mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	 d7bcc4adcf
			
		
	
	d7bcc4adcf
	
	
	
		
			
			Further optimizations. Originally committed as revision 9666 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			2014 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2014 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* AC3 Audio Decoder.
 | |
|  * This code is developed as part of Google Summer of Code 2006 Program.
 | |
|  *
 | |
|  * Acknowledgements:
 | |
|  *
 | |
|  * I would like to acknowledge my mentor Benjamin Larsson for his timely
 | |
|  * help and excelleng guidance throughout the project.
 | |
|  * Thanks a lot Benjamin.
 | |
|  *
 | |
|  * For exponent decoding the code is reused from liba52 by Michel Lespinasse
 | |
|  * and Aaron Holtzman.
 | |
|  * http://liba52.sourceforge.net
 | |
|  *
 | |
|  * Thanks Makoto Matsumoto and Takuji Nishimura for the Mersenne Twister.
 | |
|  *
 | |
|  * Kaiser-Bessel derived window by Justin Ruggles.
 | |
|  *
 | |
|  * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
 | |
|  * Something is wrong up on cloud # 9!
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stddef.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #define ALT_BITSTREAM_READER
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "ac3tab.h"
 | |
| #include "ac3_decoder.h"
 | |
| #include "bitstream.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| #define N 512   /* constant for IMDCT Block size */
 | |
| 
 | |
| #define MAX_CHANNELS    6
 | |
| #define BLOCK_SIZE    256
 | |
| #define AUDIO_BLOCKS    6
 | |
| 
 | |
| /* Exponent strategies. */
 | |
| #define AC3_EXPSTR_D15      0x01
 | |
| #define AC3_EXPSTR_D25      0x02
 | |
| #define AC3_EXPSTR_D45      0x03
 | |
| #define AC3_EXPSTR_REUSE    0x00
 | |
| 
 | |
| /* Bit allocation strategies. */
 | |
| #define AC3_DBASTR_NEW      0x01
 | |
| #define AC3_DBASTR_NONE     0x02
 | |
| #define AC3_DBASTR_RESERVED 0x03
 | |
| #define AC3_DBASTR_REUSE    0x00
 | |
| 
 | |
| /* Output and input configurations. */
 | |
| #define AC3_OUTPUT_UNMODIFIED   0x01
 | |
| #define AC3_OUTPUT_MONO         0x02
 | |
| #define AC3_OUTPUT_STEREO       0x04
 | |
| #define AC3_OUTPUT_DOLBY        0x08
 | |
| #define AC3_OUTPUT_LFEON        0x10
 | |
| 
 | |
| #define AC3_INPUT_DUALMONO      0x00
 | |
| #define AC3_INPUT_MONO          0x01
 | |
| #define AC3_INPUT_STEREO        0x02
 | |
| #define AC3_INPUT_3F            0x03
 | |
| #define AC3_INPUT_2F_1R         0x04
 | |
| #define AC3_INPUT_3F_1R         0x05
 | |
| #define AC3_INPUT_2F_2R         0x06
 | |
| #define AC3_INPUT_3F_2R         0x07
 | |
| 
 | |
| /* Mersenne Twister */
 | |
| #define NMT 624
 | |
| #define MMT 397
 | |
| #define MATRIX_A    0x9908b0df
 | |
| #define UPPER_MASK  0x80000000
 | |
| #define LOWER_MASK  0x7fffffff
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t mt[NMT];
 | |
|     int      mti;
 | |
| } dither_state;
 | |
| /* Mersenne Twister */
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t flags;
 | |
|     uint16_t crc1;
 | |
|     uint8_t  fscod;
 | |
| 
 | |
|     uint8_t  acmod;
 | |
|     uint8_t  cmixlev;
 | |
|     uint8_t  surmixlev;
 | |
|     uint8_t  dsurmod;
 | |
| 
 | |
|     uint8_t  blksw;
 | |
|     uint8_t  dithflag;
 | |
|     uint8_t  cplinu;
 | |
|     uint8_t  chincpl;
 | |
|     uint8_t  phsflginu;
 | |
|     uint8_t  cplbegf;
 | |
|     uint8_t  cplendf;
 | |
|     uint8_t  cplcoe;
 | |
|     uint32_t cplbndstrc;
 | |
|     uint8_t  rematstr;
 | |
|     uint8_t  rematflg;
 | |
|     uint8_t  cplexpstr;
 | |
|     uint8_t  lfeexpstr;
 | |
|     uint8_t  chexpstr[5];
 | |
|     uint8_t  sdcycod;
 | |
|     uint8_t  fdcycod;
 | |
|     uint8_t  sgaincod;
 | |
|     uint8_t  dbpbcod;
 | |
|     uint8_t  floorcod;
 | |
|     uint8_t  csnroffst;
 | |
|     uint8_t  cplfsnroffst;
 | |
|     uint8_t  cplfgaincod;
 | |
|     uint8_t  fsnroffst[5];
 | |
|     uint8_t  fgaincod[5];
 | |
|     uint8_t  lfefsnroffst;
 | |
|     uint8_t  lfefgaincod;
 | |
|     uint8_t  cplfleak;
 | |
|     uint8_t  cplsleak;
 | |
|     uint8_t  cpldeltbae;
 | |
|     uint8_t  deltbae[5];
 | |
|     uint8_t  cpldeltnseg;
 | |
|     uint8_t  cpldeltoffst[8];
 | |
|     uint8_t  cpldeltlen[8];
 | |
|     uint8_t  cpldeltba[8];
 | |
|     uint8_t  deltnseg[5];
 | |
|     uint8_t  deltoffst[5][8];
 | |
|     uint8_t  deltlen[5][8];
 | |
|     uint8_t  deltba[5][8];
 | |
| 
 | |
|     /* Derived Attributes. */
 | |
|     int      sampling_rate;
 | |
|     int      bit_rate;
 | |
|     int      frame_size;
 | |
| 
 | |
|     int      nfchans;
 | |
|     int      lfeon;
 | |
| 
 | |
|     float    chcoeffs[6];
 | |
|     float    cplco[5][18];
 | |
|     int      ncplbnd;
 | |
|     int      ncplsubnd;
 | |
|     int      cplstrtmant;
 | |
|     int      cplendmant;
 | |
|     int      endmant[5];
 | |
|     uint8_t  dcplexps[256];
 | |
|     uint8_t  dexps[5][256];
 | |
|     uint8_t  dlfeexps[256];
 | |
|     uint8_t  cplbap[256];
 | |
|     uint8_t  bap[5][256];
 | |
|     uint8_t  lfebap[256];
 | |
|     int      blkoutput;
 | |
| 
 | |
|     DECLARE_ALIGNED_16(float, transform_coeffs[MAX_CHANNELS][BLOCK_SIZE]);
 | |
| 
 | |
|     /* For IMDCT. */
 | |
|     MDCTContext imdct_512;  //N/8 point IFFT context
 | |
|     MDCTContext imdct_256;  //N/4 point IFFT context
 | |
|     DSPContext  dsp;        //for optimization
 | |
|     DECLARE_ALIGNED_16(float, output[MAX_CHANNELS][BLOCK_SIZE]);
 | |
|     DECLARE_ALIGNED_16(float, delay[MAX_CHANNELS][BLOCK_SIZE]);
 | |
|     DECLARE_ALIGNED_16(float, tmp_imdct[BLOCK_SIZE]);
 | |
|     DECLARE_ALIGNED_16(float, tmp_output[BLOCK_SIZE * 2]);
 | |
| 
 | |
|     /* Miscellaneous. */
 | |
|     GetBitContext gb;
 | |
|     dither_state  dith_state;
 | |
| } AC3DecodeContext;
 | |
| 
 | |
| 
 | |
| /* BEGIN Mersenne Twister Code. */
 | |
| static void dither_seed(dither_state *state, uint32_t seed)
 | |
| {
 | |
|     if (seed == 0)
 | |
|         seed = 0x1f2e3d4c;
 | |
| 
 | |
|     state->mt[0] = seed;
 | |
|     for (state->mti = 1; state->mti < NMT; state->mti++)
 | |
|         state->mt[state->mti] = ((69069 * state->mt[state->mti - 1]) + 1);
 | |
| }
 | |
| 
 | |
| static uint32_t dither_uint32(dither_state *state)
 | |
| {
 | |
|     uint32_t y;
 | |
|     static const uint32_t mag01[2] = { 0x00, MATRIX_A };
 | |
|     int kk;
 | |
| 
 | |
|     if (state->mti >= NMT) {
 | |
|         for (kk = 0; kk < NMT - MMT; kk++) {
 | |
|             y = (state->mt[kk] & UPPER_MASK) | (state->mt[kk + 1] & LOWER_MASK);
 | |
|             state->mt[kk] = state->mt[kk + MMT] ^ (y >> 1) ^ mag01[y & 0x01];
 | |
|         }
 | |
|         for (;kk < NMT - 1; kk++) {
 | |
|             y = (state->mt[kk] & UPPER_MASK) | (state->mt[kk + 1] & LOWER_MASK);
 | |
|             state->mt[kk] = state->mt[kk + (MMT - NMT)] ^ (y >> 1) ^ mag01[y & 0x01];
 | |
|         }
 | |
|         y = (state->mt[NMT - 1] & UPPER_MASK) | (state->mt[0] & LOWER_MASK);
 | |
|         state->mt[NMT - 1] = state->mt[MMT - 1] ^ (y >> 1) ^ mag01[y & 0x01];
 | |
| 
 | |
|         state->mti = 0;
 | |
|     }
 | |
| 
 | |
|     y = state->mt[state->mti++];
 | |
|     y ^= (y >> 11);
 | |
|     y ^= ((y << 7) & 0x9d2c5680);
 | |
|     y ^= ((y << 15) & 0xefc60000);
 | |
|     y ^= (y >> 18);
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| static inline int16_t dither_int16(dither_state *state)
 | |
| {
 | |
|     return ((dither_uint32(state) << 16) >> 16);
 | |
| }
 | |
| 
 | |
| /* END Mersenne Twister */
 | |
| 
 | |
| /**
 | |
|  * Generate a Kaiser Window.
 | |
|  */
 | |
| static void
 | |
| k_window_init(int alpha, float *window, int n, int iter)
 | |
| {
 | |
|     int j, k;
 | |
|     float a, x;
 | |
|     a = alpha * M_PI / n;
 | |
|     a = a*a;
 | |
|     for(k=0; k<n; k++) {
 | |
|         x = k * (n - k) * a;
 | |
|         window[k] = 1.0;
 | |
|         for(j=iter; j>0; j--) {
 | |
|             window[k] = (window[k] * x / (j*j)) + 1.0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate a Kaiser-Bessel Derived Window.
 | |
|  * @param alpha  determines window shape
 | |
|  * @param window array to fill with window values
 | |
|  * @param n      length of the window
 | |
|  * @param iter   number of iterations to use in BesselI0
 | |
|  */
 | |
| static void
 | |
| kbd_window_init(int alpha, float *window, int n, int iter)
 | |
| {
 | |
|     int k, n2;
 | |
|     float *kwindow;
 | |
| 
 | |
|     n2 = n >> 1;
 | |
|     kwindow = &window[n2];
 | |
|     k_window_init(alpha, kwindow, n2, iter);
 | |
|     window[0] = kwindow[0];
 | |
|     for(k=1; k<n2; k++) {
 | |
|         window[k] = window[k-1] + kwindow[k];
 | |
|     }
 | |
|     for(k=0; k<n2; k++) {
 | |
|         window[k] = sqrt(window[k] / (window[n2-1]+1));
 | |
|         window[n-1-k] = window[k];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void generate_quantizers_table(int16_t quantizers[], int level, int length)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < length; i++)
 | |
|         quantizers[i] = ((2 * i - level + 1) << 15) / level;
 | |
| }
 | |
| 
 | |
| static void generate_quantizers_table_1(int16_t quantizers[], int level, int length1, int length2, int size)
 | |
| {
 | |
|     int i, j;
 | |
|     int16_t v;
 | |
| 
 | |
|     for (i = 0; i < length1; i++) {
 | |
|         v = ((2 * i - level + 1) << 15) / level;
 | |
|         for (j = 0; j < length2; j++)
 | |
|             quantizers[i * length2 + j] = v;
 | |
|     }
 | |
| 
 | |
|     for (i = length1 * length2; i < size; i++)
 | |
|         quantizers[i] = 0;
 | |
| }
 | |
| 
 | |
| static void generate_quantizers_table_2(int16_t quantizers[], int level, int length1, int length2, int size)
 | |
| {
 | |
|     int i, j;
 | |
|     int16_t v;
 | |
| 
 | |
|     for (i = 0; i < length1; i++) {
 | |
|         v = ((2 * (i % level) - level + 1) << 15) / level;
 | |
|         for (j = 0; j < length2; j++)
 | |
|             quantizers[i * length2 + j] = v;
 | |
|     }
 | |
| 
 | |
|     for (i = length1 * length2; i < size; i++)
 | |
|         quantizers[i] = 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void generate_quantizers_table_3(int16_t quantizers[], int level, int length1, int length2, int size)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < length1; i++)
 | |
|         for (j = 0; j < length2; j++)
 | |
|             quantizers[i * length2 + j] = ((2 * (j % level) - level + 1) << 15) / level;
 | |
| 
 | |
|     for (i = length1 * length2; i < size; i++)
 | |
|         quantizers[i] = 0;
 | |
| }
 | |
| 
 | |
| static void ac3_tables_init(void)
 | |
| {
 | |
|     int i, j, k, l, v;
 | |
|     /* compute bndtab and masktab from bandsz */
 | |
|     k = 0;
 | |
|     l = 0;
 | |
|     for(i=0;i<50;i++) {
 | |
|         bndtab[i] = l;
 | |
|         v = bndsz[i];
 | |
|         for(j=0;j<v;j++) masktab[k++]=i;
 | |
|         l += v;
 | |
|     }
 | |
|     masktab[253] = masktab[254] = masktab[255] = 0;
 | |
|     bndtab[50] = 0;
 | |
| 
 | |
|     /* Exponent Decoding Tables */
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         v = i - 2;
 | |
|         for (j = 0; j < 25; j++)
 | |
|             exp_1[i * 25 + j] = v;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 25; i++) {
 | |
|         v = (i % 5) - 2;
 | |
|         for (j = 0; j < 5; j++)
 | |
|             exp_2[i * 5 + j] = v;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 25; i++) {
 | |
|         v = -2;
 | |
|         for (j = 0; j < 5; j++)
 | |
|             exp_3[i * 5 + j] = v++;
 | |
|     }
 | |
| 
 | |
|     for (i = 125; i < 128; i++)
 | |
|         exp_1[i] = exp_2[i] = exp_3[i] = 25;
 | |
|     /* End Exponent Decoding Tables */
 | |
| 
 | |
|     /* Quantizer ungrouping tables. */
 | |
|     // for level-3 quantizers
 | |
|     generate_quantizers_table_1(l3_quantizers_1, 3, 3, 9, 32);
 | |
|     generate_quantizers_table_2(l3_quantizers_2, 3, 9, 3, 32);
 | |
|     generate_quantizers_table_3(l3_quantizers_3, 3, 9, 3, 32);
 | |
| 
 | |
|     //for level-5 quantizers
 | |
|     generate_quantizers_table_1(l5_quantizers_1, 5, 5, 25, 128);
 | |
|     generate_quantizers_table_2(l5_quantizers_2, 5, 25, 5, 128);
 | |
|     generate_quantizers_table_3(l5_quantizers_3, 5, 25, 5, 128);
 | |
| 
 | |
|     //for level-7 quantizers
 | |
|     generate_quantizers_table(l7_quantizers, 7, 7);
 | |
| 
 | |
|     //for level-4 quantizers
 | |
|     generate_quantizers_table_2(l11_quantizers_1, 11, 11, 11, 128);
 | |
|     generate_quantizers_table_3(l11_quantizers_2, 11, 11, 11, 128);
 | |
| 
 | |
|     //for level-15 quantizers
 | |
|     generate_quantizers_table(l15_quantizers, 15, 15);
 | |
| 
 | |
|     /* Kaiser-Bessel derived window. */
 | |
|     kbd_window_init(5, window, 256, 100);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ac3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *ctx = avctx->priv_data;
 | |
| 
 | |
|     ac3_tables_init();
 | |
|     ff_mdct_init(&ctx->imdct_256, 8, 1);
 | |
|     ff_mdct_init(&ctx->imdct_512, 9, 1);
 | |
|     dsputil_init(&ctx->dsp, avctx);
 | |
|     dither_seed(&ctx->dith_state, 0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ac3_synchronize(uint8_t *buf, int buf_size)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < buf_size - 1; i++)
 | |
|         if (buf[i] == 0x0b && buf[i + 1] == 0x77)
 | |
|             return i;
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| //Returns -1 when 'fscod' is not valid;
 | |
| static int ac3_parse_sync_info(AC3DecodeContext *ctx)
 | |
| {
 | |
|     GetBitContext *gb = &ctx->gb;
 | |
|     int frmsizecod, bsid;
 | |
| 
 | |
|     skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
 | |
|     ctx->crc1 = get_bits(gb, 16);
 | |
|     ctx->fscod = get_bits(gb, 2);
 | |
|     if (ctx->fscod == 0x03)
 | |
|         return 0;
 | |
|     frmsizecod = get_bits(gb, 6);
 | |
|     if (frmsizecod >= 38)
 | |
|         return 0;
 | |
|     ctx->sampling_rate = ac3_freqs[ctx->fscod];
 | |
|     ctx->bit_rate = ac3_bitratetab[frmsizecod >> 1];
 | |
| 
 | |
|     /* we include it here in order to determine validity of ac3 frame */
 | |
|     bsid = get_bits(gb, 5);
 | |
|     if (bsid > 0x08)
 | |
|         return 0;
 | |
|     skip_bits(gb, 3); //skip the bsmod, bsi->bsmod = get_bits(gb, 3);
 | |
| 
 | |
|     switch (ctx->fscod) {
 | |
|         case 0x00:
 | |
|             ctx->frame_size = 4 * ctx->bit_rate;
 | |
|             return ctx->frame_size;
 | |
|         case 0x01:
 | |
|             ctx->frame_size = 2 * (320 * ctx->bit_rate / 147 + (frmsizecod & 1));
 | |
|             return ctx->frame_size;
 | |
|         case 0x02:
 | |
|             ctx->frame_size =  6 * ctx->bit_rate;
 | |
|             return ctx->frame_size;
 | |
|     }
 | |
| 
 | |
|     /* never reached */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ac3_parse_bsi(AC3DecodeContext *ctx)
 | |
| {
 | |
|     GetBitContext *gb = &ctx->gb;
 | |
|     int i;
 | |
| 
 | |
|     ctx->cmixlev = 0;
 | |
|     ctx->surmixlev = 0;
 | |
|     ctx->dsurmod = 0;
 | |
|     ctx->nfchans = 0;
 | |
|     ctx->cpldeltbae = AC3_DBASTR_NONE;
 | |
|     ctx->cpldeltnseg = 0;
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         ctx->deltbae[i] = AC3_DBASTR_NONE;
 | |
|         ctx->deltnseg[i] = 0;
 | |
|     }
 | |
| 
 | |
|     ctx->acmod = get_bits(gb, 3);
 | |
|     ctx->nfchans = nfchans_tbl[ctx->acmod];
 | |
| 
 | |
|     if (ctx->acmod & 0x01 && ctx->acmod != 0x01)
 | |
|         ctx->cmixlev = get_bits(gb, 2);
 | |
|     if (ctx->acmod & 0x04)
 | |
|         ctx->surmixlev = get_bits(gb, 2);
 | |
|     if (ctx->acmod == 0x02)
 | |
|         ctx->dsurmod = get_bits(gb, 2);
 | |
| 
 | |
|     ctx->lfeon = get_bits1(gb);
 | |
| 
 | |
|     i = !(ctx->acmod);
 | |
|     do {
 | |
|         skip_bits(gb, 5); //skip dialog normalization
 | |
|         if (get_bits1(gb))
 | |
|             skip_bits(gb, 8); //skip compression
 | |
|         if (get_bits1(gb))
 | |
|             skip_bits(gb, 8); //skip language code
 | |
|         if (get_bits1(gb))
 | |
|             skip_bits(gb, 7); //skip audio production information
 | |
|     } while (i--);
 | |
| 
 | |
|     skip_bits(gb, 2); //skip copyright bit and original bitstream bit
 | |
| 
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 14); //skip timecode1
 | |
|     if (get_bits1(gb))
 | |
|         skip_bits(gb, 14); //skip timecode2
 | |
| 
 | |
|     if (get_bits1(gb)) {
 | |
|         i = get_bits(gb, 6); //additional bsi length
 | |
|         do {
 | |
|             skip_bits(gb, 8);
 | |
|         } while(i--);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Decodes the grouped exponents and stores them
 | |
|  * in decoded exponents (dexps).
 | |
|  * The code is derived from liba52.
 | |
|  * Uses liba52 tables.
 | |
|  */
 | |
| static int decode_exponents(GetBitContext *gb, int expstr, int ngrps, uint8_t absexp, uint8_t *dexps)
 | |
| {
 | |
|     int exps;
 | |
| 
 | |
|     while (ngrps--) {
 | |
|         exps = get_bits(gb, 7);
 | |
| 
 | |
|         absexp += exp_1[exps];
 | |
|         if (absexp > 24) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "Absolute Exponent > 24, ngrp = %d\n", ngrps);
 | |
|             return -ngrps;
 | |
|         }
 | |
|         switch (expstr) {
 | |
|             case AC3_EXPSTR_D45:
 | |
|                 *(dexps++) = absexp;
 | |
|                 *(dexps++) = absexp;
 | |
|             case AC3_EXPSTR_D25:
 | |
|                 *(dexps++) = absexp;
 | |
|             case AC3_EXPSTR_D15:
 | |
|                 *(dexps++) = absexp;
 | |
|         }
 | |
| 
 | |
|         absexp += exp_2[exps];
 | |
|         if (absexp > 24) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "Absolute Exponent > 24, ngrp = %d\n", ngrps);
 | |
|             return -ngrps;
 | |
|         }
 | |
|         switch (expstr) {
 | |
|             case AC3_EXPSTR_D45:
 | |
|                 *(dexps++) = absexp;
 | |
|                 *(dexps++) = absexp;
 | |
|             case AC3_EXPSTR_D25:
 | |
|                 *(dexps++) = absexp;
 | |
|             case AC3_EXPSTR_D15:
 | |
|                 *(dexps++) = absexp;
 | |
|         }
 | |
| 
 | |
|         absexp += exp_3[exps];
 | |
|         if (absexp > 24) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "Absolute Exponent > 24, ngrp = %d\n", ngrps);
 | |
|             return -ngrps;
 | |
|         }
 | |
|         switch (expstr) {
 | |
|             case AC3_EXPSTR_D45:
 | |
|                 *(dexps++) = absexp;
 | |
|                 *(dexps++) = absexp;
 | |
|             case AC3_EXPSTR_D25:
 | |
|                 *(dexps++) = absexp;
 | |
|             case AC3_EXPSTR_D15:
 | |
|                 *(dexps++) = absexp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int logadd(int a, int b)
 | |
| {
 | |
|     int c = a - b;
 | |
|     int address;
 | |
| 
 | |
|     address = FFMIN((ABS(c) >> 1), 255);
 | |
| 
 | |
|     if (c >= 0)
 | |
|         return (a + latab[address]);
 | |
|     else
 | |
|         return (b + latab[address]);
 | |
| }
 | |
| 
 | |
| static inline int calc_lowcomp(int a, int b0, int b1, int bin)
 | |
| {
 | |
|     if (bin < 7) {
 | |
|         if ((b0 + 256) == b1)
 | |
|             a = 384;
 | |
|         else if (b0 > b1)
 | |
|             a = FFMAX(0, (a - 64));
 | |
|     }
 | |
|     else if (bin < 20) {
 | |
|         if ((b0 + 256) == b1)
 | |
|             a = 320;
 | |
|         else if (b0 > b1)
 | |
|             a = FFMAX(0, (a - 64));
 | |
|     }
 | |
|     else
 | |
|         a = FFMAX(0, (a - 128));
 | |
| 
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /* do the bit allocation for chnl.
 | |
|  * chnl = 0 to 4 - fbw channel
 | |
|  * chnl = 5 coupling channel
 | |
|  * chnl = 6 lfe channel
 | |
|  */
 | |
| static void do_bit_allocation(AC3DecodeContext *ctx, int chnl)
 | |
| {
 | |
|     int16_t psd[256], bndpsd[50], excite[50], mask[50], delta;
 | |
|     int sdecay, fdecay, sgain, dbknee, floor;
 | |
|     int lowcomp = 0, fgain = 0, snroffset = 0, fastleak = 0, slowleak = 0, do_delta = 0;
 | |
|     int start = 0, end = 0, bin = 0, i = 0, j = 0, k = 0, lastbin = 0, bndstrt = 0;
 | |
|     int bndend = 0, begin = 0, deltnseg = 0, band = 0, seg = 0, address = 0;
 | |
|     int fscod = ctx->fscod;
 | |
|     uint8_t *deltoffst = 0, *deltlen = 0, *deltba = 0;
 | |
|     uint8_t *exps = 0, *bap = 0;
 | |
| 
 | |
|     /* initialization */
 | |
|     sdecay = sdecaytab[ctx->sdcycod];
 | |
|     fdecay = fdecaytab[ctx->fdcycod];
 | |
|     sgain = sgaintab[ctx->sgaincod];
 | |
|     dbknee = dbkneetab[ctx->dbpbcod];
 | |
|     floor = floortab[ctx->floorcod];
 | |
| 
 | |
|     if (chnl == 5) {
 | |
|         start = ctx->cplstrtmant;
 | |
|         end = ctx->cplendmant;
 | |
|         fgain = fgaintab[ctx->cplfgaincod];
 | |
|         snroffset = (((ctx->csnroffst - 15) << 4) + ctx->cplfsnroffst) << 2;
 | |
|         fastleak = (ctx->cplfleak << 8) + 768;
 | |
|         slowleak = (ctx->cplsleak << 8) + 768;
 | |
|         exps = ctx->dcplexps;
 | |
|         bap = ctx->cplbap;
 | |
|         if (ctx->cpldeltbae == AC3_DBASTR_NEW || ctx->deltbae == AC3_DBASTR_REUSE) {
 | |
|             do_delta = 1;
 | |
|             deltnseg = ctx->cpldeltnseg;
 | |
|             deltoffst = ctx->cpldeltoffst;
 | |
|             deltlen = ctx->cpldeltlen;
 | |
|             deltba = ctx->cpldeltba;
 | |
|         }
 | |
|     }
 | |
|     else if (chnl == 6) {
 | |
|         start = 0;
 | |
|         end = 7;
 | |
|         lowcomp = 0;
 | |
|         fastleak = 0;
 | |
|         slowleak = 0;
 | |
|         fgain = fgaintab[ctx->lfefgaincod];
 | |
|         snroffset = (((ctx->csnroffst - 15) << 4) + ctx->lfefsnroffst) << 2;
 | |
|         exps = ctx->dlfeexps;
 | |
|         bap = ctx->lfebap;
 | |
|     }
 | |
|     else {
 | |
|         start = 0;
 | |
|         end = ctx->endmant[chnl];
 | |
|         lowcomp = 0;
 | |
|         fastleak = 0;
 | |
|         slowleak = 0;
 | |
|         fgain = fgaintab[ctx->fgaincod[chnl]];
 | |
|         snroffset = (((ctx->csnroffst - 15) << 4) + ctx->fsnroffst[chnl]) << 2;
 | |
|         exps = ctx->dexps[chnl];
 | |
|         bap = ctx->bap[chnl];
 | |
|         if (ctx->deltbae[chnl] == AC3_DBASTR_NEW || ctx->deltbae[chnl] == AC3_DBASTR_REUSE) {
 | |
|             do_delta = 1;
 | |
|             deltnseg = ctx->deltnseg[chnl];
 | |
|             deltoffst = ctx->deltoffst[chnl];
 | |
|             deltlen = ctx->deltlen[chnl];
 | |
|             deltba = ctx->deltba[chnl];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (bin = start; bin < end; bin++) /* exponent mapping into psd */
 | |
|         psd[bin] = (3072 - (exps[bin] << 7));
 | |
| 
 | |
|     /* psd integration */
 | |
|     j = start;
 | |
|     k = masktab[start];
 | |
|     do {
 | |
|         lastbin = FFMIN((bndtab[k] + bndsz[k]), end);
 | |
|         bndpsd[k] = psd[j];
 | |
|         j++;
 | |
|         for (i = j; i < lastbin; i++) {
 | |
|             bndpsd[k] = logadd(bndpsd[k], psd[j]);
 | |
|             j++;
 | |
|         }
 | |
|         k++;
 | |
|     } while (end > lastbin);
 | |
| 
 | |
|     /* compute the excite function */
 | |
|     bndstrt = masktab[start];
 | |
|     bndend = masktab[end - 1] + 1;
 | |
|     if (bndstrt == 0) {
 | |
|         lowcomp = calc_lowcomp(lowcomp, bndpsd[0], bndpsd[1], 0);
 | |
|         excite[0] = bndpsd[0] - fgain - lowcomp;
 | |
|         lowcomp = calc_lowcomp(lowcomp, bndpsd[1], bndpsd[2], 1);
 | |
|         excite[1] = bndpsd[1] - fgain - lowcomp;
 | |
|         begin = 7;
 | |
|         for (bin = 2; bin < 7; bin++) {
 | |
|             if ((bndend != 7) || (bin != 6))
 | |
|                 lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin + 1], bin);
 | |
|             fastleak = bndpsd[bin] - fgain;
 | |
|             slowleak = bndpsd[bin] - sgain;
 | |
|             excite[bin] = fastleak - lowcomp;
 | |
|             if ((bndend != 7) || (bin != 6))
 | |
|                 if (bndpsd[bin] <= bndpsd[bin + 1]) {
 | |
|                     begin = bin + 1;
 | |
|                     break;
 | |
|                 }
 | |
|         }
 | |
|         for (bin = begin; bin < FFMIN(bndend, 22); bin++) {
 | |
|             if ((bndend != 7) || (bin != 6))
 | |
|                 lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin + 1], bin);
 | |
|             fastleak -= fdecay;
 | |
|             fastleak = FFMAX(fastleak, (bndpsd[bin] - fgain));
 | |
|             slowleak -= sdecay;
 | |
|             slowleak = FFMAX(slowleak, (bndpsd[bin] - sgain));
 | |
|             excite[bin] = FFMAX((fastleak - lowcomp), slowleak);
 | |
|         }
 | |
|         begin = 22;
 | |
|     }
 | |
|     else {
 | |
|         begin = bndstrt;
 | |
|     }
 | |
|     for (bin = begin; bin < bndend; bin++) {
 | |
|         fastleak -= fdecay;
 | |
|         fastleak = FFMAX(fastleak, (bndpsd[bin] - fgain));
 | |
|         slowleak -= sdecay;
 | |
|         slowleak = FFMAX(slowleak, (bndpsd[bin] - sgain));
 | |
|         excite[bin] = FFMAX(fastleak, slowleak);
 | |
|     }
 | |
| 
 | |
|     /* compute the masking curve */
 | |
|     for (bin = bndstrt; bin < bndend; bin++) {
 | |
|         if (bndpsd[bin] < dbknee)
 | |
|             excite[bin] += ((dbknee - bndpsd[bin]) >> 2);
 | |
|         mask[bin] = FFMAX(excite[bin], hth[bin][fscod]);
 | |
|     }
 | |
| 
 | |
|     /* apply the delta bit allocation */
 | |
|     if (do_delta) {
 | |
|         band = 0;
 | |
|         for (seg = 0; seg < deltnseg + 1; seg++) {
 | |
|             band += deltoffst[seg];
 | |
|             if (deltba[seg] >= 4)
 | |
|                 delta = (deltba[seg] - 3) << 7;
 | |
|             else
 | |
|                 delta = (deltba[seg] - 4) << 7;
 | |
|             for (k = 0; k < deltlen[seg]; k++) {
 | |
|                 mask[band] += delta;
 | |
|                 band++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*compute the bit allocation */
 | |
|     i = start;
 | |
|     j = masktab[start];
 | |
|     do {
 | |
|         lastbin = FFMIN((bndtab[j] + bndsz[j]), end);
 | |
|         mask[j] -= snroffset;
 | |
|         mask[j] -= floor;
 | |
|         if (mask[j] < 0)
 | |
|             mask[j] = 0;
 | |
|         mask[j] &= 0x1fe0;
 | |
|         mask[j] += floor;
 | |
|         for (k = i; k < lastbin; k++) {
 | |
|             address = (psd[i] - mask[j]) >> 5;
 | |
|             address = FFMIN(63, (FFMAX(0, address)));
 | |
|             bap[i] = baptab[address];
 | |
|             i++;
 | |
|         }
 | |
|         j++;
 | |
|     } while (end > lastbin);
 | |
| }
 | |
| 
 | |
| /* Check if snroffsets are zero. */
 | |
| static int is_snr_offsets_zero(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if ((ctx->csnroffst) || (ctx->cplinu && ctx->cplfsnroffst) ||
 | |
|             (ctx->lfeon && ctx->lfefsnroffst))
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < ctx->nfchans; i++)
 | |
|         if (ctx->fsnroffst[i])
 | |
|             return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
 | |
|     int16_t l3_quantizers[3];
 | |
|     int16_t l5_quantizers[3];
 | |
|     int16_t l11_quantizers[2];
 | |
|     int l3ptr;
 | |
|     int l5ptr;
 | |
|     int l11ptr;
 | |
| } mant_groups;
 | |
| 
 | |
| #define TRANSFORM_COEFF(tc, m, e, f) (tc) = (m) * (f)[(e)]
 | |
| 
 | |
| /* Get the transform coefficients for coupling channel and uncouple channels.
 | |
|  * The coupling transform coefficients starts at the the cplstrtmant, which is
 | |
|  * equal to endmant[ch] for fbw channels. Hence we can uncouple channels before
 | |
|  * getting transform coefficients for the channel.
 | |
|  */
 | |
| static int get_transform_coeffs_cpling(AC3DecodeContext *ctx, mant_groups *m)
 | |
| {
 | |
|     GetBitContext *gb = &ctx->gb;
 | |
|     int ch, start, end, cplbndstrc, bnd, gcode, tbap;
 | |
|     float cplcos[5], cplcoeff;
 | |
|     uint8_t *exps = ctx->dcplexps;
 | |
|     uint8_t *bap = ctx->cplbap;
 | |
| 
 | |
|     cplbndstrc = ctx->cplbndstrc;
 | |
|     start = ctx->cplstrtmant;
 | |
|     bnd = 0;
 | |
| 
 | |
|     while (start < ctx->cplendmant) {
 | |
|         end = start + 12;
 | |
|         while (cplbndstrc & 1) {
 | |
|             end += 12;
 | |
|             cplbndstrc >>= 1;
 | |
|         }
 | |
|         cplbndstrc >>= 1;
 | |
|         for (ch = 0; ch < ctx->nfchans; ch++)
 | |
|             cplcos[ch] = ctx->chcoeffs[ch] * ctx->cplco[ch][bnd];
 | |
|         bnd++;
 | |
| 
 | |
|         while (start < end) {
 | |
|             tbap = bap[start];
 | |
|             switch(tbap) {
 | |
|                 case 0:
 | |
|                     for (ch = 0; ch < ctx->nfchans; ch++)
 | |
|                         if (((ctx->chincpl) >> ch) & 1) {
 | |
|                             if ((ctx->dithflag >> ch) & 1) {
 | |
|                                 TRANSFORM_COEFF(cplcoeff, dither_int16(&ctx->dith_state), exps[start], scale_factors);
 | |
|                                 ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch] * LEVEL_MINUS_3DB;
 | |
|                             } else
 | |
|                                 ctx->transform_coeffs[ch + 1][start] = 0;
 | |
|                         }
 | |
|                     start++;
 | |
|                     continue;
 | |
|                 case 1:
 | |
|                     if (m->l3ptr > 2) {
 | |
|                         gcode = get_bits(gb, 5);
 | |
|                         m->l3_quantizers[0] = l3_quantizers_1[gcode];
 | |
|                         m->l3_quantizers[1] = l3_quantizers_2[gcode];
 | |
|                         m->l3_quantizers[2] = l3_quantizers_3[gcode];
 | |
|                         m->l3ptr = 0;
 | |
|                     }
 | |
|                     TRANSFORM_COEFF(cplcoeff, m->l3_quantizers[m->l3ptr++], exps[start], scale_factors);
 | |
|                     break;
 | |
| 
 | |
|                 case 2:
 | |
|                     if (m->l5ptr > 2) {
 | |
|                         gcode = get_bits(gb, 7);
 | |
|                         m->l5_quantizers[0] = l5_quantizers_1[gcode];
 | |
|                         m->l5_quantizers[1] = l5_quantizers_2[gcode];
 | |
|                         m->l5_quantizers[2] = l5_quantizers_3[gcode];
 | |
|                         m->l5ptr = 0;
 | |
|                     }
 | |
|                     TRANSFORM_COEFF(cplcoeff, m->l5_quantizers[m->l5ptr++], exps[start], scale_factors);
 | |
|                     break;
 | |
| 
 | |
|                 case 3:
 | |
|                     TRANSFORM_COEFF(cplcoeff, l7_quantizers[get_bits(gb, 3)], exps[start], scale_factors);
 | |
|                     break;
 | |
| 
 | |
|                 case 4:
 | |
|                     if (m->l11ptr > 1) {
 | |
|                         gcode = get_bits(gb, 7);
 | |
|                         m->l11_quantizers[0] = l11_quantizers_1[gcode];
 | |
|                         m->l11_quantizers[1] = l11_quantizers_2[gcode];
 | |
|                         m->l11ptr = 0;
 | |
|                     }
 | |
|                     TRANSFORM_COEFF(cplcoeff, m->l11_quantizers[m->l11ptr++], exps[start], scale_factors);
 | |
|                     break;
 | |
| 
 | |
|                 case 5:
 | |
|                     TRANSFORM_COEFF(cplcoeff, l15_quantizers[get_bits(gb, 4)], exps[start], scale_factors);
 | |
|                     break;
 | |
| 
 | |
|                 default:
 | |
|                     TRANSFORM_COEFF(cplcoeff, get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]),
 | |
|                             exps[start], scale_factors);
 | |
|             }
 | |
|             for (ch = 0; ch < ctx->nfchans; ch++)
 | |
|                 if ((ctx->chincpl >> ch) & 1)
 | |
|                     ctx->transform_coeffs[ch + 1][start] = cplcoeff * cplcos[ch];
 | |
|             start++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Get the transform coefficients for particular channel */
 | |
| static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
 | |
| {
 | |
|     GetBitContext *gb = &ctx->gb;
 | |
|     int i, gcode, tbap, dithflag, end;
 | |
|     uint8_t *exps;
 | |
|     uint8_t *bap;
 | |
|     float *coeffs;
 | |
|     float factors[25];
 | |
| 
 | |
|     for (i = 0; i < 25; i++)
 | |
|         factors[i] = scale_factors[i] * ctx->chcoeffs[ch_index];
 | |
| 
 | |
|     if (ch_index != -1) { /* fbw channels */
 | |
|         dithflag = (ctx->dithflag >> ch_index) & 1;
 | |
|         exps = ctx->dexps[ch_index];
 | |
|         bap = ctx->bap[ch_index];
 | |
|         coeffs = ctx->transform_coeffs[ch_index + 1];
 | |
|         end = ctx->endmant[ch_index];
 | |
|     } else if (ch_index == -1) {
 | |
|         dithflag = 0;
 | |
|         exps = ctx->dlfeexps;
 | |
|         bap = ctx->lfebap;
 | |
|         coeffs = ctx->transform_coeffs[0];
 | |
|         end = 7;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     for (i = 0; i < end; i++) {
 | |
|         tbap = bap[i];
 | |
|         switch (tbap) {
 | |
|             case 0:
 | |
|                 if (!dithflag) {
 | |
|                     coeffs[i] = 0;
 | |
|                     continue;
 | |
|                 }
 | |
|                 else {
 | |
|                     TRANSFORM_COEFF(coeffs[i], dither_int16(&ctx->dith_state), exps[i], factors);
 | |
|                     coeffs[i] *= LEVEL_MINUS_3DB;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|             case 1:
 | |
|                 if (m->l3ptr > 2) {
 | |
|                     gcode = get_bits(gb, 5);
 | |
|                     m->l3_quantizers[0] = l3_quantizers_1[gcode];
 | |
|                     m->l3_quantizers[1] = l3_quantizers_2[gcode];
 | |
|                     m->l3_quantizers[2] = l3_quantizers_3[gcode];
 | |
|                     m->l3ptr = 0;
 | |
|                 }
 | |
|                 TRANSFORM_COEFF(coeffs[i], m->l3_quantizers[m->l3ptr++], exps[i], factors);
 | |
|                 continue;
 | |
| 
 | |
|             case 2:
 | |
|                 if (m->l5ptr > 2) {
 | |
|                     gcode = get_bits(gb, 7);
 | |
|                     m->l5_quantizers[0] = l5_quantizers_1[gcode];
 | |
|                     m->l5_quantizers[1] = l5_quantizers_2[gcode];
 | |
|                     m->l5_quantizers[2] = l5_quantizers_3[gcode];
 | |
|                     m->l5ptr = 0;
 | |
|                 }
 | |
|                 TRANSFORM_COEFF(coeffs[i], m->l5_quantizers[m->l5ptr++], exps[i], factors);
 | |
|                 continue;
 | |
| 
 | |
|             case 3:
 | |
|                 TRANSFORM_COEFF(coeffs[i], l7_quantizers[get_bits(gb, 3)], exps[i], factors);
 | |
|                 continue;
 | |
| 
 | |
|             case 4:
 | |
|                 if (m->l11ptr > 1) {
 | |
|                     gcode = get_bits(gb, 7);
 | |
|                     m->l11_quantizers[0] = l11_quantizers_1[gcode];
 | |
|                     m->l11_quantizers[1] = l11_quantizers_2[gcode];
 | |
|                     m->l11ptr = 0;
 | |
|                 }
 | |
|                 TRANSFORM_COEFF(coeffs[i], m->l11_quantizers[m->l11ptr++], exps[i], factors);
 | |
|                 continue;
 | |
| 
 | |
|             case 5:
 | |
|                 TRANSFORM_COEFF(coeffs[i], l15_quantizers[get_bits(gb, 4)], exps[i], factors);
 | |
|                 continue;
 | |
| 
 | |
|             default:
 | |
|                 TRANSFORM_COEFF(coeffs[i], get_sbits(gb, qntztab[tbap]) << (16 - qntztab[tbap]), exps[i], factors);
 | |
|                 continue;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int get_transform_coeffs(AC3DecodeContext * ctx)
 | |
| {
 | |
|     int i, end;
 | |
|     int got_cplchan = 0;
 | |
|     mant_groups m;
 | |
| 
 | |
|     m.l3ptr = m.l5ptr = m.l11ptr = 3;
 | |
| 
 | |
|     for (i = 0; i < ctx->nfchans; i++) {
 | |
|         /* transform coefficients for individual channel */
 | |
|         if (get_transform_coeffs_ch(ctx, i, &m))
 | |
|             return -1;
 | |
|         /* tranform coefficients for coupling channels */
 | |
|         if ((ctx->chincpl >> i) & 1)  {
 | |
|             if (!got_cplchan) {
 | |
|                 if (get_transform_coeffs_cpling(ctx, &m)) {
 | |
|                     av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
 | |
|                     return -1;
 | |
|                 }
 | |
|                 got_cplchan = 1;
 | |
|             }
 | |
|             end = ctx->cplendmant;
 | |
|         } else
 | |
|             end = ctx->endmant[i];
 | |
|         do
 | |
|             ctx->transform_coeffs[i + 1][end] = 0;
 | |
|         while(++end < 256);
 | |
|     }
 | |
|     if (ctx->lfeon) {
 | |
|         if (get_transform_coeffs_ch(ctx, -1, &m))
 | |
|                 return -1;
 | |
|         for (i = 7; i < 256; i++) {
 | |
|             ctx->transform_coeffs[0][i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void do_rematrixing1(AC3DecodeContext *ctx, int start, int end)
 | |
| {
 | |
|     float tmp0, tmp1;
 | |
| 
 | |
|     while (start < end) {
 | |
|         tmp0 = ctx->transform_coeffs[1][start];
 | |
|         tmp1 = ctx->transform_coeffs[2][start];
 | |
|         ctx->transform_coeffs[1][start] = tmp0 + tmp1;
 | |
|         ctx->transform_coeffs[2][start] = tmp0 - tmp1;
 | |
|         start++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_rematrixing(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int bnd1 = 13, bnd2 = 25, bnd3 = 37, bnd4 = 61;
 | |
|     int end, bndend;
 | |
| 
 | |
|     end = FFMIN(ctx->endmant[0], ctx->endmant[1]);
 | |
| 
 | |
|     if (ctx->rematflg & 1)
 | |
|         do_rematrixing1(ctx, bnd1, bnd2);
 | |
| 
 | |
|     if (ctx->rematflg & 2)
 | |
|         do_rematrixing1(ctx, bnd2, bnd3);
 | |
| 
 | |
|     bndend = bnd4;
 | |
|     if (bndend > end) {
 | |
|         bndend = end;
 | |
|         if (ctx->rematflg & 4)
 | |
|             do_rematrixing1(ctx, bnd3, bndend);
 | |
|     } else {
 | |
|         if (ctx->rematflg & 4)
 | |
|             do_rematrixing1(ctx, bnd3, bnd4);
 | |
|         if (ctx->rematflg & 8)
 | |
|             do_rematrixing1(ctx, bnd4, end);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void get_downmix_coeffs(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int from = ctx->acmod;
 | |
|     int to = ctx->blkoutput;
 | |
|     float clev = clevs[ctx->cmixlev];
 | |
|     float slev = slevs[ctx->surmixlev];
 | |
|     float nf = 1.0; //normalization factor for downmix coeffs
 | |
| 
 | |
|     if (to == AC3_OUTPUT_UNMODIFIED)
 | |
|         return;
 | |
| 
 | |
|     switch (from) {
 | |
|         case AC3_INPUT_DUALMONO:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                 case AC3_OUTPUT_STEREO: /* We Assume that sum of both mono channels is requested */
 | |
|                     nf = 0.5;
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_MONO:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     nf = LEVEL_MINUS_3DB;
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_STEREO:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     nf = LEVEL_MINUS_3DB;
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_3F:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     nf = LEVEL_MINUS_3DB / (1.0 + clev);
 | |
|                     ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[1] *= ((nf * clev * LEVEL_MINUS_3DB) / 2.0);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     nf = 1.0 / (1.0 + clev);
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[2] *= nf;
 | |
|                     ctx->chcoeffs[1] *= (nf * clev);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_2F_1R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     nf = 2.0 * LEVEL_MINUS_3DB / (2.0 + slev);
 | |
|                     ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[2] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     nf = 1.0 / (1.0 + (slev * LEVEL_MINUS_3DB));
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     ctx->chcoeffs[2] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     nf = 1.0 / (1.0 + LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_3F_1R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     nf = LEVEL_MINUS_3DB / (1.0 + clev + (slev / 2.0));
 | |
|                     ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[1] *= (nf * clev * LEVEL_PLUS_3DB);
 | |
|                     ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     nf = 1.0 / (1.0 + clev + (slev * LEVEL_MINUS_3DB));
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[2] *= nf;
 | |
|                     ctx->chcoeffs[1] *= (nf * clev);
 | |
|                     ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     nf = 1.0 / (1.0 + (2.0 * LEVEL_MINUS_3DB));
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[3] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_2F_2R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     nf = LEVEL_MINUS_3DB / (1.0 + slev);
 | |
|                     ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[2] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     nf = 1.0 / (1.0 + slev);
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     ctx->chcoeffs[2] *= (nf * slev);
 | |
|                     ctx->chcoeffs[3] *= (nf * slev);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     nf = 1.0 / (1.0 + (2.0 * LEVEL_MINUS_3DB));
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[3] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_3F_2R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     nf = LEVEL_MINUS_3DB / (1.0 + clev + slev);
 | |
|                     ctx->chcoeffs[0] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[2] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[1] *= (nf * clev * LEVEL_PLUS_3DB);
 | |
|                     ctx->chcoeffs[3] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[4] *= (nf * slev * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     nf = 1.0 / (1.0 + clev + slev);
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[2] *= nf;
 | |
|                     ctx->chcoeffs[1] *= (nf * clev);
 | |
|                     ctx->chcoeffs[3] *= (nf * slev);
 | |
|                     ctx->chcoeffs[4] *= (nf * slev);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     nf = 1.0 / (1.0 + (3.0 * LEVEL_MINUS_3DB));
 | |
|                     ctx->chcoeffs[0] *= nf;
 | |
|                     ctx->chcoeffs[1] *= nf;
 | |
|                     ctx->chcoeffs[1] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[3] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     ctx->chcoeffs[4] *= (nf * LEVEL_MINUS_3DB);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void mix_dualmono_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] += output[2][i];
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
| }
 | |
| 
 | |
| static inline void mix_dualmono_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float tmp;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         tmp = output[1][i] + output[2][i];
 | |
|         output[1][i] = output[2][i] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void upmix_mono_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[2][i] = output[1][i];
 | |
| }
 | |
| 
 | |
| static inline void mix_stereo_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] += output[2][i];
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] += (output[2][i] + output[3][i]);
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += output[2][i];
 | |
|         output[2][i] += output[3][i];
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
| }
 | |
| 
 | |
| static inline void mix_2f_1r_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] += (output[2][i] + output[3][i]);
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline void mix_2f_1r_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += output[2][i];
 | |
|         output[2][i] += output[3][i];
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
| }
 | |
| 
 | |
| static inline void mix_2f_1r_to_dolby(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] -= output[3][i];
 | |
|         output[2][i] += output[3][i];
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_1r_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] = (output[2][i] + output[3][i] + output[4][i]);
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_1r_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += (output[2][i] + output[4][i]);
 | |
|         output[2][i] += (output[3][i] + output[4][i]);
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_1r_to_dolby(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += (output[2][i] - output[4][i]);
 | |
|         output[2][i] += (output[3][i] + output[4][i]);
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
| }
 | |
| 
 | |
| static inline void mix_2f_2r_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] = (output[2][i] + output[3][i] + output[4][i]);
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
| }
 | |
| 
 | |
| static inline void mix_2f_2r_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += output[3][i];
 | |
|         output[2][i] += output[4][i];
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
| }
 | |
| 
 | |
| static inline void mix_2f_2r_to_dolby(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] -= output[3][i];
 | |
|         output[2][i] += output[4][i];
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_2r_to_mono(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++)
 | |
|         output[1][i] += (output[2][i] + output[3][i] + output[4][i] + output[5][i]);
 | |
|     memset(output[2], 0, sizeof(output[2]));
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
|     memset(output[5], 0, sizeof(output[5]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_2r_to_stereo(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += (output[2][i] + output[4][i]);
 | |
|         output[2][i] += (output[3][i] + output[5][i]);
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
|     memset(output[5], 0, sizeof(output[5]));
 | |
| }
 | |
| 
 | |
| static inline void mix_3f_2r_to_dolby(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
|     float (*output)[BLOCK_SIZE] = ctx->output;
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         output[1][i] += (output[2][i] - output[4][i] - output[5][i]);
 | |
|         output[2][i] += (output[3][i] + output[4][i] + output[5][i]);
 | |
|     }
 | |
|     memset(output[3], 0, sizeof(output[3]));
 | |
|     memset(output[4], 0, sizeof(output[4]));
 | |
|     memset(output[5], 0, sizeof(output[5]));
 | |
| }
 | |
| 
 | |
| static void do_downmix(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int from = ctx->acmod;
 | |
|     int to = ctx->blkoutput;
 | |
| 
 | |
|     switch (from) {
 | |
|         case AC3_INPUT_DUALMONO:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_dualmono_to_mono(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO: /* We assume that sum of both mono channels is requested */
 | |
|                     mix_dualmono_to_stereo(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_MONO:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     upmix_mono_to_stereo(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_STEREO:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_stereo_to_mono(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_3F:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_3f_to_mono(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     mix_3f_to_stereo(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_2F_1R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_2f_1r_to_mono(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     mix_2f_1r_to_stereo(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     mix_2f_1r_to_dolby(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_3F_1R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_3f_1r_to_mono(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     mix_3f_1r_to_stereo(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     mix_3f_1r_to_dolby(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_2F_2R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_2f_2r_to_mono(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     mix_2f_2r_to_stereo(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     mix_2f_2r_to_dolby(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|         case AC3_INPUT_3F_2R:
 | |
|             switch (to) {
 | |
|                 case AC3_OUTPUT_MONO:
 | |
|                     mix_3f_2r_to_mono(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_STEREO:
 | |
|                     mix_3f_2r_to_stereo(ctx);
 | |
|                     break;
 | |
|                 case AC3_OUTPUT_DOLBY:
 | |
|                     mix_3f_2r_to_dolby(ctx);
 | |
|                     break;
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dump_floats(const char *name, int prec, const float *tab, int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     av_log(NULL, AV_LOG_INFO, "%s[%d]:\n", name, n);
 | |
|     for(i=0;i<n;i++) {
 | |
|         if ((i & 7) == 0)
 | |
|             av_log(NULL, AV_LOG_INFO, "%4d: ", i);
 | |
|         av_log(NULL, AV_LOG_INFO, " %8.*f", prec, tab[i]);
 | |
|         if ((i & 7) == 7)
 | |
|             av_log(NULL, AV_LOG_INFO, "\n");
 | |
|     }
 | |
|     if ((i & 7) != 0)
 | |
|         av_log(NULL, AV_LOG_INFO, "\n");
 | |
| }
 | |
| 
 | |
| #define CMUL(pre, pim, are, aim, bre, bim) \
 | |
| {\
 | |
|     float _are = (are);\
 | |
|     float _aim = (aim);\
 | |
|     float _bre = (bre);\
 | |
|     float _bim = (bim);\
 | |
|     (pre) = _are * _bre - _aim * _bim;\
 | |
|     (pim) = _are * _bim + _aim * _bre;\
 | |
| }
 | |
| 
 | |
| static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
 | |
| {
 | |
|     int k;
 | |
|     float x1[128], x2[128];
 | |
|     float *ptr;
 | |
| 
 | |
|     for (k = 0; k < N / 4; k++) {
 | |
|         x1[k] = ctx->transform_coeffs[chindex][2 * k];
 | |
|         x2[k] = ctx->transform_coeffs[chindex][2 * k + 1];
 | |
|     }
 | |
| 
 | |
|     ff_imdct_calc(&ctx->imdct_256, ctx->tmp_output, x1, ctx->tmp_imdct);
 | |
|     ff_imdct_calc(&ctx->imdct_256, ctx->tmp_output + 256, x2, ctx->tmp_imdct);
 | |
| 
 | |
|     ptr = ctx->output[chindex];
 | |
|     ctx->dsp.vector_fmul_add_add(ptr, ctx->tmp_output, window, ctx->delay[chindex], 384, BLOCK_SIZE, 1);
 | |
|     ptr = ctx->delay[chindex];
 | |
|     ctx->dsp.vector_fmul_reverse(ptr, ctx->tmp_output + 256, window, BLOCK_SIZE);
 | |
| }
 | |
| 
 | |
| static void do_imdct_512(AC3DecodeContext *ctx, int chindex)
 | |
| {
 | |
|     float *ptr;
 | |
| 
 | |
|     ff_imdct_calc(&ctx->imdct_512, ctx->tmp_output,
 | |
|             ctx->transform_coeffs[chindex], ctx->tmp_imdct);
 | |
|     ptr = ctx->output[chindex];
 | |
|     ctx->dsp.vector_fmul_add_add(ptr, ctx->tmp_output, window, ctx->delay[chindex], 384, BLOCK_SIZE, 1);
 | |
|     ptr = ctx->delay[chindex];
 | |
|     ctx->dsp.vector_fmul_reverse(ptr, ctx->tmp_output + 256, window, BLOCK_SIZE);
 | |
| }
 | |
| 
 | |
| static inline void do_imdct(AC3DecodeContext *ctx)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (ctx->blkoutput & AC3_OUTPUT_LFEON) {
 | |
|         do_imdct_512(ctx, 0);
 | |
|     }
 | |
|     for (i = 0; i < ctx->nfchans; i++) {
 | |
|         if ((ctx->blksw >> i) & 1)
 | |
|             do_imdct_256(ctx, i + 1);
 | |
|         else
 | |
|             do_imdct_512(ctx, i + 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int ac3_parse_audio_block(AC3DecodeContext * ctx)
 | |
| {
 | |
|     int nfchans = ctx->nfchans;
 | |
|     int acmod = ctx->acmod;
 | |
|     int i, bnd, rbnd, seg, grpsize;
 | |
|     GetBitContext *gb = &ctx->gb;
 | |
|     int bit_alloc_flags = 0;
 | |
|     float drange;
 | |
|     uint8_t *dexps;
 | |
|     int mstrcplco, cplcoexp, cplcomant;
 | |
|     int dynrng, chbwcod, ngrps, cplabsexp, skipl;
 | |
| 
 | |
|     for (i = 0; i < 5; i++)
 | |
|         ctx->chcoeffs[i] = 2.0;
 | |
| 
 | |
|     ctx->blksw = 0;
 | |
|     for (i = 0; i < nfchans; i++) /*block switch flag */
 | |
|         ctx->blksw |= get_bits1(gb) << i;
 | |
| 
 | |
|     ctx->dithflag = 0;
 | |
|     for (i = 0; i < nfchans; i++) /* dithering flag */
 | |
|         ctx->dithflag |= get_bits1(gb) << i;
 | |
| 
 | |
|     if (get_bits1(gb)) { /* dynamic range */
 | |
|         dynrng = get_sbits(gb, 8);
 | |
|         drange = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]);
 | |
|         for (i = 0; i < nfchans; i++)
 | |
|             ctx->chcoeffs[i] *= drange;
 | |
|     }
 | |
| 
 | |
|     if (acmod == 0x00 && get_bits1(gb)) { /* dynamic range 1+1 mode */
 | |
|         dynrng = get_sbits(gb, 8);
 | |
|         drange = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factors[3 - (dynrng >> 5)]);
 | |
|         ctx->chcoeffs[1] *= drange;
 | |
|     }
 | |
| 
 | |
|     get_downmix_coeffs(ctx);
 | |
| 
 | |
|     if (get_bits1(gb)) { /* coupling strategy */
 | |
|         ctx->cplinu = get_bits1(gb);
 | |
|         ctx->cplbndstrc = 0;
 | |
|         ctx->chincpl = 0;
 | |
|         if (ctx->cplinu) { /* coupling in use */
 | |
|             for (i = 0; i < nfchans; i++)
 | |
|                 ctx->chincpl |= get_bits1(gb) << i;
 | |
| 
 | |
|             if (acmod == 0x02)
 | |
|                 ctx->phsflginu = get_bits1(gb); //phase flag in use
 | |
| 
 | |
|             ctx->cplbegf = get_bits(gb, 4);
 | |
|             ctx->cplendf = get_bits(gb, 4);
 | |
| 
 | |
|             if (3 + ctx->cplendf - ctx->cplbegf < 0) {
 | |
|                 av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", ctx->cplendf, ctx->cplbegf);
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             ctx->ncplbnd = ctx->ncplsubnd = 3 + ctx->cplendf - ctx->cplbegf;
 | |
|             ctx->cplstrtmant = ctx->cplbegf * 12 + 37;
 | |
|             ctx->cplendmant = ctx->cplendf * 12 + 73;
 | |
|             for (i = 0; i < ctx->ncplsubnd - 1; i++) /* coupling band structure */
 | |
|                 if (get_bits1(gb)) {
 | |
|                     ctx->cplbndstrc |= 1 << i;
 | |
|                     ctx->ncplbnd--;
 | |
|                 }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ctx->cplinu) {
 | |
|         ctx->cplcoe = 0;
 | |
| 
 | |
|         for (i = 0; i < nfchans; i++)
 | |
|             if ((ctx->chincpl) >> i & 1)
 | |
|                 if (get_bits1(gb)) { /* coupling co-ordinates */
 | |
|                     ctx->cplcoe |= 1 << i;
 | |
|                     mstrcplco = 3 * get_bits(gb, 2);
 | |
|                     for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
 | |
|                         cplcoexp = get_bits(gb, 4);
 | |
|                         cplcomant = get_bits(gb, 4);
 | |
|                         if (cplcoexp == 15)
 | |
|                             cplcomant <<= 14;
 | |
|                         else
 | |
|                             cplcomant = (cplcomant | 0x10) << 13;
 | |
|                         ctx->cplco[i][bnd] = cplcomant * scale_factors[cplcoexp + mstrcplco];
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|         if (acmod == 0x02 && ctx->phsflginu && (ctx->cplcoe & 1 || ctx->cplcoe & 2))
 | |
|             for (bnd = 0; bnd < ctx->ncplbnd; bnd++)
 | |
|                 if (get_bits1(gb))
 | |
|                     ctx->cplco[1][bnd] = -ctx->cplco[1][bnd];
 | |
|     }
 | |
| 
 | |
|     if (acmod == 0x02) {/* rematrixing */
 | |
|         ctx->rematstr = get_bits1(gb);
 | |
|         if (ctx->rematstr) {
 | |
|             ctx->rematflg = 0;
 | |
| 
 | |
|             if (!(ctx->cplinu) || ctx->cplbegf > 2)
 | |
|                 for (rbnd = 0; rbnd < 4; rbnd++)
 | |
|                     ctx->rematflg |= get_bits1(gb) << rbnd;
 | |
|             if (ctx->cplbegf > 0 && ctx->cplbegf <= 2 && ctx->cplinu)
 | |
|                 for (rbnd = 0; rbnd < 3; rbnd++)
 | |
|                     ctx->rematflg |= get_bits1(gb) << rbnd;
 | |
|             if (ctx->cplbegf == 0 && ctx->cplinu)
 | |
|                 for (rbnd = 0; rbnd < 2; rbnd++)
 | |
|                     ctx->rematflg |= get_bits1(gb) << rbnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx->cplexpstr = AC3_EXPSTR_REUSE;
 | |
|     ctx->lfeexpstr = AC3_EXPSTR_REUSE;
 | |
|     if (ctx->cplinu) /* coupling exponent strategy */
 | |
|         ctx->cplexpstr = get_bits(gb, 2);
 | |
|     for (i = 0; i < nfchans; i++)  /* channel exponent strategy */
 | |
|         ctx->chexpstr[i] = get_bits(gb, 2);
 | |
|     if (ctx->lfeon)  /* lfe exponent strategy */
 | |
|         ctx->lfeexpstr = get_bits1(gb);
 | |
| 
 | |
|     for (i = 0; i < nfchans; i++) /* channel bandwidth code */
 | |
|         if (ctx->chexpstr[i] != AC3_EXPSTR_REUSE) {
 | |
|             if ((ctx->chincpl >> i) & 1)
 | |
|                 ctx->endmant[i] = ctx->cplstrtmant;
 | |
|             else {
 | |
|                 chbwcod = get_bits(gb, 6);
 | |
|                 if (chbwcod > 60) {
 | |
|                     av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 ctx->endmant[i] = chbwcod * 3 + 73;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     if (ctx->cplexpstr != AC3_EXPSTR_REUSE) {/* coupling exponents */
 | |
|         bit_alloc_flags = 64;
 | |
|         cplabsexp = get_bits(gb, 4) << 1;
 | |
|         ngrps = (ctx->cplendmant - ctx->cplstrtmant) / (3 << (ctx->cplexpstr - 1));
 | |
|         if (decode_exponents(gb, ctx->cplexpstr, ngrps, cplabsexp, ctx->dcplexps + ctx->cplstrtmant)) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "error decoding coupling exponents\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < nfchans; i++) /* fbw channel exponents */
 | |
|         if (ctx->chexpstr[i] != AC3_EXPSTR_REUSE) {
 | |
|             bit_alloc_flags |= 1 << i;
 | |
|             grpsize = 3 << (ctx->chexpstr[i] - 1);
 | |
|             ngrps = (ctx->endmant[i] + grpsize - 4) / grpsize;
 | |
|             dexps = ctx->dexps[i];
 | |
|             dexps[0] = get_bits(gb, 4);
 | |
|             if (decode_exponents(gb, ctx->chexpstr[i], ngrps, dexps[0], dexps + 1)) {
 | |
|                 av_log(NULL, AV_LOG_ERROR, "error decoding channel %d exponents\n", i);
 | |
|                 return -1;
 | |
|             }
 | |
|             skip_bits(gb, 2); /* skip gainrng */
 | |
|         }
 | |
| 
 | |
|     if (ctx->lfeexpstr != AC3_EXPSTR_REUSE) { /* lfe exponents */
 | |
|         bit_alloc_flags |= 32;
 | |
|         ctx->dlfeexps[0] = get_bits(gb, 4);
 | |
|         if (decode_exponents(gb, ctx->lfeexpstr, 2, ctx->dlfeexps[0], ctx->dlfeexps + 1)) {
 | |
|             av_log(NULL, AV_LOG_ERROR, "error decoding lfe exponents\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (get_bits1(gb)) { /* bit allocation information */
 | |
|         bit_alloc_flags = 127;
 | |
|         ctx->sdcycod = get_bits(gb, 2);
 | |
|         ctx->fdcycod = get_bits(gb, 2);
 | |
|         ctx->sgaincod = get_bits(gb, 2);
 | |
|         ctx->dbpbcod = get_bits(gb, 2);
 | |
|         ctx->floorcod = get_bits(gb, 3);
 | |
|     }
 | |
| 
 | |
|     if (get_bits1(gb)) { /* snroffset */
 | |
|         bit_alloc_flags = 127;
 | |
|         ctx->csnroffst = get_bits(gb, 6);
 | |
|         if (ctx->cplinu) { /* couling fine snr offset and fast gain code */
 | |
|             ctx->cplfsnroffst = get_bits(gb, 4);
 | |
|             ctx->cplfgaincod = get_bits(gb, 3);
 | |
|         }
 | |
|         for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */
 | |
|             ctx->fsnroffst[i] = get_bits(gb, 4);
 | |
|             ctx->fgaincod[i] = get_bits(gb, 3);
 | |
|         }
 | |
|         if (ctx->lfeon) { /* lfe fine snr offset and fast gain code */
 | |
|             ctx->lfefsnroffst = get_bits(gb, 4);
 | |
|             ctx->lfefgaincod = get_bits(gb, 3);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
 | |
|         bit_alloc_flags |= 64;
 | |
|         ctx->cplfleak = get_bits(gb, 3);
 | |
|         ctx->cplsleak = get_bits(gb, 3);
 | |
|     }
 | |
| 
 | |
|     if (get_bits1(gb)) { /* delta bit allocation information */
 | |
|         bit_alloc_flags = 127;
 | |
| 
 | |
|         if (ctx->cplinu) {
 | |
|             ctx->cpldeltbae = get_bits(gb, 2);
 | |
|             if (ctx->cpldeltbae == AC3_DBASTR_RESERVED) {
 | |
|                 av_log(NULL, AV_LOG_ERROR, "coupling delta bit allocation strategy reserved\n");
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < nfchans; i++) {
 | |
|             ctx->deltbae[i] = get_bits(gb, 2);
 | |
|             if (ctx->deltbae[i] == AC3_DBASTR_RESERVED) {
 | |
|                 av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (ctx->cplinu)
 | |
|             if (ctx->cpldeltbae == AC3_DBASTR_NEW) { /*coupling delta offset, len and bit allocation */
 | |
|                 ctx->cpldeltnseg = get_bits(gb, 3);
 | |
|                 for (seg = 0; seg <= ctx->cpldeltnseg; seg++) {
 | |
|                     ctx->cpldeltoffst[seg] = get_bits(gb, 5);
 | |
|                     ctx->cpldeltlen[seg] = get_bits(gb, 4);
 | |
|                     ctx->cpldeltba[seg] = get_bits(gb, 3);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         for (i = 0; i < nfchans; i++)
 | |
|             if (ctx->deltbae[i] == AC3_DBASTR_NEW) {/*channel delta offset, len and bit allocation */
 | |
|                 ctx->deltnseg[i] = get_bits(gb, 3);
 | |
|                 for (seg = 0; seg <= ctx->deltnseg[i]; seg++) {
 | |
|                     ctx->deltoffst[i][seg] = get_bits(gb, 5);
 | |
|                     ctx->deltlen[i][seg] = get_bits(gb, 4);
 | |
|                     ctx->deltba[i][seg] = get_bits(gb, 3);
 | |
|                 }
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     if (bit_alloc_flags) {
 | |
|         if (is_snr_offsets_zero(ctx)) {
 | |
|             memset(ctx->cplbap, 0, sizeof (ctx->cplbap));
 | |
|             memset(ctx->lfebap, 0, sizeof (ctx->lfebap));
 | |
|             for (i = 0; i < nfchans; i++)
 | |
|                 memset(ctx->bap[i], 0, sizeof(ctx->bap[i]));
 | |
|         } else {
 | |
|             if (ctx->chincpl && (bit_alloc_flags & 64))
 | |
|                 do_bit_allocation(ctx, 5);
 | |
|             for (i = 0; i < nfchans; i++)
 | |
|                 if ((bit_alloc_flags >> i) & 1)
 | |
|                     do_bit_allocation(ctx, i);
 | |
|             if (ctx->lfeon && (bit_alloc_flags & 32))
 | |
|                 do_bit_allocation(ctx, 6);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (get_bits1(gb)) { /* unused dummy data */
 | |
|         skipl = get_bits(gb, 9);
 | |
|         while(skipl--)
 | |
|             skip_bits(gb, 8);
 | |
|     }
 | |
|     /* unpack the transform coefficients
 | |
|      * * this also uncouples channels if coupling is in use.
 | |
|      */
 | |
|     if (get_transform_coeffs(ctx)) {
 | |
|         av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
 | |
|         return -1;
 | |
|     }
 | |
|     /*for (i = 0; i < nfchans; i++)
 | |
|         dump_floats("channel transform coefficients", 10, ctx->transform_coeffs[i + 1], BLOCK_SIZE);*/
 | |
| 
 | |
|     /* recover coefficients if rematrixing is in use */
 | |
|     if (ctx->rematflg)
 | |
|         do_rematrixing(ctx);
 | |
| 
 | |
|     do_downmix(ctx);
 | |
| 
 | |
|     do_imdct(ctx);
 | |
|     /*for(i = 0; i < nfchans; i++)
 | |
|         dump_floats("channel output", 10, ctx->output[i + 1], BLOCK_SIZE);*/
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*static inline int16_t convert(float f)
 | |
| {
 | |
|     if (f >= 1.0)
 | |
|         return 32767;
 | |
|     else if (f <= -1.0)
 | |
|         return -32768;
 | |
|     else
 | |
|         return (lrintf(f * 32767.0));
 | |
| }*/
 | |
| 
 | |
| static inline int16_t convert(int32_t i)
 | |
| {
 | |
|     if (i > 0x43c07fff)
 | |
|         return 32767;
 | |
|     else if (i <= 0x43bf8000)
 | |
|         return -32768;
 | |
|     else
 | |
|         return (i - 0x43c00000);
 | |
| }
 | |
| 
 | |
| static int frame_count = 0;
 | |
| 
 | |
| static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
 | |
| {
 | |
|     AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
 | |
|     int frame_start;
 | |
|     int16_t *out_samples = (int16_t *)data;
 | |
|     int i, j, k, start;
 | |
|     int32_t *int_ptr[6];
 | |
| 
 | |
|     for (i = 0; i < 6; i++)
 | |
|         int_ptr[i] = (int32_t *)(&ctx->output[i]);
 | |
| 
 | |
|     //av_log(NULL, AV_LOG_INFO, "decoding frame %d buf_size = %d\n", frame_count++, buf_size);
 | |
| 
 | |
|     //Synchronize the frame.
 | |
|     frame_start = ac3_synchronize(buf, buf_size);
 | |
|     if (frame_start == -1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "frame is not synchronized\n");
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     //Initialize the GetBitContext with the start of valid AC3 Frame.
 | |
|     init_get_bits(&(ctx->gb), buf + frame_start, (buf_size - frame_start) * 8);
 | |
| 
 | |
|     //Parse the syncinfo.
 | |
|     //If 'fscod' or 'bsid' is not valid the decoder shall mute as per the standard.
 | |
|     if (!ac3_parse_sync_info(ctx)) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "\n");
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     //Parse the BSI.
 | |
|     //If 'bsid' is not valid decoder shall not decode the audio as per the standard.
 | |
|     ac3_parse_bsi(ctx);
 | |
| 
 | |
|     avctx->sample_rate = ctx->sampling_rate;
 | |
|     avctx->bit_rate = ctx->bit_rate;
 | |
| 
 | |
|     if (avctx->channels == 0) {
 | |
|         ctx->blkoutput |= AC3_OUTPUT_UNMODIFIED;
 | |
|         if (ctx->lfeon)
 | |
|             ctx->blkoutput |= AC3_OUTPUT_LFEON;
 | |
|         avctx->channels = ctx->nfchans + ctx->lfeon;
 | |
|     }
 | |
|     else if (avctx->channels == 1)
 | |
|         ctx->blkoutput |= AC3_OUTPUT_MONO;
 | |
|     else if (avctx->channels == 2) {
 | |
|         if (ctx->dsurmod == 0x02)
 | |
|             ctx->blkoutput |= AC3_OUTPUT_DOLBY;
 | |
|         else
 | |
|             ctx->blkoutput |= AC3_OUTPUT_STEREO;
 | |
|     }
 | |
|     else {
 | |
|         if (avctx->channels < (ctx->nfchans + ctx->lfeon))
 | |
|             av_log(avctx, AV_LOG_INFO, "ac3_decoder: AC3 Source Channels Are Less Then Specified %d: Output to %d Channels\n",avctx->channels, ctx->nfchans + ctx->lfeon);
 | |
|         ctx->blkoutput |= AC3_OUTPUT_UNMODIFIED;
 | |
|         if (ctx->lfeon)
 | |
|             ctx->blkoutput |= AC3_OUTPUT_LFEON;
 | |
|         avctx->channels = ctx->nfchans + ctx->lfeon;
 | |
|     }
 | |
| 
 | |
|     //av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate);
 | |
| 
 | |
|     //Parse the Audio Blocks.
 | |
|     for (i = 0; i < AUDIO_BLOCKS; i++) {
 | |
|         if (ac3_parse_audio_block(ctx)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
 | |
|             *data_size = 0;
 | |
|             return ctx->frame_size;
 | |
|         }
 | |
|         start = (ctx->blkoutput & AC3_OUTPUT_LFEON) ? 0 : 1;
 | |
|         for (k = 0; k < BLOCK_SIZE; k++)
 | |
|             for (j = start; j <= avctx->channels; j++)
 | |
|                 *(out_samples++) = convert(int_ptr[j][k]);
 | |
|     }
 | |
|     *data_size = AUDIO_BLOCKS * BLOCK_SIZE * avctx->channels * sizeof (int16_t);
 | |
|     return ctx->frame_size;
 | |
| }
 | |
| 
 | |
| static int ac3_decode_end(AVCodecContext *ctx)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec lgpl_ac3_decoder = {
 | |
|     .name = "ac3",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_AC3,
 | |
|     .priv_data_size = sizeof (AC3DecodeContext),
 | |
|     .init = ac3_decode_init,
 | |
|     .close = ac3_decode_end,
 | |
|     .decode = ac3_decode_frame,
 | |
| };
 | |
| 
 |