 | |
|     if (get_bits1(gb)) {
 | |
|         n += decode_drc_channel_exclusions(che_drc, gb);
 | |
|     }
 | |
| 
 | |
|     /* drc_bands_present? */
 | |
|     if (get_bits1(gb)) {
 | |
|         che_drc->band_incr            = get_bits(gb, 4);
 | |
|         che_drc->interpolation_scheme = get_bits(gb, 4);
 | |
|         n++;
 | |
|         drc_num_bands += che_drc->band_incr;
 | |
|         for (i = 0; i < drc_num_bands; i++) {
 | |
|             che_drc->band_top[i] = get_bits(gb, 8);
 | |
|             n++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* prog_ref_level_present? */
 | |
|     if (get_bits1(gb)) {
 | |
|         che_drc->prog_ref_level = get_bits(gb, 7);
 | |
|         skip_bits1(gb); // prog_ref_level_reserved_bits
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < drc_num_bands; i++) {
 | |
|         che_drc->dyn_rng_sgn[i] = get_bits1(gb);
 | |
|         che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode extension data (incomplete); reference: table 4.51.
 | |
|  *
 | |
|  * @param   cnt length of TYPE_FIL syntactic element in bytes
 | |
|  *
 | |
|  * @return Returns number of bytes consumed
 | |
|  */
 | |
| static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
 | |
|                                     ChannelElement *che, enum RawDataBlockType elem_type)
 | |
| {
 | |
|     int crc_flag = 0;
 | |
|     int res = cnt;
 | |
|     switch (get_bits(gb, 4)) { // extension type
 | |
|     case EXT_SBR_DATA_CRC:
 | |
|         crc_flag++;
 | |
|     case EXT_SBR_DATA:
 | |
|         if (!che) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
 | |
|             return res;
 | |
|         } else if (!ac->m4ac.sbr) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
 | |
|             skip_bits_long(gb, 8 * cnt - 4);
 | |
|             return res;
 | |
|         } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
 | |
|             skip_bits_long(gb, 8 * cnt - 4);
 | |
|             return res;
 | |
|         } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
 | |
|             ac->m4ac.sbr = 1;
 | |
|             ac->m4ac.ps = 1;
 | |
|             output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
 | |
|         } else {
 | |
|             ac->m4ac.sbr = 1;
 | |
|         }
 | |
|         res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
 | |
|         break;
 | |
|     case EXT_DYNAMIC_RANGE:
 | |
|         res = decode_dynamic_range(&ac->che_drc, gb, cnt);
 | |
|         break;
 | |
|     case EXT_FILL:
 | |
|     case EXT_FILL_DATA:
 | |
|     case EXT_DATA_ELEMENT:
 | |
|     default:
 | |
|         skip_bits_long(gb, 8 * cnt - 4);
 | |
|         break;
 | |
|     };
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 | |
|  *
 | |
|  * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 | |
|  * @param   coef    spectral coefficients
 | |
|  */
 | |
| static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
 | |
|                       IndividualChannelStream *ics, int decode)
 | |
| {
 | |
|     const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
 | |
|     int w, filt, m, i;
 | |
|     int bottom, top, order, start, end, size, inc;
 | |
|     float lpc[TNS_MAX_ORDER];
 | |
| 
 | |
|     for (w = 0; w < ics->num_windows; w++) {
 | |
|         bottom = ics->num_swb;
 | |
|         for (filt = 0; filt < tns->n_filt[w]; filt++) {
 | |
|             top    = bottom;
 | |
|             bottom = FFMAX(0, top - tns->length[w][filt]);
 | |
|             order  = tns->order[w][filt];
 | |
|             if (order == 0)
 | |
|                 continue;
 | |
| 
 | |
|             // tns_decode_coef
 | |
|             compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
 | |
| 
 | |
|             start = ics->swb_offset[FFMIN(bottom, mmm)];
 | |
|             end   = ics->swb_offset[FFMIN(   top, mmm)];
 | |
|             if ((size = end - start) <= 0)
 | |
|                 continue;
 | |
|             if (tns->direction[w][filt]) {
 | |
|                 inc = -1;
 | |
|                 start = end - 1;
 | |
|             } else {
 | |
|                 inc = 1;
 | |
|             }
 | |
|             start += w * 128;
 | |
| 
 | |
|             // ar filter
 | |
|             for (m = 0; m < size; m++, start += inc)
 | |
|                 for (i = 1; i <= FFMIN(m, order); i++)
 | |
|                     coef[start] -= coef[start - i * inc] * lpc[i - 1];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Conduct IMDCT and windowing.
 | |
|  */
 | |
| static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
 | |
| {
 | |
|     IndividualChannelStream *ics = &sce->ics;
 | |
|     float *in    = sce->coeffs;
 | |
|     float *out   = sce->ret;
 | |
|     float *saved = sce->saved;
 | |
|     const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
 | |
|     const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
 | |
|     const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
 | |
|     float *buf  = ac->buf_mdct;
 | |
|     float *temp = ac->temp;
 | |
|     int i;
 | |
| 
 | |
|     // imdct
 | |
|     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|         for (i = 0; i < 1024; i += 128)
 | |
|             ff_imdct_half(&ac->mdct_small, buf + i, in + i);
 | |
|     } else
 | |
|         ff_imdct_half(&ac->mdct, buf, in);
 | |
| 
 | |
|     /* window overlapping
 | |
|      * NOTE: To simplify the overlapping code, all 'meaningless' short to long
 | |
|      * and long to short transitions are considered to be short to short
 | |
|      * transitions. This leaves just two cases (long to long and short to short)
 | |
|      * with a little special sauce for EIGHT_SHORT_SEQUENCE.
 | |
|      */
 | |
|     if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
 | |
|             (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
 | |
|         ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, 512);
 | |
|     } else {
 | |
|         memcpy(                        out,               saved,            448 * sizeof(float));
 | |
| 
 | |
|         if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, 64);
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      64);
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      64);
 | |
|             ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      64);
 | |
|             ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      64);
 | |
|             memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
 | |
|         } else {
 | |
|             ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, 64);
 | |
|             memcpy(                    out + 576,         buf + 64,         448 * sizeof(float));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // buffer update
 | |
|     if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | |
|         memcpy(                    saved,       temp + 64,         64 * sizeof(float));
 | |
|         ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 64);
 | |
|         ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
 | |
|         ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
 | |
|         memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
 | |
|     } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
 | |
|         memcpy(                    saved,       buf + 512,        448 * sizeof(float));
 | |
|         memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
 | |
|     } else { // LONG_STOP or ONLY_LONG
 | |
|         memcpy(                    saved,       buf + 512,        512 * sizeof(float));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply dependent channel coupling (applied before IMDCT).
 | |
|  *
 | |
|  * @param   index   index into coupling gain array
 | |
|  */
 | |
| static void apply_dependent_coupling(AACContext *ac,
 | |
|                                      SingleChannelElement *target,
 | |
|                                      ChannelElement *cce, int index)
 | |
| {
 | |
|     IndividualChannelStream *ics = &cce->ch[0].ics;
 | |
|     const uint16_t *offsets = ics->swb_offset;
 | |
|     float *dest = target->coeffs;
 | |
|     const float *src = cce->ch[0].coeffs;
 | |
|     int g, i, group, k, idx = 0;
 | |
|     if (ac->m4ac.object_type == AOT_AAC_LTP) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Dependent coupling is not supported together with LTP\n");
 | |
|         return;
 | |
|     }
 | |
|     for (g = 0; g < ics->num_window_groups; g++) {
 | |
|         for (i = 0; i < ics->max_sfb; i++, idx++) {
 | |
|             if (cce->ch[0].band_type[idx] != ZERO_BT) {
 | |
|                 const float gain = cce->coup.gain[index][idx];
 | |
|                 for (group = 0; group < ics->group_len[g]; group++) {
 | |
|                     for (k = offsets[i]; k < offsets[i + 1]; k++) {
 | |
|                         // XXX dsputil-ize
 | |
|                         dest[group * 128 + k] += gain * src[group * 128 + k];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         dest += ics->group_len[g] * 128;
 | |
|         src  += ics->group_len[g] * 128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply independent channel coupling (applied after IMDCT).
 | |
|  *
 | |
|  * @param   index   index into coupling gain array
 | |
|  */
 | |
| static void apply_independent_coupling(AACContext *ac,
 | |
|                                        SingleChannelElement *target,
 | |
|                                        ChannelElement *cce, int index)
 | |
| {
 | |
|     int i;
 | |
|     const float gain = cce->coup.gain[index][0];
 | |
|     const float *src = cce->ch[0].ret;
 | |
|     float *dest = target->ret;
 | |
|     const int len = 1024 << (ac->m4ac.sbr == 1);
 | |
| 
 | |
|     for (i = 0; i < len; i++)
 | |
|         dest[i] += gain * src[i];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * channel coupling transformation interface
 | |
|  *
 | |
|  * @param   apply_coupling_method   pointer to (in)dependent coupling function
 | |
|  */
 | |
| static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
 | |
|                                    enum RawDataBlockType type, int elem_id,
 | |
|                                    enum CouplingPoint coupling_point,
 | |
|                                    void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
 | |
| {
 | |
|     int i, c;
 | |
| 
 | |
|     for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|         ChannelElement *cce = ac->che[TYPE_CCE][i];
 | |
|         int index = 0;
 | |
| 
 | |
|         if (cce && cce->coup.coupling_point == coupling_point) {
 | |
|             ChannelCoupling *coup = &cce->coup;
 | |
| 
 | |
|             for (c = 0; c <= coup->num_coupled; c++) {
 | |
|                 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
 | |
|                     if (coup->ch_select[c] != 1) {
 | |
|                         apply_coupling_method(ac, &cc->ch[0], cce, index);
 | |
|                         if (coup->ch_select[c] != 0)
 | |
|                             index++;
 | |
|                     }
 | |
|                     if (coup->ch_select[c] != 2)
 | |
|                         apply_coupling_method(ac, &cc->ch[1], cce, index++);
 | |
|                 } else
 | |
|                     index += 1 + (coup->ch_select[c] == 3);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Convert spectral data to float samples, applying all supported tools as appropriate.
 | |
|  */
 | |
| static void spectral_to_sample(AACContext *ac)
 | |
| {
 | |
|     int i, type;
 | |
|     for (type = 3; type >= 0; type--) {
 | |
|         for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|             ChannelElement *che = ac->che[type][i];
 | |
|             if (che) {
 | |
|                 if (type <= TYPE_CPE)
 | |
|                     apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
 | |
|                 if (che->ch[0].tns.present)
 | |
|                     apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
 | |
|                 if (che->ch[1].tns.present)
 | |
|                     apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
 | |
|                 if (type <= TYPE_CPE)
 | |
|                     apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
 | |
|                 if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
 | |
|                     imdct_and_windowing(ac, &che->ch[0]);
 | |
|                     if (type == TYPE_CPE) {
 | |
|                         imdct_and_windowing(ac, &che->ch[1]);
 | |
|                     }
 | |
|                     if (ac->m4ac.sbr > 0) {
 | |
|                         ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
 | |
|                     }
 | |
|                 }
 | |
|                 if (type <= TYPE_CCE)
 | |
|                     apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
 | |
| {
 | |
|     int size;
 | |
|     AACADTSHeaderInfo hdr_info;
 | |
| 
 | |
|     size = ff_aac_parse_header(gb, &hdr_info);
 | |
|     if (size > 0) {
 | |
|         if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
 | |
|             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
 | |
|             memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
|             ac->m4ac.chan_config = hdr_info.chan_config;
 | |
|             if (set_default_channel_config(ac->avctx, new_che_pos, hdr_info.chan_config))
 | |
|                 return -7;
 | |
|             if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
 | |
|                 return -7;
 | |
|         } else if (ac->output_configured != OC_LOCKED) {
 | |
|             ac->output_configured = OC_NONE;
 | |
|         }
 | |
|         if (ac->output_configured != OC_LOCKED) {
 | |
|             ac->m4ac.sbr = -1;
 | |
|             ac->m4ac.ps  = -1;
 | |
|         }
 | |
|         ac->m4ac.sample_rate     = hdr_info.sample_rate;
 | |
|         ac->m4ac.sampling_index  = hdr_info.sampling_index;
 | |
|         ac->m4ac.object_type     = hdr_info.object_type;
 | |
|         if (!ac->avctx->sample_rate)
 | |
|             ac->avctx->sample_rate = hdr_info.sample_rate;
 | |
|         if (hdr_info.num_aac_frames == 1) {
 | |
|             if (!hdr_info.crc_absent)
 | |
|                 skip_bits(gb, 16);
 | |
|         } else {
 | |
|             av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
 | |
|                                 int *data_size, GetBitContext *gb)
 | |
| {
 | |
|     AACContext *ac = avctx->priv_data;
 | |
|     ChannelElement *che = NULL, *che_prev = NULL;
 | |
|     enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
 | |
|     int err, elem_id, data_size_tmp;
 | |
|     int samples = 0, multiplier;
 | |
| 
 | |
|     if (show_bits(gb, 12) == 0xfff) {
 | |
|         if (parse_adts_frame_header(ac, gb) < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
 | |
|             return -1;
 | |
|         }
 | |
|         if (ac->m4ac.sampling_index > 12) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ac->tags_mapped = 0;
 | |
|     // parse
 | |
|     while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
 | |
|         elem_id = get_bits(gb, 4);
 | |
| 
 | |
|         if (elem_type < TYPE_DSE) {
 | |
|             if (!(che=get_che(ac, elem_type, elem_id))) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
 | |
|                        elem_type, elem_id);
 | |
|                 return -1;
 | |
|             }
 | |
|             samples = 1024;
 | |
|         }
 | |
| 
 | |
|         switch (elem_type) {
 | |
| 
 | |
|         case TYPE_SCE:
 | |
|             err = decode_ics(ac, &che->ch[0], gb, 0, 0);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_CPE:
 | |
|             err = decode_cpe(ac, gb, che);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_CCE:
 | |
|             err = decode_cce(ac, gb, che);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_LFE:
 | |
|             err = decode_ics(ac, &che->ch[0], gb, 0, 0);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_DSE:
 | |
|             err = skip_data_stream_element(ac, gb);
 | |
|             break;
 | |
| 
 | |
|         case TYPE_PCE: {
 | |
|             enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
 | |
|             memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
 | |
|             if ((err = decode_pce(avctx, &ac->m4ac, new_che_pos, gb)))
 | |
|                 break;
 | |
|             if (ac->output_configured > OC_TRIAL_PCE)
 | |
|                 av_log(avctx, AV_LOG_ERROR,
 | |
|                        "Not evaluating a further program_config_element as this construct is dubious at best.\n");
 | |
|             else
 | |
|                 err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         case TYPE_FIL:
 | |
|             if (elem_id == 15)
 | |
|                 elem_id += get_bits(gb, 8) - 1;
 | |
|             if (get_bits_left(gb) < 8 * elem_id) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, overread_err);
 | |
|                     return -1;
 | |
|             }
 | |
|             while (elem_id > 0)
 | |
|                 elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
 | |
|             err = 0; /* FIXME */
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             err = -1; /* should not happen, but keeps compiler happy */
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         che_prev       = che;
 | |
|         elem_type_prev = elem_type;
 | |
| 
 | |
|         if (err)
 | |
|             return err;
 | |
| 
 | |
|         if (get_bits_left(gb) < 3) {
 | |
|             av_log(avctx, AV_LOG_ERROR, overread_err);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     spectral_to_sample(ac);
 | |
| 
 | |
|     multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
 | |
|     samples <<= multiplier;
 | |
|     if (ac->output_configured < OC_LOCKED) {
 | |
|         avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
 | |
|         avctx->frame_size = samples;
 | |
|     }
 | |
| 
 | |
|     data_size_tmp = samples * avctx->channels * sizeof(int16_t);
 | |
|     if (*data_size < data_size_tmp) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
 | |
|                *data_size, data_size_tmp);
 | |
|         return -1;
 | |
|     }
 | |
|     *data_size = data_size_tmp;
 | |
| 
 | |
|     if (samples)
 | |
|         ac->fmt_conv.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avctx->channels);
 | |
| 
 | |
|     if (ac->output_configured)
 | |
|         ac->output_configured = OC_LOCKED;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int aac_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                             int *data_size, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     GetBitContext gb;
 | |
|     int buf_consumed;
 | |
|     int buf_offset;
 | |
|     int err;
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size * 8);
 | |
| 
 | |
|     if ((err = aac_decode_frame_int(avctx, data, data_size, &gb)) < 0)
 | |
|         return err;
 | |
| 
 | |
|     buf_consumed = (get_bits_count(&gb) + 7) >> 3;
 | |
|     for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
 | |
|         if (buf[buf_offset])
 | |
|             break;
 | |
| 
 | |
|     return buf_size > buf_offset ? buf_consumed : buf_size;
 | |
| }
 | |
| 
 | |
| static av_cold int aac_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     AACContext *ac = avctx->priv_data;
 | |
|     int i, type;
 | |
| 
 | |
|     for (i = 0; i < MAX_ELEM_ID; i++) {
 | |
|         for (type = 0; type < 4; type++) {
 | |
|             if (ac->che[type][i])
 | |
|                 ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
 | |
|             av_freep(&ac->che[type][i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ff_mdct_end(&ac->mdct);
 | |
|     ff_mdct_end(&ac->mdct_small);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define LOAS_SYNC_WORD   0x2b7       ///< 11 bits LOAS sync word
 | |
| 
 | |
| struct LATMContext {
 | |
|     AACContext      aac_ctx;             ///< containing AACContext
 | |
|     int             initialized;         ///< initilized after a valid extradata was seen
 | |
| 
 | |
|     // parser data
 | |
|     int             audio_mux_version_A; ///< LATM syntax version
 | |
|     int             frame_length_type;   ///< 0/1 variable/fixed frame length
 | |
|     int             frame_length;        ///< frame length for fixed frame length
 | |
| };
 | |
| 
 | |
| static inline uint32_t latm_get_value(GetBitContext *b)
 | |
| {
 | |
|     int length = get_bits(b, 2);
 | |
| 
 | |
|     return get_bits_long(b, (length+1)*8);
 | |
| }
 | |
| 
 | |
| static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
 | |
|                                              GetBitContext *gb)
 | |
| {
 | |
|     AVCodecContext *avctx = latmctx->aac_ctx.avctx;
 | |
|     MPEG4AudioConfig m4ac;
 | |
|     int  config_start_bit = get_bits_count(gb);
 | |
|     int     bits_consumed, esize;
 | |
| 
 | |
|     if (config_start_bit % 8) {
 | |
|         av_log_missing_feature(latmctx->aac_ctx.avctx, "audio specific "
 | |
|                                "config not byte aligned.\n", 1);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     } else {
 | |
|         bits_consumed =
 | |
|             decode_audio_specific_config(NULL, avctx, &m4ac,
 | |
|                                          gb->buffer + (config_start_bit / 8),
 | |
|                                          get_bits_left(gb) / 8);
 | |
| 
 | |
|         if (bits_consumed < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         esize = (bits_consumed+7) / 8;
 | |
| 
 | |
|         if (avctx->extradata_size <= esize) {
 | |
|             av_free(avctx->extradata);
 | |
|             avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
 | |
|             if (!avctx->extradata)
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
| 
 | |
|         avctx->extradata_size = esize;
 | |
|         memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
 | |
|         memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
 | |
| 
 | |
|         skip_bits_long(gb, bits_consumed);
 | |
|     }
 | |
| 
 | |
|     return bits_consumed;
 | |
| }
 | |
| 
 | |
| static int read_stream_mux_config(struct LATMContext *latmctx,
 | |
|                                   GetBitContext *gb)
 | |
| {
 | |
|     int ret, audio_mux_version = get_bits(gb, 1);
 | |
| 
 | |
|     latmctx->audio_mux_version_A = 0;
 | |
|     if (audio_mux_version)
 | |
|         latmctx->audio_mux_version_A = get_bits(gb, 1);
 | |
| 
 | |
|     if (!latmctx->audio_mux_version_A) {
 | |
| 
 | |
|         if (audio_mux_version)
 | |
|             latm_get_value(gb);                 // taraFullness
 | |
| 
 | |
|         skip_bits(gb, 1);                       // allStreamSameTimeFraming
 | |
|         skip_bits(gb, 6);                       // numSubFrames
 | |
|         // numPrograms
 | |
|         if (get_bits(gb, 4)) {                  // numPrograms
 | |
|             av_log_missing_feature(latmctx->aac_ctx.avctx,
 | |
|                                    "multiple programs are not supported\n", 1);
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         // for each program (which there is only on in DVB)
 | |
| 
 | |
|         // for each layer (which there is only on in DVB)
 | |
|         if (get_bits(gb, 3)) {                   // numLayer
 | |
|             av_log_missing_feature(latmctx->aac_ctx.avctx,
 | |
|                                    "multiple layers are not supported\n", 1);
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         // for all but first stream: use_same_config = get_bits(gb, 1);
 | |
|         if (!audio_mux_version) {
 | |
|             if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0)
 | |
|                 return ret;
 | |
|         } else {
 | |
|             int ascLen = latm_get_value(gb);
 | |
|             if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0)
 | |
|                 return ret;
 | |
|             ascLen -= ret;
 | |
|             skip_bits_long(gb, ascLen);
 | |
|         }
 | |
| 
 | |
|         latmctx->frame_length_type = get_bits(gb, 3);
 | |
|         switch (latmctx->frame_length_type) {
 | |
|         case 0:
 | |
|             skip_bits(gb, 8);       // latmBufferFullness
 | |
|             break;
 | |
|         case 1:
 | |
|             latmctx->frame_length = get_bits(gb, 9);
 | |
|             break;
 | |
|         case 3:
 | |
|         case 4:
 | |
|         case 5:
 | |
|             skip_bits(gb, 6);       // CELP frame length table index
 | |
|             break;
 | |
|         case 6:
 | |
|         case 7:
 | |
|             skip_bits(gb, 1);       // HVXC frame length table index
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (get_bits(gb, 1)) {                  // other data
 | |
|             if (audio_mux_version) {
 | |
|                 latm_get_value(gb);             // other_data_bits
 | |
|             } else {
 | |
|                 int esc;
 | |
|                 do {
 | |
|                     esc = get_bits(gb, 1);
 | |
|                     skip_bits(gb, 8);
 | |
|                 } while (esc);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (get_bits(gb, 1))                     // crc present
 | |
|             skip_bits(gb, 8);                    // config_crc
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
 | |
| {
 | |
|     uint8_t tmp;
 | |
| 
 | |
|     if (ctx->frame_length_type == 0) {
 | |
|         int mux_slot_length = 0;
 | |
|         do {
 | |
|             tmp = get_bits(gb, 8);
 | |
|             mux_slot_length += tmp;
 | |
|         } while (tmp == 255);
 | |
|         return mux_slot_length;
 | |
|     } else if (ctx->frame_length_type == 1) {
 | |
|         return ctx->frame_length;
 | |
|     } else if (ctx->frame_length_type == 3 ||
 | |
|                ctx->frame_length_type == 5 ||
 | |
|                ctx->frame_length_type == 7) {
 | |
|         skip_bits(gb, 2);          // mux_slot_length_coded
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int read_audio_mux_element(struct LATMContext *latmctx,
 | |
|                                   GetBitContext *gb)
 | |
| {
 | |
|     int err;
 | |
|     uint8_t use_same_mux = get_bits(gb, 1);
 | |
|     if (!use_same_mux) {
 | |
|         if ((err = read_stream_mux_config(latmctx, gb)) < 0)
 | |
|             return err;
 | |
|     } else if (!latmctx->aac_ctx.avctx->extradata) {
 | |
|         av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
 | |
|                "no decoder config found\n");
 | |
|         return AVERROR(EAGAIN);
 | |
|     }
 | |
|     if (latmctx->audio_mux_version_A == 0) {
 | |
|         int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
 | |
|         if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
 | |
|             av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
 | |
|             av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
 | |
|                    "frame length mismatch %d << %d\n",
 | |
|                    mux_slot_length_bytes * 8, get_bits_left(gb));
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int latm_decode_frame(AVCodecContext *avctx, void *out, int *out_size,
 | |
|                              AVPacket *avpkt)
 | |
| {
 | |
|     struct LATMContext *latmctx = avctx->priv_data;
 | |
|     int                 muxlength, err;
 | |
|     GetBitContext       gb;
 | |
| 
 | |
|     if (avpkt->size == 0)
 | |
|         return 0;
 | |
| 
 | |
|     init_get_bits(&gb, avpkt->data, avpkt->size * 8);
 | |
| 
 | |
|     // check for LOAS sync word
 | |
|     if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     muxlength = get_bits(&gb, 13) + 3;
 | |
|     // not enough data, the parser should have sorted this
 | |
|     if (muxlength > avpkt->size)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
 | |
|         return err;
 | |
| 
 | |
|     if (!latmctx->initialized) {
 | |
|         if (!avctx->extradata) {
 | |
|             *out_size = 0;
 | |
|             return avpkt->size;
 | |
|         } else {
 | |
|             if ((err = aac_decode_init(avctx)) < 0)
 | |
|                 return err;
 | |
|             latmctx->initialized = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (show_bits(&gb, 12) == 0xfff) {
 | |
|         av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
 | |
|                "ADTS header detected, probably as result of configuration "
 | |
|                "misparsing\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if ((err = aac_decode_frame_int(avctx, out, out_size, &gb)) < 0)
 | |
|         return err;
 | |
| 
 | |
|     return muxlength;
 | |
| }
 | |
| 
 | |
| av_cold static int latm_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     struct LATMContext *latmctx = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     ret = aac_decode_init(avctx);
 | |
| 
 | |
|     if (avctx->extradata_size > 0) {
 | |
|         latmctx->initialized = !ret;
 | |
|     } else {
 | |
|         latmctx->initialized = 0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| AVCodec ff_aac_decoder = {
 | |
|     "aac",
 | |
|     AVMEDIA_TYPE_AUDIO,
 | |
|     CODEC_ID_AAC,
 | |
|     sizeof(AACContext),
 | |
|     aac_decode_init,
 | |
|     NULL,
 | |
|     aac_decode_close,
 | |
|     aac_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
 | |
|     .sample_fmts = (const enum AVSampleFormat[]) {
 | |
|         AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE
 | |
|     },
 | |
|     .channel_layouts = aac_channel_layout,
 | |
| };
 | |
| 
 | |
| /*
 | |
|     Note: This decoder filter is intended to decode LATM streams transferred
 | |
|     in MPEG transport streams which only contain one program.
 | |
|     To do a more complex LATM demuxing a separate LATM demuxer should be used.
 | |
| */
 | |
| AVCodec ff_aac_latm_decoder = {
 | |
|     .name = "aac_latm",
 | |
|     .type = AVMEDIA_TYPE_AUDIO,
 | |
|     .id   = CODEC_ID_AAC_LATM,
 | |
|     .priv_data_size = sizeof(struct LATMContext),
 | |
|     .init   = latm_decode_init,
 | |
|     .close  = aac_decode_close,
 | |
|     .decode = latm_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Codec LATM syntax)"),
 | |
|     .sample_fmts = (const enum AVSampleFormat[]) {
 | |
|         AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE
 | |
|     },
 | |
|     .channel_layouts = aac_channel_layout,
 | |
| };
 | 
