mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			628 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			628 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2002 Dieter Shirley
 | |
|  *
 | |
|  * dct_unquantize_h263_altivec:
 | |
|  * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include "libavcodec/dsputil.h"
 | |
| #include "libavcodec/mpegvideo.h"
 | |
| 
 | |
| #include "gcc_fixes.h"
 | |
| 
 | |
| #include "dsputil_ppc.h"
 | |
| #include "util_altivec.h"
 | |
| // Swaps two variables (used for altivec registers)
 | |
| #define SWAP(a,b) \
 | |
| do { \
 | |
|     __typeof__(a) swap_temp=a; \
 | |
|     a=b; \
 | |
|     b=swap_temp; \
 | |
| } while (0)
 | |
| 
 | |
| // transposes a matrix consisting of four vectors with four elements each
 | |
| #define TRANSPOSE4(a,b,c,d) \
 | |
| do { \
 | |
|     __typeof__(a) _trans_ach = vec_mergeh(a, c); \
 | |
|     __typeof__(a) _trans_acl = vec_mergel(a, c); \
 | |
|     __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
 | |
|     __typeof__(a) _trans_bdl = vec_mergel(b, d); \
 | |
|                                                  \
 | |
|     a = vec_mergeh(_trans_ach, _trans_bdh);      \
 | |
|     b = vec_mergel(_trans_ach, _trans_bdh);      \
 | |
|     c = vec_mergeh(_trans_acl, _trans_bdl);      \
 | |
|     d = vec_mergel(_trans_acl, _trans_bdl);      \
 | |
| } while (0)
 | |
| 
 | |
| 
 | |
| // Loads a four-byte value (int or float) from the target address
 | |
| // into every element in the target vector.  Only works if the
 | |
| // target address is four-byte aligned (which should be always).
 | |
| #define LOAD4(vec, address) \
 | |
| { \
 | |
|     __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address);  \
 | |
|     vector unsigned char _perm_vec = vec_lvsl(0,(address));     \
 | |
|     vec = vec_ld(0, _load_addr);                                \
 | |
|     vec = vec_perm(vec, vec, _perm_vec);                        \
 | |
|     vec = vec_splat(vec, 0);                                    \
 | |
| }
 | |
| 
 | |
| 
 | |
| #define FOUROF(a) {a,a,a,a}
 | |
| 
 | |
| int dct_quantize_altivec(MpegEncContext* s,
 | |
|                          DCTELEM* data, int n,
 | |
|                          int qscale, int* overflow)
 | |
| {
 | |
|     int lastNonZero;
 | |
|     vector float row0, row1, row2, row3, row4, row5, row6, row7;
 | |
|     vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
 | |
|     const vector float zero = (const vector float)FOUROF(0.);
 | |
|     // used after quantize step
 | |
|     int oldBaseValue = 0;
 | |
| 
 | |
|     // Load the data into the row/alt vectors
 | |
|     {
 | |
|         vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
 | |
| 
 | |
|         data0 = vec_ld(0, data);
 | |
|         data1 = vec_ld(16, data);
 | |
|         data2 = vec_ld(32, data);
 | |
|         data3 = vec_ld(48, data);
 | |
|         data4 = vec_ld(64, data);
 | |
|         data5 = vec_ld(80, data);
 | |
|         data6 = vec_ld(96, data);
 | |
|         data7 = vec_ld(112, data);
 | |
| 
 | |
|         // Transpose the data before we start
 | |
|         TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
 | |
| 
 | |
|         // load the data into floating point vectors.  We load
 | |
|         // the high half of each row into the main row vectors
 | |
|         // and the low half into the alt vectors.
 | |
|         row0 = vec_ctf(vec_unpackh(data0), 0);
 | |
|         alt0 = vec_ctf(vec_unpackl(data0), 0);
 | |
|         row1 = vec_ctf(vec_unpackh(data1), 0);
 | |
|         alt1 = vec_ctf(vec_unpackl(data1), 0);
 | |
|         row2 = vec_ctf(vec_unpackh(data2), 0);
 | |
|         alt2 = vec_ctf(vec_unpackl(data2), 0);
 | |
|         row3 = vec_ctf(vec_unpackh(data3), 0);
 | |
|         alt3 = vec_ctf(vec_unpackl(data3), 0);
 | |
|         row4 = vec_ctf(vec_unpackh(data4), 0);
 | |
|         alt4 = vec_ctf(vec_unpackl(data4), 0);
 | |
|         row5 = vec_ctf(vec_unpackh(data5), 0);
 | |
|         alt5 = vec_ctf(vec_unpackl(data5), 0);
 | |
|         row6 = vec_ctf(vec_unpackh(data6), 0);
 | |
|         alt6 = vec_ctf(vec_unpackl(data6), 0);
 | |
|         row7 = vec_ctf(vec_unpackh(data7), 0);
 | |
|         alt7 = vec_ctf(vec_unpackl(data7), 0);
 | |
|     }
 | |
| 
 | |
|     // The following block could exist as a separate an altivec dct
 | |
|                 // function.  However, if we put it inline, the DCT data can remain
 | |
|                 // in the vector local variables, as floats, which we'll use during the
 | |
|                 // quantize step...
 | |
|     {
 | |
|         const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
 | |
|         const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
 | |
|         const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
 | |
|         const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
 | |
|         const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
 | |
|         const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
 | |
|         const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
 | |
|         const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
 | |
|         const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
 | |
|         const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
 | |
|         const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
 | |
|         const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
 | |
| 
 | |
| 
 | |
|         int whichPass, whichHalf;
 | |
| 
 | |
|         for(whichPass = 1; whichPass<=2; whichPass++) {
 | |
|             for(whichHalf = 1; whichHalf<=2; whichHalf++) {
 | |
|                 vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 | |
|                 vector float tmp10, tmp11, tmp12, tmp13;
 | |
|                 vector float z1, z2, z3, z4, z5;
 | |
| 
 | |
|                 tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
 | |
|                 tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
 | |
|                 tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
 | |
|                 tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
 | |
|                 tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
 | |
|                 tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
 | |
|                 tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
 | |
|                 tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
 | |
| 
 | |
|                 tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
 | |
|                 tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
 | |
|                 tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
 | |
|                 tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
 | |
| 
 | |
| 
 | |
|                 // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
 | |
|                 row0 = vec_add(tmp10, tmp11);
 | |
| 
 | |
|                 // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
 | |
|                 row4 = vec_sub(tmp10, tmp11);
 | |
| 
 | |
| 
 | |
|                 // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
 | |
|                 z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
 | |
| 
 | |
|                 // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
 | |
|                 //                                CONST_BITS-PASS1_BITS);
 | |
|                 row2 = vec_madd(tmp13, vec_0_765366865, z1);
 | |
| 
 | |
|                 // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
 | |
|                 //                                CONST_BITS-PASS1_BITS);
 | |
|                 row6 = vec_madd(tmp12, vec_1_847759065, z1);
 | |
| 
 | |
|                 z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
 | |
|                 z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
 | |
|                 z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
 | |
|                 z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
 | |
| 
 | |
|                 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 | |
|                 z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
 | |
| 
 | |
|                 // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
 | |
|                 z3 = vec_madd(z3, vec_1_961570560, z5);
 | |
| 
 | |
|                 // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 | |
|                 z4 = vec_madd(z4, vec_0_390180644, z5);
 | |
| 
 | |
|                 // The following adds are rolled into the multiplies above
 | |
|                 // z3 = vec_add(z3, z5);  // z3 += z5;
 | |
|                 // z4 = vec_add(z4, z5);  // z4 += z5;
 | |
| 
 | |
|                 // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
 | |
|                 // Wow!  It's actually more efficient to roll this multiply
 | |
|                 // into the adds below, even thought the multiply gets done twice!
 | |
|                 // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
 | |
| 
 | |
|                 // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
 | |
|                 // Same with this one...
 | |
|                 // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
 | |
| 
 | |
|                 // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
 | |
|                 // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
 | |
|                 row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
 | |
| 
 | |
|                 // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
 | |
|                 // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
 | |
|                 row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
 | |
| 
 | |
|                 // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
 | |
|                 // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
 | |
|                 row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
 | |
| 
 | |
|                 // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
 | |
|                 // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
 | |
|                 row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
 | |
| 
 | |
|                 // Swap the row values with the alts.  If this is the first half,
 | |
|                 // this sets up the low values to be acted on in the second half.
 | |
|                 // If this is the second half, it puts the high values back in
 | |
|                 // the row values where they are expected to be when we're done.
 | |
|                 SWAP(row0, alt0);
 | |
|                 SWAP(row1, alt1);
 | |
|                 SWAP(row2, alt2);
 | |
|                 SWAP(row3, alt3);
 | |
|                 SWAP(row4, alt4);
 | |
|                 SWAP(row5, alt5);
 | |
|                 SWAP(row6, alt6);
 | |
|                 SWAP(row7, alt7);
 | |
|             }
 | |
| 
 | |
|             if (whichPass == 1) {
 | |
|                 // transpose the data for the second pass
 | |
| 
 | |
|                 // First, block transpose the upper right with lower left.
 | |
|                 SWAP(row4, alt0);
 | |
|                 SWAP(row5, alt1);
 | |
|                 SWAP(row6, alt2);
 | |
|                 SWAP(row7, alt3);
 | |
| 
 | |
|                 // Now, transpose each block of four
 | |
|                 TRANSPOSE4(row0, row1, row2, row3);
 | |
|                 TRANSPOSE4(row4, row5, row6, row7);
 | |
|                 TRANSPOSE4(alt0, alt1, alt2, alt3);
 | |
|                 TRANSPOSE4(alt4, alt5, alt6, alt7);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // perform the quantize step, using the floating point data
 | |
|     // still in the row/alt registers
 | |
|     {
 | |
|         const int* biasAddr;
 | |
|         const vector signed int* qmat;
 | |
|         vector float bias, negBias;
 | |
| 
 | |
|         if (s->mb_intra) {
 | |
|             vector signed int baseVector;
 | |
| 
 | |
|             // We must cache element 0 in the intra case
 | |
|             // (it needs special handling).
 | |
|             baseVector = vec_cts(vec_splat(row0, 0), 0);
 | |
|             vec_ste(baseVector, 0, &oldBaseValue);
 | |
| 
 | |
|             qmat = (vector signed int*)s->q_intra_matrix[qscale];
 | |
|             biasAddr = &(s->intra_quant_bias);
 | |
|         } else {
 | |
|             qmat = (vector signed int*)s->q_inter_matrix[qscale];
 | |
|             biasAddr = &(s->inter_quant_bias);
 | |
|         }
 | |
| 
 | |
|         // Load the bias vector (We add 0.5 to the bias so that we're
 | |
|                                 // rounding when we convert to int, instead of flooring.)
 | |
|         {
 | |
|             vector signed int biasInt;
 | |
|             const vector float negOneFloat = (vector float)FOUROF(-1.0f);
 | |
|             LOAD4(biasInt, biasAddr);
 | |
|             bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
 | |
|             negBias = vec_madd(bias, negOneFloat, zero);
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             vector float q0, q1, q2, q3, q4, q5, q6, q7;
 | |
| 
 | |
|             q0 = vec_ctf(qmat[0], QMAT_SHIFT);
 | |
|             q1 = vec_ctf(qmat[2], QMAT_SHIFT);
 | |
|             q2 = vec_ctf(qmat[4], QMAT_SHIFT);
 | |
|             q3 = vec_ctf(qmat[6], QMAT_SHIFT);
 | |
|             q4 = vec_ctf(qmat[8], QMAT_SHIFT);
 | |
|             q5 = vec_ctf(qmat[10], QMAT_SHIFT);
 | |
|             q6 = vec_ctf(qmat[12], QMAT_SHIFT);
 | |
|             q7 = vec_ctf(qmat[14], QMAT_SHIFT);
 | |
| 
 | |
|             row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
 | |
|                     vec_cmpgt(row0, zero));
 | |
|             row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
 | |
|                     vec_cmpgt(row1, zero));
 | |
|             row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
 | |
|                     vec_cmpgt(row2, zero));
 | |
|             row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
 | |
|                     vec_cmpgt(row3, zero));
 | |
|             row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
 | |
|                     vec_cmpgt(row4, zero));
 | |
|             row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
 | |
|                     vec_cmpgt(row5, zero));
 | |
|             row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
 | |
|                     vec_cmpgt(row6, zero));
 | |
|             row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
 | |
|                     vec_cmpgt(row7, zero));
 | |
| 
 | |
|             q0 = vec_ctf(qmat[1], QMAT_SHIFT);
 | |
|             q1 = vec_ctf(qmat[3], QMAT_SHIFT);
 | |
|             q2 = vec_ctf(qmat[5], QMAT_SHIFT);
 | |
|             q3 = vec_ctf(qmat[7], QMAT_SHIFT);
 | |
|             q4 = vec_ctf(qmat[9], QMAT_SHIFT);
 | |
|             q5 = vec_ctf(qmat[11], QMAT_SHIFT);
 | |
|             q6 = vec_ctf(qmat[13], QMAT_SHIFT);
 | |
|             q7 = vec_ctf(qmat[15], QMAT_SHIFT);
 | |
| 
 | |
|             alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
 | |
|                     vec_cmpgt(alt0, zero));
 | |
|             alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
 | |
|                     vec_cmpgt(alt1, zero));
 | |
|             alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
 | |
|                     vec_cmpgt(alt2, zero));
 | |
|             alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
 | |
|                     vec_cmpgt(alt3, zero));
 | |
|             alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
 | |
|                     vec_cmpgt(alt4, zero));
 | |
|             alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
 | |
|                     vec_cmpgt(alt5, zero));
 | |
|             alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
 | |
|                     vec_cmpgt(alt6, zero));
 | |
|             alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
 | |
|                     vec_cmpgt(alt7, zero));
 | |
|         }
 | |
| 
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // Store the data back into the original block
 | |
|     {
 | |
|         vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
 | |
| 
 | |
|         data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
 | |
|         data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
 | |
|         data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
 | |
|         data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
 | |
|         data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
 | |
|         data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
 | |
|         data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
 | |
|         data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
 | |
| 
 | |
|         {
 | |
|             // Clamp for overflow
 | |
|             vector signed int max_q_int, min_q_int;
 | |
|             vector signed short max_q, min_q;
 | |
| 
 | |
|             LOAD4(max_q_int, &(s->max_qcoeff));
 | |
|             LOAD4(min_q_int, &(s->min_qcoeff));
 | |
| 
 | |
|             max_q = vec_pack(max_q_int, max_q_int);
 | |
|             min_q = vec_pack(min_q_int, min_q_int);
 | |
| 
 | |
|             data0 = vec_max(vec_min(data0, max_q), min_q);
 | |
|             data1 = vec_max(vec_min(data1, max_q), min_q);
 | |
|             data2 = vec_max(vec_min(data2, max_q), min_q);
 | |
|             data4 = vec_max(vec_min(data4, max_q), min_q);
 | |
|             data5 = vec_max(vec_min(data5, max_q), min_q);
 | |
|             data6 = vec_max(vec_min(data6, max_q), min_q);
 | |
|             data7 = vec_max(vec_min(data7, max_q), min_q);
 | |
|         }
 | |
| 
 | |
|         {
 | |
|         vector bool char zero_01, zero_23, zero_45, zero_67;
 | |
|         vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
 | |
|         vector signed char negOne = vec_splat_s8(-1);
 | |
|         vector signed char* scanPtr =
 | |
|                 (vector signed char*)(s->intra_scantable.inverse);
 | |
|         signed char lastNonZeroChar;
 | |
| 
 | |
|         // Determine the largest non-zero index.
 | |
|         zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
 | |
|                 vec_cmpeq(data1, (vector signed short)zero));
 | |
|         zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
 | |
|                 vec_cmpeq(data3, (vector signed short)zero));
 | |
|         zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
 | |
|                 vec_cmpeq(data5, (vector signed short)zero));
 | |
|         zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
 | |
|                 vec_cmpeq(data7, (vector signed short)zero));
 | |
| 
 | |
|         // 64 biggest values
 | |
|         scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
 | |
|         scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
 | |
|         scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
 | |
|         scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
 | |
| 
 | |
|         // 32 largest values
 | |
|         scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
 | |
|         scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
 | |
| 
 | |
|         // 16 largest values
 | |
|         scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
 | |
| 
 | |
|         // 8 largest values
 | |
|         scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | |
|                 vec_mergel(scanIndexes_01, negOne));
 | |
| 
 | |
|         // 4 largest values
 | |
|         scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | |
|                 vec_mergel(scanIndexes_01, negOne));
 | |
| 
 | |
|         // 2 largest values
 | |
|         scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | |
|                 vec_mergel(scanIndexes_01, negOne));
 | |
| 
 | |
|         // largest value
 | |
|         scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | |
|                 vec_mergel(scanIndexes_01, negOne));
 | |
| 
 | |
|         scanIndexes_01 = vec_splat(scanIndexes_01, 0);
 | |
| 
 | |
| 
 | |
|         vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
 | |
| 
 | |
|         lastNonZero = lastNonZeroChar;
 | |
| 
 | |
|         // While the data is still in vectors we check for the transpose IDCT permute
 | |
|         // and handle it using the vector unit if we can.  This is the permute used
 | |
|         // by the altivec idct, so it is common when using the altivec dct.
 | |
| 
 | |
|         if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
 | |
|             TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
 | |
|         }
 | |
| 
 | |
|         vec_st(data0, 0, data);
 | |
|         vec_st(data1, 16, data);
 | |
|         vec_st(data2, 32, data);
 | |
|         vec_st(data3, 48, data);
 | |
|         vec_st(data4, 64, data);
 | |
|         vec_st(data5, 80, data);
 | |
|         vec_st(data6, 96, data);
 | |
|         vec_st(data7, 112, data);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // special handling of block[0]
 | |
|     if (s->mb_intra) {
 | |
|         if (!s->h263_aic) {
 | |
|             if (n < 4)
 | |
|                 oldBaseValue /= s->y_dc_scale;
 | |
|             else
 | |
|                 oldBaseValue /= s->c_dc_scale;
 | |
|         }
 | |
| 
 | |
|         // Divide by 8, rounding the result
 | |
|         data[0] = (oldBaseValue + 4) >> 3;
 | |
|     }
 | |
| 
 | |
|     // We handled the transpose permutation above and we don't
 | |
|     // need to permute the "no" permutation case.
 | |
|     if ((lastNonZero > 0) &&
 | |
|         (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
 | |
|         (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
 | |
|         ff_block_permute(data, s->dsp.idct_permutation,
 | |
|                 s->intra_scantable.scantable, lastNonZero);
 | |
|     }
 | |
| 
 | |
|     return lastNonZero;
 | |
| }
 | |
| 
 | |
| /* AltiVec version of dct_unquantize_h263
 | |
|    this code assumes `block' is 16 bytes-aligned */
 | |
| void dct_unquantize_h263_altivec(MpegEncContext *s,
 | |
|                                  DCTELEM *block, int n, int qscale)
 | |
| {
 | |
| POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
 | |
|     int i, level, qmul, qadd;
 | |
|     int nCoeffs;
 | |
| 
 | |
|     assert(s->block_last_index[n]>=0);
 | |
| 
 | |
| POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
 | |
| 
 | |
|     qadd = (qscale - 1) | 1;
 | |
|     qmul = qscale << 1;
 | |
| 
 | |
|     if (s->mb_intra) {
 | |
|         if (!s->h263_aic) {
 | |
|             if (n < 4)
 | |
|                 block[0] = block[0] * s->y_dc_scale;
 | |
|             else
 | |
|                 block[0] = block[0] * s->c_dc_scale;
 | |
|         }else
 | |
|             qadd = 0;
 | |
|         i = 1;
 | |
|         nCoeffs= 63; //does not always use zigzag table
 | |
|     } else {
 | |
|         i = 0;
 | |
|         nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
 | |
|         DECLARE_ALIGNED_16(short, qmul8[]) =
 | |
|             {
 | |
|               qmul, qmul, qmul, qmul,
 | |
|               qmul, qmul, qmul, qmul
 | |
|             };
 | |
|         DECLARE_ALIGNED_16(short, qadd8[]) =
 | |
|             {
 | |
|               qadd, qadd, qadd, qadd,
 | |
|               qadd, qadd, qadd, qadd
 | |
|             };
 | |
|         DECLARE_ALIGNED_16(short, nqadd8[]) =
 | |
|             {
 | |
|               -qadd, -qadd, -qadd, -qadd,
 | |
|               -qadd, -qadd, -qadd, -qadd
 | |
|             };
 | |
|         register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
 | |
|         register vector bool short blockv_null, blockv_neg;
 | |
|         register short backup_0 = block[0];
 | |
|         register int j = 0;
 | |
| 
 | |
|         qmulv = vec_ld(0, qmul8);
 | |
|         qaddv = vec_ld(0, qadd8);
 | |
|         nqaddv = vec_ld(0, nqadd8);
 | |
| 
 | |
| #if 0   // block *is* 16 bytes-aligned, it seems.
 | |
|         // first make sure block[j] is 16 bytes-aligned
 | |
|         for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
 | |
|             level = block[j];
 | |
|             if (level) {
 | |
|                 if (level < 0) {
 | |
|                     level = level * qmul - qadd;
 | |
|                 } else {
 | |
|                     level = level * qmul + qadd;
 | |
|                 }
 | |
|                 block[j] = level;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         // vectorize all the 16 bytes-aligned blocks
 | |
|         // of 8 elements
 | |
|         for(; (j + 7) <= nCoeffs ; j+=8) {
 | |
|             blockv = vec_ld(j << 1, block);
 | |
|             blockv_neg = vec_cmplt(blockv, vczero);
 | |
|             blockv_null = vec_cmpeq(blockv, vczero);
 | |
|             // choose between +qadd or -qadd as the third operand
 | |
|             temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
 | |
|             // multiply & add (block{i,i+7} * qmul [+-] qadd)
 | |
|             temp1 = vec_mladd(blockv, qmulv, temp1);
 | |
|             // put 0 where block[{i,i+7} used to have 0
 | |
|             blockv = vec_sel(temp1, blockv, blockv_null);
 | |
|             vec_st(blockv, j << 1, block);
 | |
|         }
 | |
| 
 | |
|         // if nCoeffs isn't a multiple of 8, finish the job
 | |
|         // using good old scalar units.
 | |
|         // (we could do it using a truncated vector,
 | |
|         // but I'm not sure it's worth the hassle)
 | |
|         for(; j <= nCoeffs ; j++) {
 | |
|             level = block[j];
 | |
|             if (level) {
 | |
|                 if (level < 0) {
 | |
|                     level = level * qmul - qadd;
 | |
|                 } else {
 | |
|                     level = level * qmul + qadd;
 | |
|                 }
 | |
|                 block[j] = level;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (i == 1) {
 | |
|             // cheat. this avoid special-casing the first iteration
 | |
|             block[0] = backup_0;
 | |
|         }
 | |
|     }
 | |
| POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
 | |
| }
 | |
| 
 | |
| 
 | |
| void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
 | |
| void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
 | |
| 
 | |
| void MPV_common_init_altivec(MpegEncContext *s)
 | |
| {
 | |
|     if ((mm_flags & FF_MM_ALTIVEC) == 0) return;
 | |
| 
 | |
|     if (s->avctx->lowres==0) {
 | |
|         if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
 | |
|             (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
 | |
|             s->dsp.idct_put = idct_put_altivec;
 | |
|             s->dsp.idct_add = idct_add_altivec;
 | |
|             s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Test to make sure that the dct required alignments are met.
 | |
|     if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
 | |
|         (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
 | |
|         av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
 | |
|                 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
 | |
|         av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
 | |
|                 "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
 | |
|             (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
 | |
| #if 0 /* seems to cause trouble under some circumstances */
 | |
|         s->dct_quantize = dct_quantize_altivec;
 | |
| #endif
 | |
|         s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
 | |
|         s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
 | |
|     }
 | |
| }
 | 
