mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-11-01 04:53:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			421 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			421 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The simplest AC-3 encoder
 | |
|  * Copyright (c) 2000 Fabrice Bellard
 | |
|  * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * fixed-point AC-3 encoder.
 | |
|  */
 | |
| 
 | |
| #undef CONFIG_AC3ENC_FLOAT
 | |
| #include "ac3enc.c"
 | |
| 
 | |
| 
 | |
| /** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
 | |
| #define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Finalize MDCT and free allocated memory.
 | |
|  */
 | |
| static av_cold void mdct_end(AC3MDCTContext *mdct)
 | |
| {
 | |
|     mdct->nbits = 0;
 | |
|     av_freep(&mdct->costab);
 | |
|     av_freep(&mdct->sintab);
 | |
|     av_freep(&mdct->xcos1);
 | |
|     av_freep(&mdct->xsin1);
 | |
|     av_freep(&mdct->rot_tmp);
 | |
|     av_freep(&mdct->cplx_tmp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Initialize FFT tables.
 | |
|  * @param ln log2(FFT size)
 | |
|  */
 | |
| static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
 | |
| {
 | |
|     int i, n, n2;
 | |
|     float alpha;
 | |
| 
 | |
|     n  = 1 << ln;
 | |
|     n2 = n >> 1;
 | |
| 
 | |
|     FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
 | |
|     FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
 | |
| 
 | |
|     for (i = 0; i < n2; i++) {
 | |
|         alpha     = 2.0 * M_PI * i / n;
 | |
|         mdct->costab[i] = FIX15(cos(alpha));
 | |
|         mdct->sintab[i] = FIX15(sin(alpha));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| fft_alloc_fail:
 | |
|     mdct_end(mdct);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Initialize MDCT tables.
 | |
|  * @param nbits log2(MDCT size)
 | |
|  */
 | |
| static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
 | |
|                              int nbits)
 | |
| {
 | |
|     int i, n, n4, ret;
 | |
| 
 | |
|     n  = 1 << nbits;
 | |
|     n4 = n >> 2;
 | |
| 
 | |
|     mdct->nbits = nbits;
 | |
| 
 | |
|     ret = fft_init(avctx, mdct, nbits - 2);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     mdct->window = ff_ac3_window;
 | |
| 
 | |
|     FF_ALLOC_OR_GOTO(avctx, mdct->xcos1,    n4 * sizeof(*mdct->xcos1),    mdct_alloc_fail);
 | |
|     FF_ALLOC_OR_GOTO(avctx, mdct->xsin1,    n4 * sizeof(*mdct->xsin1),    mdct_alloc_fail);
 | |
|     FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),  mdct_alloc_fail);
 | |
|     FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
 | |
| 
 | |
|     for (i = 0; i < n4; i++) {
 | |
|         float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
 | |
|         mdct->xcos1[i] = FIX15(-cos(alpha));
 | |
|         mdct->xsin1[i] = FIX15(-sin(alpha));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| mdct_alloc_fail:
 | |
|     mdct_end(mdct);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| 
 | |
| /** Butterfly op */
 | |
| #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
 | |
| {                                                       \
 | |
|   int ax, ay, bx, by;                                   \
 | |
|   bx  = pre1;                                           \
 | |
|   by  = pim1;                                           \
 | |
|   ax  = qre1;                                           \
 | |
|   ay  = qim1;                                           \
 | |
|   pre = (bx + ax) >> 1;                                 \
 | |
|   pim = (by + ay) >> 1;                                 \
 | |
|   qre = (bx - ax) >> 1;                                 \
 | |
|   qim = (by - ay) >> 1;                                 \
 | |
| }
 | |
| 
 | |
| 
 | |
| /** Complex multiply */
 | |
| #define CMUL(pre, pim, are, aim, bre, bim, rshift)      \
 | |
| {                                                       \
 | |
|    pre = (MUL16(are, bre) - MUL16(aim, bim)) >> rshift; \
 | |
|    pim = (MUL16(are, bim) + MUL16(bre, aim)) >> rshift; \
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Calculate a 2^n point complex FFT on 2^ln points.
 | |
|  * @param z  complex input/output samples
 | |
|  * @param ln log2(FFT size)
 | |
|  */
 | |
| static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
 | |
| {
 | |
|     int j, l, np, np2;
 | |
|     int nblocks, nloops;
 | |
|     register IComplex *p,*q;
 | |
|     int tmp_re, tmp_im;
 | |
| 
 | |
|     np = 1 << ln;
 | |
| 
 | |
|     /* reverse */
 | |
|     for (j = 0; j < np; j++) {
 | |
|         int k = av_reverse[j] >> (8 - ln);
 | |
|         if (k < j)
 | |
|             FFSWAP(IComplex, z[k], z[j]);
 | |
|     }
 | |
| 
 | |
|     /* pass 0 */
 | |
| 
 | |
|     p = &z[0];
 | |
|     j = np >> 1;
 | |
|     do {
 | |
|         BF(p[0].re, p[0].im, p[1].re, p[1].im,
 | |
|            p[0].re, p[0].im, p[1].re, p[1].im);
 | |
|         p += 2;
 | |
|     } while (--j);
 | |
| 
 | |
|     /* pass 1 */
 | |
| 
 | |
|     p = &z[0];
 | |
|     j = np >> 2;
 | |
|     do {
 | |
|         BF(p[0].re, p[0].im, p[2].re,  p[2].im,
 | |
|            p[0].re, p[0].im, p[2].re,  p[2].im);
 | |
|         BF(p[1].re, p[1].im, p[3].re,  p[3].im,
 | |
|            p[1].re, p[1].im, p[3].im, -p[3].re);
 | |
|         p+=4;
 | |
|     } while (--j);
 | |
| 
 | |
|     /* pass 2 .. ln-1 */
 | |
| 
 | |
|     nblocks = np >> 3;
 | |
|     nloops  =  1 << 2;
 | |
|     np2     = np >> 1;
 | |
|     do {
 | |
|         p = z;
 | |
|         q = z + nloops;
 | |
|         for (j = 0; j < nblocks; j++) {
 | |
|             BF(p->re, p->im, q->re, q->im,
 | |
|                p->re, p->im, q->re, q->im);
 | |
|             p++;
 | |
|             q++;
 | |
|             for(l = nblocks; l < np2; l += nblocks) {
 | |
|                 CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im, 15);
 | |
|                 BF(p->re, p->im, q->re,  q->im,
 | |
|                    p->re, p->im, tmp_re, tmp_im);
 | |
|                 p++;
 | |
|                 q++;
 | |
|             }
 | |
|             p += nloops;
 | |
|             q += nloops;
 | |
|         }
 | |
|         nblocks = nblocks >> 1;
 | |
|         nloops  = nloops  << 1;
 | |
|     } while (nblocks);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Calculate a 512-point MDCT
 | |
|  * @param out 256 output frequency coefficients
 | |
|  * @param in  512 windowed input audio samples
 | |
|  */
 | |
| static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
 | |
| {
 | |
|     int i, re, im, n, n2, n4;
 | |
|     int16_t *rot = mdct->rot_tmp;
 | |
|     IComplex *x  = mdct->cplx_tmp;
 | |
| 
 | |
|     n  = 1 << mdct->nbits;
 | |
|     n2 = n >> 1;
 | |
|     n4 = n >> 2;
 | |
| 
 | |
|     /* shift to simplify computations */
 | |
|     for (i = 0; i <n4; i++)
 | |
|         rot[i] = -in[i + 3*n4];
 | |
|     memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));
 | |
| 
 | |
|     /* pre rotation */
 | |
|     for (i = 0; i < n4; i++) {
 | |
|         re =  ((int)rot[   2*i] - (int)rot[ n-1-2*i]) >> 1;
 | |
|         im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
 | |
|         CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i], 15);
 | |
|     }
 | |
| 
 | |
|     fft(mdct, x, mdct->nbits - 2);
 | |
| 
 | |
|     /* post rotation */
 | |
|     for (i = 0; i < n4; i++) {
 | |
|         re = x[i].re;
 | |
|         im = x[i].im;
 | |
|         CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i], 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Apply KBD window to input samples prior to MDCT.
 | |
|  */
 | |
| static void apply_window(DSPContext *dsp, int16_t *output, const int16_t *input,
 | |
|                          const int16_t *window, int n)
 | |
| {
 | |
|     int i;
 | |
|     int n2 = n >> 1;
 | |
| 
 | |
|     for (i = 0; i < n2; i++) {
 | |
|         output[i]     = MUL16(input[i],     window[i]) >> 15;
 | |
|         output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Calculate the log2() of the maximum absolute value in an array.
 | |
|  * @param tab input array
 | |
|  * @param n   number of values in the array
 | |
|  * @return    log2(max(abs(tab[])))
 | |
|  */
 | |
| static int log2_tab(AC3EncodeContext *s, int16_t *src, int len)
 | |
| {
 | |
|     int v = s->ac3dsp.ac3_max_msb_abs_int16(src, len);
 | |
|     return av_log2(v);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Normalize the input samples to use the maximum available precision.
 | |
|  * This assumes signed 16-bit input samples.
 | |
|  *
 | |
|  * @return exponent shift
 | |
|  */
 | |
| static int normalize_samples(AC3EncodeContext *s)
 | |
| {
 | |
|     int v = 14 - log2_tab(s, s->windowed_samples, AC3_WINDOW_SIZE);
 | |
|     if (v > 0)
 | |
|         s->ac3dsp.ac3_lshift_int16(s->windowed_samples, AC3_WINDOW_SIZE, v);
 | |
|     /* +6 to right-shift from 31-bit to 25-bit */
 | |
|     return v + 6;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Scale MDCT coefficients to 25-bit signed fixed-point.
 | |
|  */
 | |
| static void scale_coefficients(AC3EncodeContext *s)
 | |
| {
 | |
|     int blk, ch;
 | |
| 
 | |
|     for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | |
|         AC3Block *block = &s->blocks[blk];
 | |
|         for (ch = 0; ch < s->channels; ch++) {
 | |
|             s->ac3dsp.ac3_rshift_int32(block->mdct_coef[ch], AC3_MAX_COEFS,
 | |
|                                        block->coeff_shift[ch]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef TEST
 | |
| /*************************************************************************/
 | |
| /* TEST */
 | |
| 
 | |
| #include "libavutil/lfg.h"
 | |
| 
 | |
| #define MDCT_NBITS 9
 | |
| #define MDCT_SAMPLES (1 << MDCT_NBITS)
 | |
| #define FN (MDCT_SAMPLES/4)
 | |
| 
 | |
| 
 | |
| static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
 | |
| {
 | |
|     IComplex in[FN], in1[FN];
 | |
|     int k, n, i;
 | |
|     float sum_re, sum_im, a;
 | |
| 
 | |
|     for (i = 0; i < FN; i++) {
 | |
|         in[i].re = av_lfg_get(lfg) % 65535 - 32767;
 | |
|         in[i].im = av_lfg_get(lfg) % 65535 - 32767;
 | |
|         in1[i]   = in[i];
 | |
|     }
 | |
|     fft(mdct, in, 7);
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for (k = 0; k < FN; k++) {
 | |
|         sum_re = 0;
 | |
|         sum_im = 0;
 | |
|         for (n = 0; n < FN; n++) {
 | |
|             a = -2 * M_PI * (n * k) / FN;
 | |
|             sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
 | |
|             sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
 | |
|         }
 | |
|         av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
 | |
|                k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
 | |
| {
 | |
|     int16_t input[MDCT_SAMPLES];
 | |
|     int32_t output[AC3_MAX_COEFS];
 | |
|     float input1[MDCT_SAMPLES];
 | |
|     float output1[AC3_MAX_COEFS];
 | |
|     float s, a, err, e, emax;
 | |
|     int i, k, n;
 | |
| 
 | |
|     for (i = 0; i < MDCT_SAMPLES; i++) {
 | |
|         input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
 | |
|         input1[i] = input[i];
 | |
|     }
 | |
| 
 | |
|     mdct512(mdct, output, input);
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for (k = 0; k < AC3_MAX_COEFS; k++) {
 | |
|         s = 0;
 | |
|         for (n = 0; n < MDCT_SAMPLES; n++) {
 | |
|             a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
 | |
|             s += input1[n] * cos(a);
 | |
|         }
 | |
|         output1[k] = -2 * s / MDCT_SAMPLES;
 | |
|     }
 | |
| 
 | |
|     err  = 0;
 | |
|     emax = 0;
 | |
|     for (i = 0; i < AC3_MAX_COEFS; i++) {
 | |
|         av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
 | |
|         e = output[i] - output1[i];
 | |
|         if (e > emax)
 | |
|             emax = e;
 | |
|         err += e * e;
 | |
|     }
 | |
|     av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|     AVLFG lfg;
 | |
|     AC3MDCTContext mdct;
 | |
| 
 | |
|     mdct.avctx = NULL;
 | |
|     av_log_set_level(AV_LOG_DEBUG);
 | |
|     mdct_init(&mdct, 9);
 | |
| 
 | |
|     fft_test(&mdct, &lfg);
 | |
|     mdct_test(&mdct, &lfg);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif /* TEST */
 | |
| 
 | |
| 
 | |
| AVCodec ff_ac3_fixed_encoder = {
 | |
|     "ac3_fixed",
 | |
|     AVMEDIA_TYPE_AUDIO,
 | |
|     CODEC_ID_AC3,
 | |
|     sizeof(AC3EncodeContext),
 | |
|     ac3_encode_init,
 | |
|     ac3_encode_frame,
 | |
|     ac3_encode_close,
 | |
|     NULL,
 | |
|     .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
 | |
|     .channel_layouts = ac3_channel_layouts,
 | |
| };
 | 
