mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 20:16:42 +08:00 
			
		
		
		
	 8b1099c288
			
		
	
	8b1099c288
	
	
	
		
			
			Reviewed-by: Paul B Mahol <onemda@gmail.com> Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
		
			
				
	
	
		
			1263 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1263 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * DCA encoder
 | |
|  * Copyright (C) 2008-2012 Alexander E. Patrakov
 | |
|  *               2010 Benjamin Larsson
 | |
|  *               2011 Xiang Wang
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #define FFT_FLOAT 0
 | |
| #define FFT_FIXED_32 1
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/ffmath.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "avcodec.h"
 | |
| #include "dca.h"
 | |
| #include "dcaadpcm.h"
 | |
| #include "dcamath.h"
 | |
| #include "dca_core.h"
 | |
| #include "dcadata.h"
 | |
| #include "dcaenc.h"
 | |
| #include "fft.h"
 | |
| #include "internal.h"
 | |
| #include "mathops.h"
 | |
| #include "put_bits.h"
 | |
| 
 | |
| #define MAX_CHANNELS 6
 | |
| #define DCA_MAX_FRAME_SIZE 16384
 | |
| #define DCA_HEADER_SIZE 13
 | |
| #define DCA_LFE_SAMPLES 8
 | |
| 
 | |
| #define DCAENC_SUBBANDS 32
 | |
| #define SUBFRAMES 1
 | |
| #define SUBSUBFRAMES 2
 | |
| #define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
 | |
| #define AUBANDS 25
 | |
| 
 | |
| #define COS_T(x) (c->cos_table[(x) & 2047])
 | |
| 
 | |
| typedef struct CompressionOptions {
 | |
|     int adpcm_mode;
 | |
| } CompressionOptions;
 | |
| 
 | |
| typedef struct DCAEncContext {
 | |
|     AVClass *class;
 | |
|     PutBitContext pb;
 | |
|     DCAADPCMEncContext adpcm_ctx;
 | |
|     FFTContext mdct;
 | |
|     CompressionOptions options;
 | |
|     int frame_size;
 | |
|     int frame_bits;
 | |
|     int fullband_channels;
 | |
|     int channels;
 | |
|     int lfe_channel;
 | |
|     int samplerate_index;
 | |
|     int bitrate_index;
 | |
|     int channel_config;
 | |
|     const int32_t *band_interpolation;
 | |
|     const int32_t *band_spectrum;
 | |
|     int lfe_scale_factor;
 | |
|     softfloat lfe_quant;
 | |
|     int32_t lfe_peak_cb;
 | |
|     const int8_t *channel_order_tab;  ///< channel reordering table, lfe and non lfe
 | |
| 
 | |
|     int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS];
 | |
|     int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2];
 | |
|     int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
 | |
|     int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS];
 | |
|     int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES];
 | |
|     int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS];
 | |
|     int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal
 | |
|     int32_t downsampled_lfe[DCA_LFE_SAMPLES];
 | |
|     int32_t masking_curve_cb[SUBSUBFRAMES][256];
 | |
|     int32_t bit_allocation_sel[MAX_CHANNELS];
 | |
|     int abits[MAX_CHANNELS][DCAENC_SUBBANDS];
 | |
|     int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS];
 | |
|     softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS];
 | |
|     int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS];
 | |
|     int32_t eff_masking_curve_cb[256];
 | |
|     int32_t band_masking_cb[32];
 | |
|     int32_t worst_quantization_noise;
 | |
|     int32_t worst_noise_ever;
 | |
|     int consumed_bits;
 | |
|     int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info
 | |
| 
 | |
|     int32_t cos_table[2048];
 | |
|     int32_t band_interpolation_tab[2][512];
 | |
|     int32_t band_spectrum_tab[2][8];
 | |
|     int32_t auf[9][AUBANDS][256];
 | |
|     int32_t cb_to_add[256];
 | |
|     int32_t cb_to_level[2048];
 | |
|     int32_t lfe_fir_64i[512];
 | |
| } DCAEncContext;
 | |
| 
 | |
| /* Transfer function of outer and middle ear, Hz -> dB */
 | |
| static double hom(double f)
 | |
| {
 | |
|     double f1 = f / 1000;
 | |
| 
 | |
|     return -3.64 * pow(f1, -0.8)
 | |
|            + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
 | |
|            - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
 | |
|            - 0.0006 * (f1 * f1) * (f1 * f1);
 | |
| }
 | |
| 
 | |
| static double gammafilter(int i, double f)
 | |
| {
 | |
|     double h = (f - fc[i]) / erb[i];
 | |
| 
 | |
|     h = 1 + h * h;
 | |
|     h = 1 / (h * h);
 | |
|     return 20 * log10(h);
 | |
| }
 | |
| 
 | |
| static int subband_bufer_alloc(DCAEncContext *c)
 | |
| {
 | |
|     int ch, band;
 | |
|     int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS *
 | |
|                                (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS),
 | |
|                                sizeof(int32_t));
 | |
|     if (!bufer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     /* we need a place for DCA_ADPCM_COEFF samples from previous frame
 | |
|      * to calc prediction coefficients for each subband */
 | |
|     for (ch = 0; ch < MAX_CHANNELS; ch++) {
 | |
|         for (band = 0; band < DCAENC_SUBBANDS; band++) {
 | |
|             c->subband[ch][band] = bufer +
 | |
|                                    ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) +
 | |
|                                    band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void subband_bufer_free(DCAEncContext *c)
 | |
| {
 | |
|     if (c->subband[0][0]) {
 | |
|         int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS;
 | |
|         av_free(bufer);
 | |
|         c->subband[0][0] = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAEncContext *c = avctx->priv_data;
 | |
|     uint64_t layout = avctx->channel_layout;
 | |
|     int i, j, k, min_frame_bits;
 | |
|     int ret;
 | |
| 
 | |
|     if ((ret = subband_bufer_alloc(c)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     c->fullband_channels = c->channels = avctx->channels;
 | |
|     c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
 | |
|     c->band_interpolation = c->band_interpolation_tab[1];
 | |
|     c->band_spectrum = c->band_spectrum_tab[1];
 | |
|     c->worst_quantization_noise = -2047;
 | |
|     c->worst_noise_ever = -2047;
 | |
|     c->consumed_adpcm_bits = 0;
 | |
| 
 | |
|     if (ff_dcaadpcm_init(&c->adpcm_ctx))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (!layout) {
 | |
|         av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
 | |
|                                       "encoder will guess the layout, but it "
 | |
|                                       "might be incorrect.\n");
 | |
|         layout = av_get_default_channel_layout(avctx->channels);
 | |
|     }
 | |
|     switch (layout) {
 | |
|     case AV_CH_LAYOUT_MONO:         c->channel_config = 0; break;
 | |
|     case AV_CH_LAYOUT_STEREO:       c->channel_config = 2; break;
 | |
|     case AV_CH_LAYOUT_2_2:          c->channel_config = 8; break;
 | |
|     case AV_CH_LAYOUT_5POINT0:      c->channel_config = 9; break;
 | |
|     case AV_CH_LAYOUT_5POINT1:      c->channel_config = 9; break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     if (c->lfe_channel) {
 | |
|         c->fullband_channels--;
 | |
|         c->channel_order_tab = channel_reorder_lfe[c->channel_config];
 | |
|     } else {
 | |
|         c->channel_order_tab = channel_reorder_nolfe[c->channel_config];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < MAX_CHANNELS; i++) {
 | |
|         for (j = 0; j < DCA_CODE_BOOKS; j++) {
 | |
|             c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j];
 | |
|         }
 | |
|         /* 6 - no Huffman */
 | |
|         c->bit_allocation_sel[i] = 6;
 | |
| 
 | |
|         for (j = 0; j < DCAENC_SUBBANDS; j++) {
 | |
|             /* -1 - no ADPCM */
 | |
|             c->prediction_mode[i][j] = -1;
 | |
|             memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 9; i++) {
 | |
|         if (sample_rates[i] == avctx->sample_rate)
 | |
|             break;
 | |
|     }
 | |
|     if (i == 9)
 | |
|         return AVERROR(EINVAL);
 | |
|     c->samplerate_index = i;
 | |
| 
 | |
|     if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++)
 | |
|         ;
 | |
|     c->bitrate_index = i;
 | |
|     c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
 | |
|     min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
 | |
|     if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     c->frame_size = (c->frame_bits + 7) / 8;
 | |
| 
 | |
|     avctx->frame_size = 32 * SUBBAND_SAMPLES;
 | |
| 
 | |
|     if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* Init all tables */
 | |
|     c->cos_table[0] = 0x7fffffff;
 | |
|     c->cos_table[512] = 0;
 | |
|     c->cos_table[1024] = -c->cos_table[0];
 | |
|     for (i = 1; i < 512; i++) {
 | |
|         c->cos_table[i]   = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
 | |
|         c->cos_table[1024-i] = -c->cos_table[i];
 | |
|         c->cos_table[1024+i] = -c->cos_table[i];
 | |
|         c->cos_table[2048-i] = +c->cos_table[i];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 2048; i++)
 | |
|         c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));
 | |
| 
 | |
|     for (k = 0; k < 32; k++) {
 | |
|         for (j = 0; j < 8; j++) {
 | |
|             c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
 | |
|             c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 512; i++) {
 | |
|         c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
 | |
|         c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 9; i++) {
 | |
|         for (j = 0; j < AUBANDS; j++) {
 | |
|             for (k = 0; k < 256; k++) {
 | |
|                 double freq = sample_rates[i] * (k + 0.5) / 512;
 | |
| 
 | |
|                 c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         double add = 1 + ff_exp10(-0.01 * i);
 | |
|         c->cb_to_add[i] = (int32_t)(100 * log10(add));
 | |
|     }
 | |
|     for (j = 0; j < 8; j++) {
 | |
|         double accum = 0;
 | |
|         for (i = 0; i < 512; i++) {
 | |
|             double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
 | |
|             accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
 | |
|         }
 | |
|         c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum));
 | |
|     }
 | |
|     for (j = 0; j < 8; j++) {
 | |
|         double accum = 0;
 | |
|         for (i = 0; i < 512; i++) {
 | |
|             double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
 | |
|             accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
 | |
|         }
 | |
|         c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAEncContext *c = avctx->priv_data;
 | |
|     ff_mdct_end(&c->mdct);
 | |
|     subband_bufer_free(c);
 | |
|     ff_dcaadpcm_free(&c->adpcm_ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void subband_transform(DCAEncContext *c, const int32_t *input)
 | |
| {
 | |
|     int ch, subs, i, k, j;
 | |
| 
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         /* History is copied because it is also needed for PSY */
 | |
|         int32_t hist[512];
 | |
|         int hist_start = 0;
 | |
|         const int chi = c->channel_order_tab[ch];
 | |
| 
 | |
|         memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t));
 | |
| 
 | |
|         for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
 | |
|             int32_t accum[64];
 | |
|             int32_t resp;
 | |
|             int band;
 | |
| 
 | |
|             /* Calculate the convolutions at once */
 | |
|             memset(accum, 0, 64 * sizeof(int32_t));
 | |
| 
 | |
|             for (k = 0, i = hist_start, j = 0;
 | |
|                     i < 512; k = (k + 1) & 63, i++, j++)
 | |
|                 accum[k] += mul32(hist[i], c->band_interpolation[j]);
 | |
|             for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
 | |
|                 accum[k] += mul32(hist[i], c->band_interpolation[j]);
 | |
| 
 | |
|             for (k = 16; k < 32; k++)
 | |
|                 accum[k] = accum[k] - accum[31 - k];
 | |
|             for (k = 32; k < 48; k++)
 | |
|                 accum[k] = accum[k] + accum[95 - k];
 | |
| 
 | |
|             for (band = 0; band < 32; band++) {
 | |
|                 resp = 0;
 | |
|                 for (i = 16; i < 48; i++) {
 | |
|                     int s = (2 * band + 1) * (2 * (i + 16) + 1);
 | |
|                     resp += mul32(accum[i], COS_T(s << 3)) >> 3;
 | |
|                 }
 | |
| 
 | |
|                 c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
 | |
|             }
 | |
| 
 | |
|             /* Copy in 32 new samples from input */
 | |
|             for (i = 0; i < 32; i++)
 | |
|                 hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi];
 | |
| 
 | |
|             hist_start = (hist_start + 32) & 511;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lfe_downsample(DCAEncContext *c, const int32_t *input)
 | |
| {
 | |
|     /* FIXME: make 128x LFE downsampling possible */
 | |
|     const int lfech = lfe_index[c->channel_config];
 | |
|     int i, j, lfes;
 | |
|     int32_t hist[512];
 | |
|     int32_t accum;
 | |
|     int hist_start = 0;
 | |
| 
 | |
|     memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t));
 | |
| 
 | |
|     for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
 | |
|         /* Calculate the convolution */
 | |
|         accum = 0;
 | |
| 
 | |
|         for (i = hist_start, j = 0; i < 512; i++, j++)
 | |
|             accum += mul32(hist[i], c->lfe_fir_64i[j]);
 | |
|         for (i = 0; i < hist_start; i++, j++)
 | |
|             accum += mul32(hist[i], c->lfe_fir_64i[j]);
 | |
| 
 | |
|         c->downsampled_lfe[lfes] = accum;
 | |
| 
 | |
|         /* Copy in 64 new samples from input */
 | |
|         for (i = 0; i < 64; i++)
 | |
|             hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech];
 | |
| 
 | |
|         hist_start = (hist_start + 64) & 511;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int32_t get_cb(DCAEncContext *c, int32_t in)
 | |
| {
 | |
|     int i, res = 0;
 | |
|     in = FFABS(in);
 | |
| 
 | |
|     for (i = 1024; i > 0; i >>= 1) {
 | |
|         if (c->cb_to_level[i + res] >= in)
 | |
|             res += i;
 | |
|     }
 | |
|     return -res;
 | |
| }
 | |
| 
 | |
| static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b)
 | |
| {
 | |
|     if (a < b)
 | |
|         FFSWAP(int32_t, a, b);
 | |
| 
 | |
|     if (a - b >= 256)
 | |
|         return a;
 | |
|     return a + c->cb_to_add[a - b];
 | |
| }
 | |
| 
 | |
| static void calc_power(DCAEncContext *c,
 | |
|                        const int32_t in[2 * 256], int32_t power[256])
 | |
| {
 | |
|     int i;
 | |
|     LOCAL_ALIGNED_32(int32_t, data,  [512]);
 | |
|     LOCAL_ALIGNED_32(int32_t, coeff, [256]);
 | |
| 
 | |
|     for (i = 0; i < 512; i++)
 | |
|         data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4);
 | |
| 
 | |
|     c->mdct.mdct_calc(&c->mdct, coeff, data);
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         const int32_t cb = get_cb(c, coeff[i]);
 | |
|         power[i] = add_cb(c, cb, cb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void adjust_jnd(DCAEncContext *c,
 | |
|                        const int32_t in[512], int32_t out_cb[256])
 | |
| {
 | |
|     int32_t power[256];
 | |
|     int32_t out_cb_unnorm[256];
 | |
|     int32_t denom;
 | |
|     const int32_t ca_cb = -1114;
 | |
|     const int32_t cs_cb = 928;
 | |
|     const int samplerate_index = c->samplerate_index;
 | |
|     int i, j;
 | |
| 
 | |
|     calc_power(c, in, power);
 | |
| 
 | |
|     for (j = 0; j < 256; j++)
 | |
|         out_cb_unnorm[j] = -2047; /* and can only grow */
 | |
| 
 | |
|     for (i = 0; i < AUBANDS; i++) {
 | |
|         denom = ca_cb; /* and can only grow */
 | |
|         for (j = 0; j < 256; j++)
 | |
|             denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]);
 | |
|         for (j = 0; j < 256; j++)
 | |
|             out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j],
 | |
|                                       -denom + c->auf[samplerate_index][i][j]);
 | |
|     }
 | |
| 
 | |
|     for (j = 0; j < 256; j++)
 | |
|         out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
 | |
| }
 | |
| 
 | |
| typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
 | |
|                             int32_t spectrum1, int32_t spectrum2, int channel,
 | |
|                             int32_t * arg);
 | |
| 
 | |
| static void walk_band_low(DCAEncContext *c, int band, int channel,
 | |
|                           walk_band_t walk, int32_t *arg)
 | |
| {
 | |
|     int f;
 | |
| 
 | |
|     if (band == 0) {
 | |
|         for (f = 0; f < 4; f++)
 | |
|             walk(c, 0, 0, f, 0, -2047, channel, arg);
 | |
|     } else {
 | |
|         for (f = 0; f < 8; f++)
 | |
|             walk(c, band, band - 1, 8 * band - 4 + f,
 | |
|                     c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void walk_band_high(DCAEncContext *c, int band, int channel,
 | |
|                            walk_band_t walk, int32_t *arg)
 | |
| {
 | |
|     int f;
 | |
| 
 | |
|     if (band == 31) {
 | |
|         for (f = 0; f < 4; f++)
 | |
|             walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
 | |
|     } else {
 | |
|         for (f = 0; f < 8; f++)
 | |
|             walk(c, band, band + 1, 8 * band + 4 + f,
 | |
|                     c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void update_band_masking(DCAEncContext *c, int band1, int band2,
 | |
|                                 int f, int32_t spectrum1, int32_t spectrum2,
 | |
|                                 int channel, int32_t * arg)
 | |
| {
 | |
|     int32_t value = c->eff_masking_curve_cb[f] - spectrum1;
 | |
| 
 | |
|     if (value < c->band_masking_cb[band1])
 | |
|         c->band_masking_cb[band1] = value;
 | |
| }
 | |
| 
 | |
| static void calc_masking(DCAEncContext *c, const int32_t *input)
 | |
| {
 | |
|     int i, k, band, ch, ssf;
 | |
|     int32_t data[512];
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
 | |
|             c->masking_curve_cb[ssf][i] = -2047;
 | |
| 
 | |
|     for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
 | |
|         for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|             const int chi = c->channel_order_tab[ch];
 | |
| 
 | |
|             for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
 | |
|                 data[i] = c->history[ch][k];
 | |
|             for (k -= 512; i < 512; i++, k++)
 | |
|                 data[i] = input[k * c->channels + chi];
 | |
|             adjust_jnd(c, data, c->masking_curve_cb[ssf]);
 | |
|         }
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         int32_t m = 2048;
 | |
| 
 | |
|         for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
 | |
|             if (c->masking_curve_cb[ssf][i] < m)
 | |
|                 m = c->masking_curve_cb[ssf][i];
 | |
|         c->eff_masking_curve_cb[i] = m;
 | |
|     }
 | |
| 
 | |
|     for (band = 0; band < 32; band++) {
 | |
|         c->band_masking_cb[band] = 2048;
 | |
|         walk_band_low(c, band, 0, update_band_masking, NULL);
 | |
|         walk_band_high(c, band, 0, update_band_masking, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len)
 | |
| {
 | |
|     int sample;
 | |
|     int32_t m = 0;
 | |
|     for (sample = 0; sample < len; sample++) {
 | |
|         int32_t s = abs(in[sample]);
 | |
|         if (m < s)
 | |
|             m = s;
 | |
|     }
 | |
|     return get_cb(c, m);
 | |
| }
 | |
| 
 | |
| static void find_peaks(DCAEncContext *c)
 | |
| {
 | |
|     int band, ch;
 | |
| 
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         for (band = 0; band < 32; band++)
 | |
|             c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band],
 | |
|                                              SUBBAND_SAMPLES);
 | |
|     }
 | |
| 
 | |
|     if (c->lfe_channel)
 | |
|         c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES);
 | |
| }
 | |
| 
 | |
| static void adpcm_analysis(DCAEncContext *c)
 | |
| {
 | |
|     int ch, band;
 | |
|     int pred_vq_id;
 | |
|     int32_t *samples;
 | |
|     int32_t estimated_diff[SUBBAND_SAMPLES];
 | |
| 
 | |
|     c->consumed_adpcm_bits = 0;
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         for (band = 0; band < 32; band++) {
 | |
|             samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
 | |
|             pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples,
 | |
|                                                       SUBBAND_SAMPLES, estimated_diff);
 | |
|             if (pred_vq_id >= 0) {
 | |
|                 c->prediction_mode[ch][band] = pred_vq_id;
 | |
|                 c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
 | |
|                 c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16);
 | |
|             } else {
 | |
|                 c->prediction_mode[ch][band] = -1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const int snr_fudge = 128;
 | |
| #define USED_1ABITS 1
 | |
| #define USED_26ABITS 4
 | |
| 
 | |
| static inline int32_t get_step_size(DCAEncContext *c, int ch, int band)
 | |
| {
 | |
|     int32_t step_size;
 | |
| 
 | |
|     if (c->bitrate_index == 3)
 | |
|         step_size = ff_dca_lossless_quant[c->abits[ch][band]];
 | |
|     else
 | |
|         step_size = ff_dca_lossy_quant[c->abits[ch][band]];
 | |
| 
 | |
|     return step_size;
 | |
| }
 | |
| 
 | |
| static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits,
 | |
|                           softfloat *quant)
 | |
| {
 | |
|     int32_t peak;
 | |
|     int our_nscale, try_remove;
 | |
|     softfloat our_quant;
 | |
| 
 | |
|     av_assert0(peak_cb <= 0);
 | |
|     av_assert0(peak_cb >= -2047);
 | |
| 
 | |
|     our_nscale = 127;
 | |
|     peak = c->cb_to_level[-peak_cb];
 | |
| 
 | |
|     for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
 | |
|         if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
 | |
|             continue;
 | |
|         our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
 | |
|         our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
 | |
|         if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
 | |
|             continue;
 | |
|         our_nscale -= try_remove;
 | |
|     }
 | |
| 
 | |
|     if (our_nscale >= 125)
 | |
|         our_nscale = 124;
 | |
| 
 | |
|     quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
 | |
|     quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
 | |
|     av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));
 | |
| 
 | |
|     return our_nscale;
 | |
| }
 | |
| 
 | |
| static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
 | |
| {
 | |
|     int32_t step_size;
 | |
|     int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
 | |
|     c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb,
 | |
|                                                c->abits[ch][band],
 | |
|                                                &c->quant[ch][band]);
 | |
| 
 | |
|     step_size = get_step_size(c, ch, band);
 | |
|     ff_dcaadpcm_do_real(c->prediction_mode[ch][band],
 | |
|                         c->quant[ch][band],
 | |
|                         ff_dca_scale_factor_quant7[c->scale_factor[ch][band]],
 | |
|                         step_size, c->adpcm_history[ch][band], c->subband[ch][band],
 | |
|                         c->adpcm_history[ch][band] + 4, c->quantized[ch][band],
 | |
|                         SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]);
 | |
| }
 | |
| 
 | |
| static void quantize_adpcm(DCAEncContext *c)
 | |
| {
 | |
|     int band, ch;
 | |
| 
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         for (band = 0; band < 32; band++)
 | |
|             if (c->prediction_mode[ch][band] >= 0)
 | |
|                 quantize_adpcm_subband(c, ch, band);
 | |
| }
 | |
| 
 | |
| static void quantize_pcm(DCAEncContext *c)
 | |
| {
 | |
|     int sample, band, ch;
 | |
| 
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         for (band = 0; band < 32; band++) {
 | |
|             if (c->prediction_mode[ch][band] == -1) {
 | |
|                 for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
 | |
|                     int32_t val = quantize_value(c->subband[ch][band][sample],
 | |
|                                                  c->quant[ch][band]);
 | |
|                     c->quantized[ch][band][sample] = val;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void accumulate_huff_bit_consumption(int abits, int32_t *quantized,
 | |
|                                             uint32_t *result)
 | |
| {
 | |
|     uint8_t sel, id = abits - 1;
 | |
|     for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++)
 | |
|         result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES,
 | |
|                                                   sel, id);
 | |
| }
 | |
| 
 | |
| static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7],
 | |
|                               uint32_t clc_bits[DCA_CODE_BOOKS],
 | |
|                               int32_t res[DCA_CODE_BOOKS])
 | |
| {
 | |
|     uint8_t i, sel;
 | |
|     uint32_t best_sel_bits[DCA_CODE_BOOKS];
 | |
|     int32_t best_sel_id[DCA_CODE_BOOKS];
 | |
|     uint32_t t, bits = 0;
 | |
| 
 | |
|     for (i = 0; i < DCA_CODE_BOOKS; i++) {
 | |
| 
 | |
|         av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i])));
 | |
|         if (vlc_bits[i][0] == 0) {
 | |
|             /* do not transmit adjustment index for empty codebooks */
 | |
|             res[i] = ff_dca_quant_index_group_size[i];
 | |
|             /* and skip it */
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         best_sel_bits[i] = vlc_bits[i][0];
 | |
|         best_sel_id[i] = 0;
 | |
|         for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) {
 | |
|             if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) {
 | |
|                 best_sel_bits[i] = vlc_bits[i][sel];
 | |
|                 best_sel_id[i] = sel;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* 2 bits to transmit scale factor adjustment index */
 | |
|         t = best_sel_bits[i] + 2;
 | |
|         if (t < clc_bits[i]) {
 | |
|             res[i] = best_sel_id[i];
 | |
|             bits += t;
 | |
|         } else {
 | |
|             res[i] = ff_dca_quant_index_group_size[i];
 | |
|             bits += clc_bits[i];
 | |
|         }
 | |
|     }
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands,
 | |
|                                     int32_t *res)
 | |
| {
 | |
|     uint8_t i;
 | |
|     uint32_t t;
 | |
|     int32_t best_sel = 6;
 | |
|     int32_t best_bits = bands * 5;
 | |
| 
 | |
|     /* Check do we have subband which cannot be encoded by Huffman tables */
 | |
|     for (i = 0; i < bands; i++) {
 | |
|         if (abits[i] > 12 || abits[i] == 0) {
 | |
|             *res = best_sel;
 | |
|             return best_bits;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) {
 | |
|         t = ff_dca_vlc_calc_alloc_bits(abits, bands, i);
 | |
|         if (t < best_bits) {
 | |
|             best_bits = t;
 | |
|             best_sel = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *res = best_sel;
 | |
|     return best_bits;
 | |
| }
 | |
| 
 | |
| static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
 | |
| {
 | |
|     int ch, band, ret = USED_26ABITS | USED_1ABITS;
 | |
|     uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7];
 | |
|     uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS];
 | |
|     uint32_t bits_counter = 0;
 | |
| 
 | |
|     c->consumed_bits = 132 + 333 * c->fullband_channels;
 | |
|     c->consumed_bits += c->consumed_adpcm_bits;
 | |
|     if (c->lfe_channel)
 | |
|         c->consumed_bits += 72;
 | |
| 
 | |
|     /* attempt to guess the bit distribution based on the prevoius frame */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         for (band = 0; band < 32; band++) {
 | |
|             int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise;
 | |
| 
 | |
|             if (snr_cb >= 1312) {
 | |
|                 c->abits[ch][band] = 26;
 | |
|                 ret &= ~USED_1ABITS;
 | |
|             } else if (snr_cb >= 222) {
 | |
|                 c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000);
 | |
|                 ret &= ~(USED_26ABITS | USED_1ABITS);
 | |
|             } else if (snr_cb >= 0) {
 | |
|                 c->abits[ch][band] = 2 + mul32(snr_cb, 106000000);
 | |
|                 ret &= ~(USED_26ABITS | USED_1ABITS);
 | |
|             } else if (forbid_zero || snr_cb >= -140) {
 | |
|                 c->abits[ch][band] = 1;
 | |
|                 ret &= ~USED_26ABITS;
 | |
|             } else {
 | |
|                 c->abits[ch][band] = 0;
 | |
|                 ret &= ~(USED_26ABITS | USED_1ABITS);
 | |
|             }
 | |
|         }
 | |
|         c->consumed_bits += set_best_abits_code(c->abits[ch], 32,
 | |
|                                                 &c->bit_allocation_sel[ch]);
 | |
|     }
 | |
| 
 | |
|     /* Recalc scale_factor each time to get bits consumption in case of Huffman coding.
 | |
|        It is suboptimal solution */
 | |
|     /* TODO: May be cache scaled values */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         for (band = 0; band < 32; band++) {
 | |
|             if (c->prediction_mode[ch][band] == -1) {
 | |
|                 c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band],
 | |
|                                                            c->abits[ch][band],
 | |
|                                                            &c->quant[ch][band]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     quantize_adpcm(c);
 | |
|     quantize_pcm(c);
 | |
| 
 | |
|     memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t));
 | |
|     memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t));
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         for (band = 0; band < 32; band++) {
 | |
|             if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) {
 | |
|                 accumulate_huff_bit_consumption(c->abits[ch][band],
 | |
|                                                 c->quantized[ch][band],
 | |
|                                                 huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
 | |
|                 clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]];
 | |
|             } else {
 | |
|                 bits_counter += bit_consumption[c->abits[ch][band]];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         bits_counter += set_best_code(huff_bit_count_accum[ch],
 | |
|                                       clc_bit_count_accum[ch],
 | |
|                                       c->quant_index_sel[ch]);
 | |
|     }
 | |
| 
 | |
|     c->consumed_bits += bits_counter;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void assign_bits(DCAEncContext *c)
 | |
| {
 | |
|     /* Find the bounds where the binary search should work */
 | |
|     int low, high, down;
 | |
|     int used_abits = 0;
 | |
|     int forbid_zero = 1;
 | |
| restart:
 | |
|     init_quantization_noise(c, c->worst_quantization_noise, forbid_zero);
 | |
|     low = high = c->worst_quantization_noise;
 | |
|     if (c->consumed_bits > c->frame_bits) {
 | |
|         while (c->consumed_bits > c->frame_bits) {
 | |
|             if (used_abits == USED_1ABITS && forbid_zero) {
 | |
|                 forbid_zero = 0;
 | |
|                 goto restart;
 | |
|             }
 | |
|             low = high;
 | |
|             high += snr_fudge;
 | |
|             used_abits = init_quantization_noise(c, high, forbid_zero);
 | |
|         }
 | |
|     } else {
 | |
|         while (c->consumed_bits <= c->frame_bits) {
 | |
|             high = low;
 | |
|             if (used_abits == USED_26ABITS)
 | |
|                 goto out; /* The requested bitrate is too high, pad with zeros */
 | |
|             low -= snr_fudge;
 | |
|             used_abits = init_quantization_noise(c, low, forbid_zero);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Now do a binary search between low and high to see what fits */
 | |
|     for (down = snr_fudge >> 1; down; down >>= 1) {
 | |
|         init_quantization_noise(c, high - down, forbid_zero);
 | |
|         if (c->consumed_bits <= c->frame_bits)
 | |
|             high -= down;
 | |
|     }
 | |
|     init_quantization_noise(c, high, forbid_zero);
 | |
| out:
 | |
|     c->worst_quantization_noise = high;
 | |
|     if (high > c->worst_noise_ever)
 | |
|         c->worst_noise_ever = high;
 | |
| }
 | |
| 
 | |
| static void shift_history(DCAEncContext *c, const int32_t *input)
 | |
| {
 | |
|     int k, ch;
 | |
| 
 | |
|     for (k = 0; k < 512; k++)
 | |
|         for (ch = 0; ch < c->channels; ch++) {
 | |
|             const int chi = c->channel_order_tab[ch];
 | |
| 
 | |
|             c->history[ch][k] = input[k * c->channels + chi];
 | |
|         }
 | |
| }
 | |
| 
 | |
| static void fill_in_adpcm_bufer(DCAEncContext *c)
 | |
| {
 | |
|      int ch, band;
 | |
|      int32_t step_size;
 | |
|      /* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded
 | |
|       * in current frame - we need this data if subband of next frame is
 | |
|       * ADPCM
 | |
|       */
 | |
|      for (ch = 0; ch < c->channels; ch++) {
 | |
|         for (band = 0; band < 32; band++) {
 | |
|             int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
 | |
|             if (c->prediction_mode[ch][band] == -1) {
 | |
|                 step_size = get_step_size(c, ch, band);
 | |
| 
 | |
|                 ff_dca_core_dequantize(c->adpcm_history[ch][band],
 | |
|                                        c->quantized[ch][band]+12, step_size,
 | |
|                                        ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
 | |
|             } else {
 | |
|                 AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
 | |
|             }
 | |
|             /* Copy dequantized values for LPC analysis.
 | |
|              * It reduces artifacts in case of extreme quantization,
 | |
|              * example: in current frame abits is 1 and has no prediction flag,
 | |
|              * but end of this frame is sine like signal. In this case, if LPC analysis uses
 | |
|              * original values, likely LPC analysis returns good prediction gain, and sets prediction flag.
 | |
|              * But there are no proper value in decoder history, so likely result will be no good.
 | |
|              * Bitstream has "Predictor history flag switch", but this flag disables history for all subbands
 | |
|              */
 | |
|             samples[0] = c->adpcm_history[ch][band][0] << 7;
 | |
|             samples[1] = c->adpcm_history[ch][band][1] << 7;
 | |
|             samples[2] = c->adpcm_history[ch][band][2] << 7;
 | |
|             samples[3] = c->adpcm_history[ch][band][3] << 7;
 | |
|         }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void calc_lfe_scales(DCAEncContext *c)
 | |
| {
 | |
|     if (c->lfe_channel)
 | |
|         c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant);
 | |
| }
 | |
| 
 | |
| static void put_frame_header(DCAEncContext *c)
 | |
| {
 | |
|     /* SYNC */
 | |
|     put_bits(&c->pb, 16, 0x7ffe);
 | |
|     put_bits(&c->pb, 16, 0x8001);
 | |
| 
 | |
|     /* Frame type: normal */
 | |
|     put_bits(&c->pb, 1, 1);
 | |
| 
 | |
|     /* Deficit sample count: none */
 | |
|     put_bits(&c->pb, 5, 31);
 | |
| 
 | |
|     /* CRC is not present */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Number of PCM sample blocks */
 | |
|     put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);
 | |
| 
 | |
|     /* Primary frame byte size */
 | |
|     put_bits(&c->pb, 14, c->frame_size - 1);
 | |
| 
 | |
|     /* Audio channel arrangement */
 | |
|     put_bits(&c->pb, 6, c->channel_config);
 | |
| 
 | |
|     /* Core audio sampling frequency */
 | |
|     put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]);
 | |
| 
 | |
|     /* Transmission bit rate */
 | |
|     put_bits(&c->pb, 5, c->bitrate_index);
 | |
| 
 | |
|     /* Embedded down mix: disabled */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Embedded dynamic range flag: not present */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Embedded time stamp flag: not present */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Auxiliary data flag: not present */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* HDCD source: no */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Extension audio ID: N/A */
 | |
|     put_bits(&c->pb, 3, 0);
 | |
| 
 | |
|     /* Extended audio data: not present */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Audio sync word insertion flag: after each sub-frame */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Low frequency effects flag: not present or 64x subsampling */
 | |
|     put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);
 | |
| 
 | |
|     /* Predictor history switch flag: on */
 | |
|     put_bits(&c->pb, 1, 1);
 | |
| 
 | |
|     /* No CRC */
 | |
|     /* Multirate interpolator switch: non-perfect reconstruction */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Encoder software revision: 7 */
 | |
|     put_bits(&c->pb, 4, 7);
 | |
| 
 | |
|     /* Copy history: 0 */
 | |
|     put_bits(&c->pb, 2, 0);
 | |
| 
 | |
|     /* Source PCM resolution: 16 bits, not DTS ES */
 | |
|     put_bits(&c->pb, 3, 0);
 | |
| 
 | |
|     /* Front sum/difference coding: no */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Surrounds sum/difference coding: no */
 | |
|     put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     /* Dialog normalization: 0 dB */
 | |
|     put_bits(&c->pb, 4, 0);
 | |
| }
 | |
| 
 | |
| static void put_primary_audio_header(DCAEncContext *c)
 | |
| {
 | |
|     int ch, i;
 | |
|     /* Number of subframes */
 | |
|     put_bits(&c->pb, 4, SUBFRAMES - 1);
 | |
| 
 | |
|     /* Number of primary audio channels */
 | |
|     put_bits(&c->pb, 3, c->fullband_channels - 1);
 | |
| 
 | |
|     /* Subband activity count */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2);
 | |
| 
 | |
|     /* High frequency VQ start subband */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1);
 | |
| 
 | |
|     /* Joint intensity coding index: 0, 0 */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         put_bits(&c->pb, 3, 0);
 | |
| 
 | |
|     /* Transient mode codebook: A4, A4 (arbitrary) */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         put_bits(&c->pb, 2, 0);
 | |
| 
 | |
|     /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         put_bits(&c->pb, 3, 6);
 | |
| 
 | |
|     /* Bit allocation quantizer select: linear 5-bit */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         put_bits(&c->pb, 3, c->bit_allocation_sel[ch]);
 | |
| 
 | |
|     /* Quantization index codebook select */
 | |
|     for (i = 0; i < DCA_CODE_BOOKS; i++)
 | |
|         for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|             put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]);
 | |
| 
 | |
|     /* Scale factor adjustment index: transmitted in case of Huffman coding */
 | |
|     for (i = 0; i < DCA_CODE_BOOKS; i++)
 | |
|         for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|             if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i])
 | |
|                 put_bits(&c->pb, 2, 0);
 | |
| 
 | |
|     /* Audio header CRC check word: not transmitted */
 | |
| }
 | |
| 
 | |
| static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
 | |
| {
 | |
|     int i, j, sum, bits, sel;
 | |
|     if (c->abits[ch][band] <= DCA_CODE_BOOKS) {
 | |
|         av_assert0(c->abits[ch][band] > 0);
 | |
|         sel = c->quant_index_sel[ch][c->abits[ch][band] - 1];
 | |
|         // Huffman codes
 | |
|         if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) {
 | |
|             ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8,
 | |
|                                  sel, c->abits[ch][band] - 1);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Block codes
 | |
|         if (c->abits[ch][band] <= 7) {
 | |
|             for (i = 0; i < 8; i += 4) {
 | |
|                 sum = 0;
 | |
|                 for (j = 3; j >= 0; j--) {
 | |
|                     sum *= ff_dca_quant_levels[c->abits[ch][band]];
 | |
|                     sum += c->quantized[ch][band][ss * 8 + i + j];
 | |
|                     sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2;
 | |
|                 }
 | |
|                 put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         bits = bit_consumption[c->abits[ch][band]] / 16;
 | |
|         put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void put_subframe(DCAEncContext *c, int subframe)
 | |
| {
 | |
|     int i, band, ss, ch;
 | |
| 
 | |
|     /* Subsubframes count */
 | |
|     put_bits(&c->pb, 2, SUBSUBFRAMES -1);
 | |
| 
 | |
|     /* Partial subsubframe sample count: dummy */
 | |
|     put_bits(&c->pb, 3, 0);
 | |
| 
 | |
|     /* Prediction mode: no ADPCM, in each channel and subband */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         for (band = 0; band < DCAENC_SUBBANDS; band++)
 | |
|             put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1));
 | |
| 
 | |
|     /* Prediction VQ address */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         for (band = 0; band < DCAENC_SUBBANDS; band++)
 | |
|             if (c->prediction_mode[ch][band] >= 0)
 | |
|                 put_bits(&c->pb, 12, c->prediction_mode[ch][band]);
 | |
| 
 | |
|     /* Bit allocation index */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++) {
 | |
|         if (c->bit_allocation_sel[ch] == 6) {
 | |
|             for (band = 0; band < DCAENC_SUBBANDS; band++) {
 | |
|                 put_bits(&c->pb, 5, c->abits[ch][band]);
 | |
|             }
 | |
|         } else {
 | |
|             ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS,
 | |
|                                  c->bit_allocation_sel[ch]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (SUBSUBFRAMES > 1) {
 | |
|         /* Transition mode: none for each channel and subband */
 | |
|         for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|             for (band = 0; band < DCAENC_SUBBANDS; band++)
 | |
|                 if (c->abits[ch][band])
 | |
|                     put_bits(&c->pb, 1, 0); /* codebook A4 */
 | |
|     }
 | |
| 
 | |
|     /* Scale factors */
 | |
|     for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|         for (band = 0; band < DCAENC_SUBBANDS; band++)
 | |
|             if (c->abits[ch][band])
 | |
|                 put_bits(&c->pb, 7, c->scale_factor[ch][band]);
 | |
| 
 | |
|     /* Joint subband scale factor codebook select: not transmitted */
 | |
|     /* Scale factors for joint subband coding: not transmitted */
 | |
|     /* Stereo down-mix coefficients: not transmitted */
 | |
|     /* Dynamic range coefficient: not transmitted */
 | |
|     /* Stde information CRC check word: not transmitted */
 | |
|     /* VQ encoded high frequency subbands: not transmitted */
 | |
| 
 | |
|     /* LFE data: 8 samples and scalefactor */
 | |
|     if (c->lfe_channel) {
 | |
|         for (i = 0; i < DCA_LFE_SAMPLES; i++)
 | |
|             put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
 | |
|         put_bits(&c->pb, 8, c->lfe_scale_factor);
 | |
|     }
 | |
| 
 | |
|     /* Audio data (subsubframes) */
 | |
|     for (ss = 0; ss < SUBSUBFRAMES ; ss++)
 | |
|         for (ch = 0; ch < c->fullband_channels; ch++)
 | |
|             for (band = 0; band < DCAENC_SUBBANDS; band++)
 | |
|                 if (c->abits[ch][band])
 | |
|                     put_subframe_samples(c, ss, band, ch);
 | |
| 
 | |
|     /* DSYNC */
 | |
|     put_bits(&c->pb, 16, 0xffff);
 | |
| }
 | |
| 
 | |
| static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                         const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     DCAEncContext *c = avctx->priv_data;
 | |
|     const int32_t *samples;
 | |
|     int ret, i;
 | |
| 
 | |
|     if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     samples = (const int32_t *)frame->data[0];
 | |
| 
 | |
|     subband_transform(c, samples);
 | |
|     if (c->lfe_channel)
 | |
|         lfe_downsample(c, samples);
 | |
| 
 | |
|     calc_masking(c, samples);
 | |
|     if (c->options.adpcm_mode)
 | |
|         adpcm_analysis(c);
 | |
|     find_peaks(c);
 | |
|     assign_bits(c);
 | |
|     calc_lfe_scales(c);
 | |
|     shift_history(c, samples);
 | |
| 
 | |
|     init_put_bits(&c->pb, avpkt->data, avpkt->size);
 | |
|     fill_in_adpcm_bufer(c);
 | |
|     put_frame_header(c);
 | |
|     put_primary_audio_header(c);
 | |
|     for (i = 0; i < SUBFRAMES; i++)
 | |
|         put_subframe(c, i);
 | |
| 
 | |
| 
 | |
|     for (i = put_bits_count(&c->pb); i < 8*c->frame_size; i++)
 | |
|         put_bits(&c->pb, 1, 0);
 | |
| 
 | |
|     flush_put_bits(&c->pb);
 | |
| 
 | |
|     avpkt->pts      = frame->pts;
 | |
|     avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
 | |
|     avpkt->size     = put_bits_count(&c->pb) >> 3;
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 | |
| 
 | |
| static const AVOption options[] = {
 | |
|     { "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass dcaenc_class = {
 | |
|     .class_name = "DCA (DTS Coherent Acoustics)",
 | |
|     .item_name = av_default_item_name,
 | |
|     .option = options,
 | |
|     .version = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| static const AVCodecDefault defaults[] = {
 | |
|     { "b",          "1411200" },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| AVCodec ff_dca_encoder = {
 | |
|     .name                  = "dca",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
 | |
|     .type                  = AVMEDIA_TYPE_AUDIO,
 | |
|     .id                    = AV_CODEC_ID_DTS,
 | |
|     .priv_data_size        = sizeof(DCAEncContext),
 | |
|     .init                  = encode_init,
 | |
|     .close                 = encode_close,
 | |
|     .encode2               = encode_frame,
 | |
|     .capabilities          = AV_CODEC_CAP_EXPERIMENTAL,
 | |
|     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
 | |
|     .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
 | |
|                                                             AV_SAMPLE_FMT_NONE },
 | |
|     .supported_samplerates = sample_rates,
 | |
|     .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
 | |
|                                                   AV_CH_LAYOUT_STEREO,
 | |
|                                                   AV_CH_LAYOUT_2_2,
 | |
|                                                   AV_CH_LAYOUT_5POINT0,
 | |
|                                                   AV_CH_LAYOUT_5POINT1,
 | |
|                                                   0 },
 | |
|     .defaults              = defaults,
 | |
|     .priv_class            = &dcaenc_class,
 | |
| };
 |