mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	 0c023d181e
			
		
	
	0c023d181e
	
	
	
		
			
			The min_shift parameter is needed by the MLP encoder Signed-off-by: Jai Luthra <me@jailuthra.in> Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
		
			
				
	
	
		
			326 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * LPC utility code
 | |
|  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/lls.h"
 | |
| 
 | |
| #define LPC_USE_DOUBLE
 | |
| #include "lpc.h"
 | |
| #include "libavutil/avassert.h"
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Apply Welch window function to audio block
 | |
|  */
 | |
| static void lpc_apply_welch_window_c(const int32_t *data, int len,
 | |
|                                      double *w_data)
 | |
| {
 | |
|     int i, n2;
 | |
|     double w;
 | |
|     double c;
 | |
| 
 | |
|     n2 = (len >> 1);
 | |
|     c = 2.0 / (len - 1.0);
 | |
| 
 | |
|     if (len & 1) {
 | |
|         for(i=0; i<n2; i++) {
 | |
|             w = c - i - 1.0;
 | |
|             w = 1.0 - (w * w);
 | |
|             w_data[i] = data[i] * w;
 | |
|             w_data[len-1-i] = data[len-1-i] * w;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     w_data+=n2;
 | |
|       data+=n2;
 | |
|     for(i=0; i<n2; i++) {
 | |
|         w = c - n2 + i;
 | |
|         w = 1.0 - (w * w);
 | |
|         w_data[-i-1] = data[-i-1] * w;
 | |
|         w_data[+i  ] = data[+i  ] * w;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate autocorrelation data from audio samples
 | |
|  * A Welch window function is applied before calculation.
 | |
|  */
 | |
| static void lpc_compute_autocorr_c(const double *data, int len, int lag,
 | |
|                                    double *autoc)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for(j=0; j<lag; j+=2){
 | |
|         double sum0 = 1.0, sum1 = 1.0;
 | |
|         for(i=j; i<len; i++){
 | |
|             sum0 += data[i] * data[i-j];
 | |
|             sum1 += data[i] * data[i-j-1];
 | |
|         }
 | |
|         autoc[j  ] = sum0;
 | |
|         autoc[j+1] = sum1;
 | |
|     }
 | |
| 
 | |
|     if(j==lag){
 | |
|         double sum = 1.0;
 | |
|         for(i=j-1; i<len; i+=2){
 | |
|             sum += data[i  ] * data[i-j  ]
 | |
|                  + data[i+1] * data[i-j+1];
 | |
|         }
 | |
|         autoc[j] = sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Quantize LPC coefficients
 | |
|  */
 | |
| static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
 | |
|                                int32_t *lpc_out, int *shift, int min_shift,
 | |
|                                int max_shift, int zero_shift)
 | |
| {
 | |
|     int i;
 | |
|     double cmax, error;
 | |
|     int32_t qmax;
 | |
|     int sh;
 | |
| 
 | |
|     /* define maximum levels */
 | |
|     qmax = (1 << (precision - 1)) - 1;
 | |
| 
 | |
|     /* find maximum coefficient value */
 | |
|     cmax = 0.0;
 | |
|     for(i=0; i<order; i++) {
 | |
|         cmax= FFMAX(cmax, fabs(lpc_in[i]));
 | |
|     }
 | |
| 
 | |
|     /* if maximum value quantizes to zero, return all zeros */
 | |
|     if(cmax * (1 << max_shift) < 1.0) {
 | |
|         *shift = zero_shift;
 | |
|         memset(lpc_out, 0, sizeof(int32_t) * order);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* calculate level shift which scales max coeff to available bits */
 | |
|     sh = max_shift;
 | |
|     while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
 | |
|         sh--;
 | |
|     }
 | |
| 
 | |
|     /* since negative shift values are unsupported in decoder, scale down
 | |
|        coefficients instead */
 | |
|     if(sh == 0 && cmax > qmax) {
 | |
|         double scale = ((double)qmax) / cmax;
 | |
|         for(i=0; i<order; i++) {
 | |
|             lpc_in[i] *= scale;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* output quantized coefficients and level shift */
 | |
|     error=0;
 | |
|     for(i=0; i<order; i++) {
 | |
|         error -= lpc_in[i] * (1 << sh);
 | |
|         lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
 | |
|         error -= lpc_out[i];
 | |
|     }
 | |
|     *shift = sh;
 | |
| }
 | |
| 
 | |
| static int estimate_best_order(double *ref, int min_order, int max_order)
 | |
| {
 | |
|     int i, est;
 | |
| 
 | |
|     est = min_order;
 | |
|     for(i=max_order-1; i>=min_order-1; i--) {
 | |
|         if(ref[i] > 0.10) {
 | |
|             est = i+1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return est;
 | |
| }
 | |
| 
 | |
| int ff_lpc_calc_ref_coefs(LPCContext *s,
 | |
|                           const int32_t *samples, int order, double *ref)
 | |
| {
 | |
|     double autoc[MAX_LPC_ORDER + 1];
 | |
| 
 | |
|     s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
 | |
|     s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
 | |
|     compute_ref_coefs(autoc, order, ref, NULL);
 | |
| 
 | |
|     return order;
 | |
| }
 | |
| 
 | |
| double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
 | |
|                                int order, double *ref)
 | |
| {
 | |
|     int i;
 | |
|     double signal = 0.0f, avg_err = 0.0f;
 | |
|     double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
 | |
|     const double a = 0.5f, b = 1.0f - a;
 | |
| 
 | |
|     /* Apply windowing */
 | |
|     for (i = 0; i <= len / 2; i++) {
 | |
|         double weight = a - b*cos((2*M_PI*i)/(len - 1));
 | |
|         s->windowed_samples[i] = weight*samples[i];
 | |
|         s->windowed_samples[len-1-i] = weight*samples[len-1-i];
 | |
|     }
 | |
| 
 | |
|     s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
 | |
|     signal = autoc[0];
 | |
|     compute_ref_coefs(autoc, order, ref, error);
 | |
|     for (i = 0; i < order; i++)
 | |
|         avg_err = (avg_err + error[i])/2.0f;
 | |
|     return signal/avg_err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate LPC coefficients for multiple orders
 | |
|  *
 | |
|  * @param lpc_type LPC method for determining coefficients,
 | |
|  *                 see #FFLPCType for details
 | |
|  */
 | |
| int ff_lpc_calc_coefs(LPCContext *s,
 | |
|                       const int32_t *samples, int blocksize, int min_order,
 | |
|                       int max_order, int precision,
 | |
|                       int32_t coefs[][MAX_LPC_ORDER], int *shift,
 | |
|                       enum FFLPCType lpc_type, int lpc_passes,
 | |
|                       int omethod, int min_shift, int max_shift, int zero_shift)
 | |
| {
 | |
|     double autoc[MAX_LPC_ORDER+1];
 | |
|     double ref[MAX_LPC_ORDER] = { 0 };
 | |
|     double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | |
|     int i, j, pass = 0;
 | |
|     int opt_order;
 | |
| 
 | |
|     av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
 | |
|            lpc_type > FF_LPC_TYPE_FIXED);
 | |
|     av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
 | |
| 
 | |
|     /* reinit LPC context if parameters have changed */
 | |
|     if (blocksize != s->blocksize || max_order != s->max_order ||
 | |
|         lpc_type  != s->lpc_type) {
 | |
|         ff_lpc_end(s);
 | |
|         ff_lpc_init(s, blocksize, max_order, lpc_type);
 | |
|     }
 | |
| 
 | |
|     if(lpc_passes <= 0)
 | |
|         lpc_passes = 2;
 | |
| 
 | |
|     if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
 | |
|         s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
 | |
| 
 | |
|         s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
 | |
| 
 | |
|         compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
 | |
| 
 | |
|         for(i=0; i<max_order; i++)
 | |
|             ref[i] = fabs(lpc[i][i]);
 | |
| 
 | |
|         pass++;
 | |
|     }
 | |
| 
 | |
|     if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
 | |
|         LLSModel *m = s->lls_models;
 | |
|         LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
 | |
|         double av_uninit(weight);
 | |
|         memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
 | |
| 
 | |
|         for(j=0; j<max_order; j++)
 | |
|             m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
 | |
| 
 | |
|         for(; pass<lpc_passes; pass++){
 | |
|             avpriv_init_lls(&m[pass&1], max_order);
 | |
| 
 | |
|             weight=0;
 | |
|             for(i=max_order; i<blocksize; i++){
 | |
|                 for(j=0; j<=max_order; j++)
 | |
|                     var[j]= samples[i-j];
 | |
| 
 | |
|                 if(pass){
 | |
|                     double eval, inv, rinv;
 | |
|                     eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
 | |
|                     eval= (512>>pass) + fabs(eval - var[0]);
 | |
|                     inv = 1/eval;
 | |
|                     rinv = sqrt(inv);
 | |
|                     for(j=0; j<=max_order; j++)
 | |
|                         var[j] *= rinv;
 | |
|                     weight += inv;
 | |
|                 }else
 | |
|                     weight++;
 | |
| 
 | |
|                 m[pass&1].update_lls(&m[pass&1], var);
 | |
|             }
 | |
|             avpriv_solve_lls(&m[pass&1], 0.001, 0);
 | |
|         }
 | |
| 
 | |
|         for(i=0; i<max_order; i++){
 | |
|             for(j=0; j<max_order; j++)
 | |
|                 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
 | |
|             ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
 | |
|         }
 | |
|         for(i=max_order-1; i>0; i--)
 | |
|             ref[i] = ref[i-1] - ref[i];
 | |
|     }
 | |
| 
 | |
|     opt_order = max_order;
 | |
| 
 | |
|     if(omethod == ORDER_METHOD_EST) {
 | |
|         opt_order = estimate_best_order(ref, min_order, max_order);
 | |
|         i = opt_order-1;
 | |
|         quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
 | |
|                            min_shift, max_shift, zero_shift);
 | |
|     } else {
 | |
|         for(i=min_order-1; i<max_order; i++) {
 | |
|             quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
 | |
|                                min_shift, max_shift, zero_shift);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return opt_order;
 | |
| }
 | |
| 
 | |
| av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
 | |
|                         enum FFLPCType lpc_type)
 | |
| {
 | |
|     s->blocksize = blocksize;
 | |
|     s->max_order = max_order;
 | |
|     s->lpc_type  = lpc_type;
 | |
| 
 | |
|     s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
 | |
|                                     sizeof(*s->windowed_samples));
 | |
|     if (!s->windowed_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
|     s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
 | |
| 
 | |
|     s->lpc_apply_welch_window = lpc_apply_welch_window_c;
 | |
|     s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
 | |
| 
 | |
|     if (ARCH_X86)
 | |
|         ff_lpc_init_x86(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold void ff_lpc_end(LPCContext *s)
 | |
| {
 | |
|     av_freep(&s->windowed_buffer);
 | |
| }
 |