mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	 785066ae8a
			
		
	
	785066ae8a
	
	
	
		
			
			* commit 'c9ca220ef26e36abd22085e6fa156c0dbc43bbf0': ac3dec: make drc_scale exponentially Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			1511 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1511 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AC-3 Audio Decoder
 | |
|  * This code was developed as part of Google Summer of Code 2006.
 | |
|  * E-AC-3 support was added as part of Google Summer of Code 2007.
 | |
|  *
 | |
|  * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
 | |
|  * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 | |
|  * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stddef.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/crc.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "internal.h"
 | |
| #include "aac_ac3_parser.h"
 | |
| #include "ac3_parser.h"
 | |
| #include "ac3dec.h"
 | |
| #include "ac3dec_data.h"
 | |
| #include "kbdwin.h"
 | |
| 
 | |
| /**
 | |
|  * table for ungrouping 3 values in 7 bits.
 | |
|  * used for exponents and bap=2 mantissas
 | |
|  */
 | |
| static uint8_t ungroup_3_in_7_bits_tab[128][3];
 | |
| 
 | |
| /** tables for ungrouping mantissas */
 | |
| static int b1_mantissas[32][3];
 | |
| static int b2_mantissas[128][3];
 | |
| static int b3_mantissas[8];
 | |
| static int b4_mantissas[128][2];
 | |
| static int b5_mantissas[16];
 | |
| 
 | |
| /**
 | |
|  * Quantization table: levels for symmetric. bits for asymmetric.
 | |
|  * reference: Table 7.18 Mapping of bap to Quantizer
 | |
|  */
 | |
| static const uint8_t quantization_tab[16] = {
 | |
|     0, 3, 5, 7, 11, 15,
 | |
|     5, 6, 7, 8, 9, 10, 11, 12, 14, 16
 | |
| };
 | |
| 
 | |
| /** dynamic range table. converts codes to scale factors. */
 | |
| static float dynamic_range_tab[256];
 | |
| 
 | |
| /** Adjustments in dB gain */
 | |
| static const float gain_levels[9] = {
 | |
|     LEVEL_PLUS_3DB,
 | |
|     LEVEL_PLUS_1POINT5DB,
 | |
|     LEVEL_ONE,
 | |
|     LEVEL_MINUS_1POINT5DB,
 | |
|     LEVEL_MINUS_3DB,
 | |
|     LEVEL_MINUS_4POINT5DB,
 | |
|     LEVEL_MINUS_6DB,
 | |
|     LEVEL_ZERO,
 | |
|     LEVEL_MINUS_9DB
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Table for default stereo downmixing coefficients
 | |
|  * reference: Section 7.8.2 Downmixing Into Two Channels
 | |
|  */
 | |
| static const uint8_t ac3_default_coeffs[8][5][2] = {
 | |
|     { { 2, 7 }, { 7, 2 },                               },
 | |
|     { { 4, 4 },                                         },
 | |
|     { { 2, 7 }, { 7, 2 },                               },
 | |
|     { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
 | |
|     { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
 | |
|     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
 | |
|     { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
 | |
|     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Symmetrical Dequantization
 | |
|  * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 | |
|  *            Tables 7.19 to 7.23
 | |
|  */
 | |
| static inline int
 | |
| symmetric_dequant(int code, int levels)
 | |
| {
 | |
|     return ((code - (levels >> 1)) << 24) / levels;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize tables at runtime.
 | |
|  */
 | |
| static av_cold void ac3_tables_init(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* generate table for ungrouping 3 values in 7 bits
 | |
|        reference: Section 7.1.3 Exponent Decoding */
 | |
|     for (i = 0; i < 128; i++) {
 | |
|         ungroup_3_in_7_bits_tab[i][0] =  i / 25;
 | |
|         ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
 | |
|         ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
 | |
|     }
 | |
| 
 | |
|     /* generate grouped mantissa tables
 | |
|        reference: Section 7.3.5 Ungrouping of Mantissas */
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         /* bap=1 mantissas */
 | |
|         b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
 | |
|         b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
 | |
|         b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
 | |
|     }
 | |
|     for (i = 0; i < 128; i++) {
 | |
|         /* bap=2 mantissas */
 | |
|         b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
 | |
|         b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
 | |
|         b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
 | |
| 
 | |
|         /* bap=4 mantissas */
 | |
|         b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
 | |
|         b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
 | |
|     }
 | |
|     /* generate ungrouped mantissa tables
 | |
|        reference: Tables 7.21 and 7.23 */
 | |
|     for (i = 0; i < 7; i++) {
 | |
|         /* bap=3 mantissas */
 | |
|         b3_mantissas[i] = symmetric_dequant(i, 7);
 | |
|     }
 | |
|     for (i = 0; i < 15; i++) {
 | |
|         /* bap=5 mantissas */
 | |
|         b5_mantissas[i] = symmetric_dequant(i, 15);
 | |
|     }
 | |
| 
 | |
|     /* generate dynamic range table
 | |
|        reference: Section 7.7.1 Dynamic Range Control */
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         int v = (i >> 5) - ((i >> 7) << 3) - 5;
 | |
|         dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * AVCodec initialization
 | |
|  */
 | |
| static av_cold int ac3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     ff_ac3_common_init();
 | |
|     ac3_tables_init();
 | |
|     ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
 | |
|     ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
 | |
|     ff_kbd_window_init(s->window, 5.0, 256);
 | |
|     ff_dsputil_init(&s->dsp, avctx);
 | |
|     avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
|     ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
|     ff_fmt_convert_init(&s->fmt_conv, avctx);
 | |
|     av_lfg_init(&s->dith_state, 0);
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
| 
 | |
|     /* allow downmixing to stereo or mono */
 | |
| #if FF_API_REQUEST_CHANNELS
 | |
| FF_DISABLE_DEPRECATION_WARNINGS
 | |
|     if (avctx->request_channels == 1)
 | |
|         avctx->request_channel_layout = AV_CH_LAYOUT_MONO;
 | |
|     else if (avctx->request_channels == 2)
 | |
|         avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
 | |
| FF_ENABLE_DEPRECATION_WARNINGS
 | |
| #endif
 | |
|     if (avctx->channels > 1 &&
 | |
|         avctx->request_channel_layout == AV_CH_LAYOUT_MONO)
 | |
|         avctx->channels = 1;
 | |
|     else if (avctx->channels > 2 &&
 | |
|              avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
 | |
|         avctx->channels = 2;
 | |
|     s->downmixed = 1;
 | |
| 
 | |
|     for (i = 0; i < AC3_MAX_CHANNELS; i++) {
 | |
|         s->xcfptr[i] = s->transform_coeffs[i];
 | |
|         s->dlyptr[i] = s->delay[i];
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
 | |
|  * GetBitContext within AC3DecodeContext must point to
 | |
|  * the start of the synchronized AC-3 bitstream.
 | |
|  */
 | |
| static int ac3_parse_header(AC3DecodeContext *s)
 | |
| {
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int i;
 | |
| 
 | |
|     /* read the rest of the bsi. read twice for dual mono mode. */
 | |
|     i = !s->channel_mode;
 | |
|     do {
 | |
|         skip_bits(gbc, 5); // skip dialog normalization
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 8); //skip compression
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 8); //skip language code
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 7); //skip audio production information
 | |
|     } while (i--);
 | |
| 
 | |
|     skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
 | |
| 
 | |
|     /* skip the timecodes (or extra bitstream information for Alternate Syntax)
 | |
|        TODO: read & use the xbsi1 downmix levels */
 | |
|     if (get_bits1(gbc))
 | |
|         skip_bits(gbc, 14); //skip timecode1 / xbsi1
 | |
|     if (get_bits1(gbc))
 | |
|         skip_bits(gbc, 14); //skip timecode2 / xbsi2
 | |
| 
 | |
|     /* skip additional bitstream info */
 | |
|     if (get_bits1(gbc)) {
 | |
|         i = get_bits(gbc, 6);
 | |
|         do {
 | |
|             skip_bits(gbc, 8);
 | |
|         } while (i--);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Common function to parse AC-3 or E-AC-3 frame header
 | |
|  */
 | |
| static int parse_frame_header(AC3DecodeContext *s)
 | |
| {
 | |
|     AC3HeaderInfo hdr;
 | |
|     int err;
 | |
| 
 | |
|     err = avpriv_ac3_parse_header(&s->gbc, &hdr);
 | |
|     if (err)
 | |
|         return err;
 | |
| 
 | |
|     /* get decoding parameters from header info */
 | |
|     s->bit_alloc_params.sr_code     = hdr.sr_code;
 | |
|     s->bitstream_mode               = hdr.bitstream_mode;
 | |
|     s->channel_mode                 = hdr.channel_mode;
 | |
|     s->lfe_on                       = hdr.lfe_on;
 | |
|     s->bit_alloc_params.sr_shift    = hdr.sr_shift;
 | |
|     s->sample_rate                  = hdr.sample_rate;
 | |
|     s->bit_rate                     = hdr.bit_rate;
 | |
|     s->channels                     = hdr.channels;
 | |
|     s->fbw_channels                 = s->channels - s->lfe_on;
 | |
|     s->lfe_ch                       = s->fbw_channels + 1;
 | |
|     s->frame_size                   = hdr.frame_size;
 | |
|     s->center_mix_level             = hdr.center_mix_level;
 | |
|     s->surround_mix_level           = hdr.surround_mix_level;
 | |
|     s->num_blocks                   = hdr.num_blocks;
 | |
|     s->frame_type                   = hdr.frame_type;
 | |
|     s->substreamid                  = hdr.substreamid;
 | |
| 
 | |
|     if (s->lfe_on) {
 | |
|         s->start_freq[s->lfe_ch]     = 0;
 | |
|         s->end_freq[s->lfe_ch]       = 7;
 | |
|         s->num_exp_groups[s->lfe_ch] = 2;
 | |
|         s->channel_in_cpl[s->lfe_ch] = 0;
 | |
|     }
 | |
| 
 | |
|     if (hdr.bitstream_id <= 10) {
 | |
|         s->eac3                  = 0;
 | |
|         s->snr_offset_strategy   = 2;
 | |
|         s->block_switch_syntax   = 1;
 | |
|         s->dither_flag_syntax    = 1;
 | |
|         s->bit_allocation_syntax = 1;
 | |
|         s->fast_gain_syntax      = 0;
 | |
|         s->first_cpl_leak        = 0;
 | |
|         s->dba_syntax            = 1;
 | |
|         s->skip_syntax           = 1;
 | |
|         memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
 | |
|         return ac3_parse_header(s);
 | |
|     } else if (CONFIG_EAC3_DECODER) {
 | |
|         s->eac3 = 1;
 | |
|         return ff_eac3_parse_header(s);
 | |
|     } else {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
 | |
|         return AVERROR(ENOSYS);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set stereo downmixing coefficients based on frame header info.
 | |
|  * reference: Section 7.8.2 Downmixing Into Two Channels
 | |
|  */
 | |
| static void set_downmix_coeffs(AC3DecodeContext *s)
 | |
| {
 | |
|     int i;
 | |
|     float cmix = gain_levels[s->  center_mix_level];
 | |
|     float smix = gain_levels[s->surround_mix_level];
 | |
|     float norm0, norm1;
 | |
| 
 | |
|     for (i = 0; i < s->fbw_channels; i++) {
 | |
|         s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
 | |
|         s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
 | |
|     }
 | |
|     if (s->channel_mode > 1 && s->channel_mode & 1) {
 | |
|         s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
 | |
|     }
 | |
|     if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
 | |
|         int nf = s->channel_mode - 2;
 | |
|         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
 | |
|     }
 | |
|     if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
 | |
|         int nf = s->channel_mode - 4;
 | |
|         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
 | |
|     }
 | |
| 
 | |
|     /* renormalize */
 | |
|     norm0 = norm1 = 0.0;
 | |
|     for (i = 0; i < s->fbw_channels; i++) {
 | |
|         norm0 += s->downmix_coeffs[i][0];
 | |
|         norm1 += s->downmix_coeffs[i][1];
 | |
|     }
 | |
|     norm0 = 1.0f / norm0;
 | |
|     norm1 = 1.0f / norm1;
 | |
|     for (i = 0; i < s->fbw_channels; i++) {
 | |
|         s->downmix_coeffs[i][0] *= norm0;
 | |
|         s->downmix_coeffs[i][1] *= norm1;
 | |
|     }
 | |
| 
 | |
|     if (s->output_mode == AC3_CHMODE_MONO) {
 | |
|         for (i = 0; i < s->fbw_channels; i++)
 | |
|             s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] +
 | |
|                                        s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the grouped exponents according to exponent strategy.
 | |
|  * reference: Section 7.1.3 Exponent Decoding
 | |
|  */
 | |
| static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
 | |
|                             uint8_t absexp, int8_t *dexps)
 | |
| {
 | |
|     int i, j, grp, group_size;
 | |
|     int dexp[256];
 | |
|     int expacc, prevexp;
 | |
| 
 | |
|     /* unpack groups */
 | |
|     group_size = exp_strategy + (exp_strategy == EXP_D45);
 | |
|     for (grp = 0, i = 0; grp < ngrps; grp++) {
 | |
|         expacc = get_bits(gbc, 7);
 | |
|         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
 | |
|         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
 | |
|         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
 | |
|     }
 | |
| 
 | |
|     /* convert to absolute exps and expand groups */
 | |
|     prevexp = absexp;
 | |
|     for (i = 0, j = 0; i < ngrps * 3; i++) {
 | |
|         prevexp += dexp[i] - 2;
 | |
|         if (prevexp > 24U)
 | |
|             return -1;
 | |
|         switch (group_size) {
 | |
|         case 4: dexps[j++] = prevexp;
 | |
|                 dexps[j++] = prevexp;
 | |
|         case 2: dexps[j++] = prevexp;
 | |
|         case 1: dexps[j++] = prevexp;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate transform coefficients for each coupled channel in the coupling
 | |
|  * range using the coupling coefficients and coupling coordinates.
 | |
|  * reference: Section 7.4.3 Coupling Coordinate Format
 | |
|  */
 | |
| static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
 | |
| {
 | |
|     int bin, band, ch;
 | |
| 
 | |
|     bin = s->start_freq[CPL_CH];
 | |
|     for (band = 0; band < s->num_cpl_bands; band++) {
 | |
|         int band_start = bin;
 | |
|         int band_end = bin + s->cpl_band_sizes[band];
 | |
|         for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|             if (s->channel_in_cpl[ch]) {
 | |
|                 int cpl_coord = s->cpl_coords[ch][band] << 5;
 | |
|                 for (bin = band_start; bin < band_end; bin++) {
 | |
|                     s->fixed_coeffs[ch][bin] =
 | |
|                         MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
 | |
|                 }
 | |
|                 if (ch == 2 && s->phase_flags[band]) {
 | |
|                     for (bin = band_start; bin < band_end; bin++)
 | |
|                         s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         bin = band_end;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Grouped mantissas for 3-level 5-level and 11-level quantization
 | |
|  */
 | |
| typedef struct {
 | |
|     int b1_mant[2];
 | |
|     int b2_mant[2];
 | |
|     int b4_mant;
 | |
|     int b1;
 | |
|     int b2;
 | |
|     int b4;
 | |
| } mant_groups;
 | |
| 
 | |
| /**
 | |
|  * Decode the transform coefficients for a particular channel
 | |
|  * reference: Section 7.3 Quantization and Decoding of Mantissas
 | |
|  */
 | |
| static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
 | |
| {
 | |
|     int start_freq = s->start_freq[ch_index];
 | |
|     int end_freq   = s->end_freq[ch_index];
 | |
|     uint8_t *baps  = s->bap[ch_index];
 | |
|     int8_t *exps   = s->dexps[ch_index];
 | |
|     int32_t *coeffs = s->fixed_coeffs[ch_index];
 | |
|     int dither     = (ch_index == CPL_CH) || s->dither_flag[ch_index];
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int freq;
 | |
| 
 | |
|     for (freq = start_freq; freq < end_freq; freq++) {
 | |
|         int bap = baps[freq];
 | |
|         int mantissa;
 | |
|         switch (bap) {
 | |
|         case 0:
 | |
|             /* random noise with approximate range of -0.707 to 0.707 */
 | |
|             if (dither)
 | |
|                 mantissa = (((av_lfg_get(&s->dith_state)>>8)*181)>>8) - 5931008;
 | |
|             else
 | |
|                 mantissa = 0;
 | |
|             break;
 | |
|         case 1:
 | |
|             if (m->b1) {
 | |
|                 m->b1--;
 | |
|                 mantissa = m->b1_mant[m->b1];
 | |
|             } else {
 | |
|                 int bits      = get_bits(gbc, 5);
 | |
|                 mantissa      = b1_mantissas[bits][0];
 | |
|                 m->b1_mant[1] = b1_mantissas[bits][1];
 | |
|                 m->b1_mant[0] = b1_mantissas[bits][2];
 | |
|                 m->b1         = 2;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             if (m->b2) {
 | |
|                 m->b2--;
 | |
|                 mantissa = m->b2_mant[m->b2];
 | |
|             } else {
 | |
|                 int bits      = get_bits(gbc, 7);
 | |
|                 mantissa      = b2_mantissas[bits][0];
 | |
|                 m->b2_mant[1] = b2_mantissas[bits][1];
 | |
|                 m->b2_mant[0] = b2_mantissas[bits][2];
 | |
|                 m->b2         = 2;
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             mantissa = b3_mantissas[get_bits(gbc, 3)];
 | |
|             break;
 | |
|         case 4:
 | |
|             if (m->b4) {
 | |
|                 m->b4 = 0;
 | |
|                 mantissa = m->b4_mant;
 | |
|             } else {
 | |
|                 int bits   = get_bits(gbc, 7);
 | |
|                 mantissa   = b4_mantissas[bits][0];
 | |
|                 m->b4_mant = b4_mantissas[bits][1];
 | |
|                 m->b4      = 1;
 | |
|             }
 | |
|             break;
 | |
|         case 5:
 | |
|             mantissa = b5_mantissas[get_bits(gbc, 4)];
 | |
|             break;
 | |
|         default: /* 6 to 15 */
 | |
|             /* Shift mantissa and sign-extend it. */
 | |
|             if (bap > 15) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "bap %d is invalid in plain AC-3\n", bap);
 | |
|                 bap = 15;
 | |
|             }
 | |
|             mantissa = get_sbits(gbc, quantization_tab[bap]);
 | |
|             mantissa <<= 24 - quantization_tab[bap];
 | |
|             break;
 | |
|         }
 | |
|         coeffs[freq] = mantissa >> exps[freq];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Remove random dithering from coupling range coefficients with zero-bit
 | |
|  * mantissas for coupled channels which do not use dithering.
 | |
|  * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 | |
|  */
 | |
| static void remove_dithering(AC3DecodeContext *s) {
 | |
|     int ch, i;
 | |
| 
 | |
|     for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|         if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
 | |
|             for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
 | |
|                 if (!s->bap[CPL_CH][i])
 | |
|                     s->fixed_coeffs[ch][i] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
 | |
|                                        mant_groups *m)
 | |
| {
 | |
|     if (!s->channel_uses_aht[ch]) {
 | |
|         ac3_decode_transform_coeffs_ch(s, ch, m);
 | |
|     } else {
 | |
|         /* if AHT is used, mantissas for all blocks are encoded in the first
 | |
|            block of the frame. */
 | |
|         int bin;
 | |
|         if (!blk && CONFIG_EAC3_DECODER)
 | |
|             ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
 | |
|         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | |
|             s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the transform coefficients.
 | |
|  */
 | |
| static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
 | |
| {
 | |
|     int ch, end;
 | |
|     int got_cplchan = 0;
 | |
|     mant_groups m;
 | |
| 
 | |
|     m.b1 = m.b2 = m.b4 = 0;
 | |
| 
 | |
|     for (ch = 1; ch <= s->channels; ch++) {
 | |
|         /* transform coefficients for full-bandwidth channel */
 | |
|         decode_transform_coeffs_ch(s, blk, ch, &m);
 | |
|         /* transform coefficients for coupling channel come right after the
 | |
|            coefficients for the first coupled channel*/
 | |
|         if (s->channel_in_cpl[ch])  {
 | |
|             if (!got_cplchan) {
 | |
|                 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
 | |
|                 calc_transform_coeffs_cpl(s);
 | |
|                 got_cplchan = 1;
 | |
|             }
 | |
|             end = s->end_freq[CPL_CH];
 | |
|         } else {
 | |
|             end = s->end_freq[ch];
 | |
|         }
 | |
|         do
 | |
|             s->fixed_coeffs[ch][end] = 0;
 | |
|         while (++end < 256);
 | |
|     }
 | |
| 
 | |
|     /* zero the dithered coefficients for appropriate channels */
 | |
|     remove_dithering(s);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Stereo rematrixing.
 | |
|  * reference: Section 7.5.4 Rematrixing : Decoding Technique
 | |
|  */
 | |
| static void do_rematrixing(AC3DecodeContext *s)
 | |
| {
 | |
|     int bnd, i;
 | |
|     int end, bndend;
 | |
| 
 | |
|     end = FFMIN(s->end_freq[1], s->end_freq[2]);
 | |
| 
 | |
|     for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
 | |
|         if (s->rematrixing_flags[bnd]) {
 | |
|             bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
 | |
|             for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
 | |
|                 int tmp0 = s->fixed_coeffs[1][i];
 | |
|                 s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
 | |
|                 s->fixed_coeffs[2][i]  = tmp0 - s->fixed_coeffs[2][i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Inverse MDCT Transform.
 | |
|  * Convert frequency domain coefficients to time-domain audio samples.
 | |
|  * reference: Section 7.9.4 Transformation Equations
 | |
|  */
 | |
| static inline void do_imdct(AC3DecodeContext *s, int channels)
 | |
| {
 | |
|     int ch;
 | |
| 
 | |
|     for (ch = 1; ch <= channels; ch++) {
 | |
|         if (s->block_switch[ch]) {
 | |
|             int i;
 | |
|             float *x = s->tmp_output + 128;
 | |
|             for (i = 0; i < 128; i++)
 | |
|                 x[i] = s->transform_coeffs[ch][2 * i];
 | |
|             s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
 | |
|             s->fdsp.vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1],
 | |
|                                        s->tmp_output, s->window, 128);
 | |
|             for (i = 0; i < 128; i++)
 | |
|                 x[i] = s->transform_coeffs[ch][2 * i + 1];
 | |
|             s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
 | |
|         } else {
 | |
|             s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
 | |
|             s->fdsp.vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1],
 | |
|                                        s->tmp_output, s->window, 128);
 | |
|             memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Upmix delay samples from stereo to original channel layout.
 | |
|  */
 | |
| static void ac3_upmix_delay(AC3DecodeContext *s)
 | |
| {
 | |
|     int channel_data_size = sizeof(s->delay[0]);
 | |
|     switch (s->channel_mode) {
 | |
|     case AC3_CHMODE_DUALMONO:
 | |
|     case AC3_CHMODE_STEREO:
 | |
|         /* upmix mono to stereo */
 | |
|         memcpy(s->delay[1], s->delay[0], channel_data_size);
 | |
|         break;
 | |
|     case AC3_CHMODE_2F2R:
 | |
|         memset(s->delay[3], 0, channel_data_size);
 | |
|     case AC3_CHMODE_2F1R:
 | |
|         memset(s->delay[2], 0, channel_data_size);
 | |
|         break;
 | |
|     case AC3_CHMODE_3F2R:
 | |
|         memset(s->delay[4], 0, channel_data_size);
 | |
|     case AC3_CHMODE_3F1R:
 | |
|         memset(s->delay[3], 0, channel_data_size);
 | |
|     case AC3_CHMODE_3F:
 | |
|         memcpy(s->delay[2], s->delay[1], channel_data_size);
 | |
|         memset(s->delay[1], 0, channel_data_size);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode band structure for coupling, spectral extension, or enhanced coupling.
 | |
|  * The band structure defines how many subbands are in each band.  For each
 | |
|  * subband in the range, 1 means it is combined with the previous band, and 0
 | |
|  * means that it starts a new band.
 | |
|  *
 | |
|  * @param[in] gbc bit reader context
 | |
|  * @param[in] blk block number
 | |
|  * @param[in] eac3 flag to indicate E-AC-3
 | |
|  * @param[in] ecpl flag to indicate enhanced coupling
 | |
|  * @param[in] start_subband subband number for start of range
 | |
|  * @param[in] end_subband subband number for end of range
 | |
|  * @param[in] default_band_struct default band structure table
 | |
|  * @param[out] num_bands number of bands (optionally NULL)
 | |
|  * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
 | |
|  */
 | |
| static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
 | |
|                                   int ecpl, int start_subband, int end_subband,
 | |
|                                   const uint8_t *default_band_struct,
 | |
|                                   int *num_bands, uint8_t *band_sizes)
 | |
| {
 | |
|     int subbnd, bnd, n_subbands, n_bands=0;
 | |
|     uint8_t bnd_sz[22];
 | |
|     uint8_t coded_band_struct[22];
 | |
|     const uint8_t *band_struct;
 | |
| 
 | |
|     n_subbands = end_subband - start_subband;
 | |
| 
 | |
|     /* decode band structure from bitstream or use default */
 | |
|     if (!eac3 || get_bits1(gbc)) {
 | |
|         for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
 | |
|             coded_band_struct[subbnd] = get_bits1(gbc);
 | |
|         }
 | |
|         band_struct = coded_band_struct;
 | |
|     } else if (!blk) {
 | |
|         band_struct = &default_band_struct[start_subband+1];
 | |
|     } else {
 | |
|         /* no change in band structure */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* calculate number of bands and band sizes based on band structure.
 | |
|        note that the first 4 subbands in enhanced coupling span only 6 bins
 | |
|        instead of 12. */
 | |
|     if (num_bands || band_sizes ) {
 | |
|         n_bands = n_subbands;
 | |
|         bnd_sz[0] = ecpl ? 6 : 12;
 | |
|         for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
 | |
|             int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
 | |
|             if (band_struct[subbnd - 1]) {
 | |
|                 n_bands--;
 | |
|                 bnd_sz[bnd] += subbnd_size;
 | |
|             } else {
 | |
|                 bnd_sz[++bnd] = subbnd_size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* set optional output params */
 | |
|     if (num_bands)
 | |
|         *num_bands = n_bands;
 | |
|     if (band_sizes)
 | |
|         memcpy(band_sizes, bnd_sz, n_bands);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a single audio block from the AC-3 bitstream.
 | |
|  */
 | |
| static int decode_audio_block(AC3DecodeContext *s, int blk)
 | |
| {
 | |
|     int fbw_channels = s->fbw_channels;
 | |
|     int channel_mode = s->channel_mode;
 | |
|     int i, bnd, seg, ch;
 | |
|     int different_transforms;
 | |
|     int downmix_output;
 | |
|     int cpl_in_use;
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };
 | |
| 
 | |
|     /* block switch flags */
 | |
|     different_transforms = 0;
 | |
|     if (s->block_switch_syntax) {
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             s->block_switch[ch] = get_bits1(gbc);
 | |
|             if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
 | |
|                 different_transforms = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* dithering flags */
 | |
|     if (s->dither_flag_syntax) {
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             s->dither_flag[ch] = get_bits1(gbc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* dynamic range */
 | |
|     i = !s->channel_mode;
 | |
|     do {
 | |
|         if (get_bits1(gbc)) {
 | |
|             s->dynamic_range[i] = powf(dynamic_range_tab[get_bits(gbc, 8)],
 | |
|                                        s->drc_scale);
 | |
|         } else if (blk == 0) {
 | |
|             s->dynamic_range[i] = 1.0f;
 | |
|         }
 | |
|     } while (i--);
 | |
| 
 | |
|     /* spectral extension strategy */
 | |
|     if (s->eac3 && (!blk || get_bits1(gbc))) {
 | |
|         s->spx_in_use = get_bits1(gbc);
 | |
|         if (s->spx_in_use) {
 | |
|             int dst_start_freq, dst_end_freq, src_start_freq,
 | |
|                 start_subband, end_subband;
 | |
| 
 | |
|             /* determine which channels use spx */
 | |
|             if (s->channel_mode == AC3_CHMODE_MONO) {
 | |
|                 s->channel_uses_spx[1] = 1;
 | |
|             } else {
 | |
|                 for (ch = 1; ch <= fbw_channels; ch++)
 | |
|                     s->channel_uses_spx[ch] = get_bits1(gbc);
 | |
|             }
 | |
| 
 | |
|             /* get the frequency bins of the spx copy region and the spx start
 | |
|                and end subbands */
 | |
|             dst_start_freq = get_bits(gbc, 2);
 | |
|             start_subband  = get_bits(gbc, 3) + 2;
 | |
|             if (start_subband > 7)
 | |
|                 start_subband += start_subband - 7;
 | |
|             end_subband    = get_bits(gbc, 3) + 5;
 | |
|             if (end_subband   > 7)
 | |
|                 end_subband   += end_subband   - 7;
 | |
|             dst_start_freq = dst_start_freq * 12 + 25;
 | |
|             src_start_freq = start_subband  * 12 + 25;
 | |
|             dst_end_freq   = end_subband    * 12 + 25;
 | |
| 
 | |
|             /* check validity of spx ranges */
 | |
|             if (start_subband >= end_subband) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
 | |
|                        "range (%d >= %d)\n", start_subband, end_subband);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             if (dst_start_freq >= src_start_freq) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
 | |
|                        "copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             s->spx_dst_start_freq = dst_start_freq;
 | |
|             s->spx_src_start_freq = src_start_freq;
 | |
|             s->spx_dst_end_freq   = dst_end_freq;
 | |
| 
 | |
|             decode_band_structure(gbc, blk, s->eac3, 0,
 | |
|                                   start_subband, end_subband,
 | |
|                                   ff_eac3_default_spx_band_struct,
 | |
|                                   &s->num_spx_bands,
 | |
|                                   s->spx_band_sizes);
 | |
|         } else {
 | |
|             for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|                 s->channel_uses_spx[ch] = 0;
 | |
|                 s->first_spx_coords[ch] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* spectral extension coordinates */
 | |
|     if (s->spx_in_use) {
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             if (s->channel_uses_spx[ch]) {
 | |
|                 if (s->first_spx_coords[ch] || get_bits1(gbc)) {
 | |
|                     float spx_blend;
 | |
|                     int bin, master_spx_coord;
 | |
| 
 | |
|                     s->first_spx_coords[ch] = 0;
 | |
|                     spx_blend = get_bits(gbc, 5) * (1.0f/32);
 | |
|                     master_spx_coord = get_bits(gbc, 2) * 3;
 | |
| 
 | |
|                     bin = s->spx_src_start_freq;
 | |
|                     for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | |
|                         int bandsize;
 | |
|                         int spx_coord_exp, spx_coord_mant;
 | |
|                         float nratio, sblend, nblend, spx_coord;
 | |
| 
 | |
|                         /* calculate blending factors */
 | |
|                         bandsize = s->spx_band_sizes[bnd];
 | |
|                         nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
 | |
|                         nratio = av_clipf(nratio, 0.0f, 1.0f);
 | |
|                         nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
 | |
|                                                        // to give unity variance
 | |
|                         sblend = sqrtf(1.0f - nratio);
 | |
|                         bin += bandsize;
 | |
| 
 | |
|                         /* decode spx coordinates */
 | |
|                         spx_coord_exp  = get_bits(gbc, 4);
 | |
|                         spx_coord_mant = get_bits(gbc, 2);
 | |
|                         if (spx_coord_exp == 15) spx_coord_mant <<= 1;
 | |
|                         else                     spx_coord_mant += 4;
 | |
|                         spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
 | |
|                         spx_coord = spx_coord_mant * (1.0f / (1 << 23));
 | |
| 
 | |
|                         /* multiply noise and signal blending factors by spx coordinate */
 | |
|                         s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
 | |
|                         s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 s->first_spx_coords[ch] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* coupling strategy */
 | |
|     if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
 | |
|         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|         if (!s->eac3)
 | |
|             s->cpl_in_use[blk] = get_bits1(gbc);
 | |
|         if (s->cpl_in_use[blk]) {
 | |
|             /* coupling in use */
 | |
|             int cpl_start_subband, cpl_end_subband;
 | |
| 
 | |
|             if (channel_mode < AC3_CHMODE_STEREO) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             /* check for enhanced coupling */
 | |
|             if (s->eac3 && get_bits1(gbc)) {
 | |
|                 /* TODO: parse enhanced coupling strategy info */
 | |
|                 avpriv_request_sample(s->avctx, "Enhanced coupling");
 | |
|                 return AVERROR_PATCHWELCOME;
 | |
|             }
 | |
| 
 | |
|             /* determine which channels are coupled */
 | |
|             if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
 | |
|                 s->channel_in_cpl[1] = 1;
 | |
|                 s->channel_in_cpl[2] = 1;
 | |
|             } else {
 | |
|                 for (ch = 1; ch <= fbw_channels; ch++)
 | |
|                     s->channel_in_cpl[ch] = get_bits1(gbc);
 | |
|             }
 | |
| 
 | |
|             /* phase flags in use */
 | |
|             if (channel_mode == AC3_CHMODE_STEREO)
 | |
|                 s->phase_flags_in_use = get_bits1(gbc);
 | |
| 
 | |
|             /* coupling frequency range */
 | |
|             cpl_start_subband = get_bits(gbc, 4);
 | |
|             cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
 | |
|                                               get_bits(gbc, 4) + 3;
 | |
|             if (cpl_start_subband >= cpl_end_subband) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
 | |
|                        cpl_start_subband, cpl_end_subband);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
 | |
|             s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;
 | |
| 
 | |
|             decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
 | |
|                                   cpl_end_subband,
 | |
|                                   ff_eac3_default_cpl_band_struct,
 | |
|                                   &s->num_cpl_bands, s->cpl_band_sizes);
 | |
|         } else {
 | |
|             /* coupling not in use */
 | |
|             for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|                 s->channel_in_cpl[ch] = 0;
 | |
|                 s->first_cpl_coords[ch] = 1;
 | |
|             }
 | |
|             s->first_cpl_leak = s->eac3;
 | |
|             s->phase_flags_in_use = 0;
 | |
|         }
 | |
|     } else if (!s->eac3) {
 | |
|         if (!blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
 | |
|                    "be present in block 0\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         } else {
 | |
|             s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
 | |
|         }
 | |
|     }
 | |
|     cpl_in_use = s->cpl_in_use[blk];
 | |
| 
 | |
|     /* coupling coordinates */
 | |
|     if (cpl_in_use) {
 | |
|         int cpl_coords_exist = 0;
 | |
| 
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             if (s->channel_in_cpl[ch]) {
 | |
|                 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
 | |
|                     int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
 | |
|                     s->first_cpl_coords[ch] = 0;
 | |
|                     cpl_coords_exist = 1;
 | |
|                     master_cpl_coord = 3 * get_bits(gbc, 2);
 | |
|                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                         cpl_coord_exp = get_bits(gbc, 4);
 | |
|                         cpl_coord_mant = get_bits(gbc, 4);
 | |
|                         if (cpl_coord_exp == 15)
 | |
|                             s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
 | |
|                         else
 | |
|                             s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
 | |
|                         s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
 | |
|                     }
 | |
|                 } else if (!blk) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
 | |
|                            "be present in block 0\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* channel not in coupling */
 | |
|                 s->first_cpl_coords[ch] = 1;
 | |
|             }
 | |
|         }
 | |
|         /* phase flags */
 | |
|         if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
 | |
|             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* stereo rematrixing strategy and band structure */
 | |
|     if (channel_mode == AC3_CHMODE_STEREO) {
 | |
|         if ((s->eac3 && !blk) || get_bits1(gbc)) {
 | |
|             s->num_rematrixing_bands = 4;
 | |
|             if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
 | |
|                 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
 | |
|             } else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
 | |
|                 s->num_rematrixing_bands--;
 | |
|             }
 | |
|             for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
 | |
|                 s->rematrixing_flags[bnd] = get_bits1(gbc);
 | |
|         } else if (!blk) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "Warning: "
 | |
|                    "new rematrixing strategy not present in block 0\n");
 | |
|             s->num_rematrixing_bands = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* exponent strategies for each channel */
 | |
|     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if (!s->eac3)
 | |
|             s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
 | |
|         if (s->exp_strategy[blk][ch] != EXP_REUSE)
 | |
|             bit_alloc_stages[ch] = 3;
 | |
|     }
 | |
| 
 | |
|     /* channel bandwidth */
 | |
|     for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|         s->start_freq[ch] = 0;
 | |
|         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
 | |
|             int group_size;
 | |
|             int prev = s->end_freq[ch];
 | |
|             if (s->channel_in_cpl[ch])
 | |
|                 s->end_freq[ch] = s->start_freq[CPL_CH];
 | |
|             else if (s->channel_uses_spx[ch])
 | |
|                 s->end_freq[ch] = s->spx_src_start_freq;
 | |
|             else {
 | |
|                 int bandwidth_code = get_bits(gbc, 6);
 | |
|                 if (bandwidth_code > 60) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 s->end_freq[ch] = bandwidth_code * 3 + 73;
 | |
|             }
 | |
|             group_size = 3 << (s->exp_strategy[blk][ch] - 1);
 | |
|             s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
 | |
|             if (blk > 0 && s->end_freq[ch] != prev)
 | |
|                 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|         }
 | |
|     }
 | |
|     if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
 | |
|         s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
 | |
|                                     (3 << (s->exp_strategy[blk][CPL_CH] - 1));
 | |
|     }
 | |
| 
 | |
|     /* decode exponents for each channel */
 | |
|     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
 | |
|             s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
 | |
|             if (decode_exponents(gbc, s->exp_strategy[blk][ch],
 | |
|                                  s->num_exp_groups[ch], s->dexps[ch][0],
 | |
|                                  &s->dexps[ch][s->start_freq[ch]+!!ch])) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             if (ch != CPL_CH && ch != s->lfe_ch)
 | |
|                 skip_bits(gbc, 2); /* skip gainrng */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* bit allocation information */
 | |
|     if (s->bit_allocation_syntax) {
 | |
|         if (get_bits1(gbc)) {
 | |
|             s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 | |
|             s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 | |
|             s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
 | |
|             s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
 | |
|             s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
 | |
|             for (ch = !cpl_in_use; ch <= s->channels; ch++)
 | |
|                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         } else if (!blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
 | |
|                    "be present in block 0\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
 | |
|     if (!s->eac3 || !blk) {
 | |
|         if (s->snr_offset_strategy && get_bits1(gbc)) {
 | |
|             int snr = 0;
 | |
|             int csnr;
 | |
|             csnr = (get_bits(gbc, 6) - 15) << 4;
 | |
|             for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|                 /* snr offset */
 | |
|                 if (ch == i || s->snr_offset_strategy == 2)
 | |
|                     snr = (csnr + get_bits(gbc, 4)) << 2;
 | |
|                 /* run at least last bit allocation stage if snr offset changes */
 | |
|                 if (blk && s->snr_offset[ch] != snr) {
 | |
|                     bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
 | |
|                 }
 | |
|                 s->snr_offset[ch] = snr;
 | |
| 
 | |
|                 /* fast gain (normal AC-3 only) */
 | |
|                 if (!s->eac3) {
 | |
|                     int prev = s->fast_gain[ch];
 | |
|                     s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
 | |
|                     /* run last 2 bit allocation stages if fast gain changes */
 | |
|                     if (blk && prev != s->fast_gain[ch])
 | |
|                         bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|                 }
 | |
|             }
 | |
|         } else if (!s->eac3 && !blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* fast gain (E-AC-3 only) */
 | |
|     if (s->fast_gain_syntax && get_bits1(gbc)) {
 | |
|         for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|             int prev = s->fast_gain[ch];
 | |
|             s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
 | |
|             /* run last 2 bit allocation stages if fast gain changes */
 | |
|             if (blk && prev != s->fast_gain[ch])
 | |
|                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         }
 | |
|     } else if (s->eac3 && !blk) {
 | |
|         for (ch = !cpl_in_use; ch <= s->channels; ch++)
 | |
|             s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
 | |
|     }
 | |
| 
 | |
|     /* E-AC-3 to AC-3 converter SNR offset */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
 | |
|         skip_bits(gbc, 10); // skip converter snr offset
 | |
|     }
 | |
| 
 | |
|     /* coupling leak information */
 | |
|     if (cpl_in_use) {
 | |
|         if (s->first_cpl_leak || get_bits1(gbc)) {
 | |
|             int fl = get_bits(gbc, 3);
 | |
|             int sl = get_bits(gbc, 3);
 | |
|             /* run last 2 bit allocation stages for coupling channel if
 | |
|                coupling leak changes */
 | |
|             if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
 | |
|                 sl != s->bit_alloc_params.cpl_slow_leak)) {
 | |
|                 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
 | |
|             }
 | |
|             s->bit_alloc_params.cpl_fast_leak = fl;
 | |
|             s->bit_alloc_params.cpl_slow_leak = sl;
 | |
|         } else if (!s->eac3 && !blk) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
 | |
|                    "be present in block 0\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         s->first_cpl_leak = 0;
 | |
|     }
 | |
| 
 | |
|     /* delta bit allocation information */
 | |
|     if (s->dba_syntax && get_bits1(gbc)) {
 | |
|         /* delta bit allocation exists (strategy) */
 | |
|         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
 | |
|             s->dba_mode[ch] = get_bits(gbc, 2);
 | |
|             if (s->dba_mode[ch] == DBA_RESERVED) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         }
 | |
|         /* channel delta offset, len and bit allocation */
 | |
|         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
 | |
|             if (s->dba_mode[ch] == DBA_NEW) {
 | |
|                 s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
 | |
|                 for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
 | |
|                     s->dba_offsets[ch][seg] = get_bits(gbc, 5);
 | |
|                     s->dba_lengths[ch][seg] = get_bits(gbc, 4);
 | |
|                     s->dba_values[ch][seg]  = get_bits(gbc, 3);
 | |
|                 }
 | |
|                 /* run last 2 bit allocation stages if new dba values */
 | |
|                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|             }
 | |
|         }
 | |
|     } else if (blk == 0) {
 | |
|         for (ch = 0; ch <= s->channels; ch++) {
 | |
|             s->dba_mode[ch] = DBA_NONE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Bit allocation */
 | |
|     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if (bit_alloc_stages[ch] > 2) {
 | |
|             /* Exponent mapping into PSD and PSD integration */
 | |
|             ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
 | |
|                                       s->start_freq[ch], s->end_freq[ch],
 | |
|                                       s->psd[ch], s->band_psd[ch]);
 | |
|         }
 | |
|         if (bit_alloc_stages[ch] > 1) {
 | |
|             /* Compute excitation function, Compute masking curve, and
 | |
|                Apply delta bit allocation */
 | |
|             if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
 | |
|                                            s->start_freq[ch],  s->end_freq[ch],
 | |
|                                            s->fast_gain[ch],   (ch == s->lfe_ch),
 | |
|                                            s->dba_mode[ch],    s->dba_nsegs[ch],
 | |
|                                            s->dba_offsets[ch], s->dba_lengths[ch],
 | |
|                                            s->dba_values[ch],  s->mask[ch])) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|         if (bit_alloc_stages[ch] > 0) {
 | |
|             /* Compute bit allocation */
 | |
|             const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
 | |
|                                      ff_eac3_hebap_tab : ff_ac3_bap_tab;
 | |
|             s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
 | |
|                                       s->start_freq[ch], s->end_freq[ch],
 | |
|                                       s->snr_offset[ch],
 | |
|                                       s->bit_alloc_params.floor,
 | |
|                                       bap_tab, s->bap[ch]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* unused dummy data */
 | |
|     if (s->skip_syntax && get_bits1(gbc)) {
 | |
|         int skipl = get_bits(gbc, 9);
 | |
|         while (skipl--)
 | |
|             skip_bits(gbc, 8);
 | |
|     }
 | |
| 
 | |
|     /* unpack the transform coefficients
 | |
|        this also uncouples channels if coupling is in use. */
 | |
|     decode_transform_coeffs(s, blk);
 | |
| 
 | |
|     /* TODO: generate enhanced coupling coordinates and uncouple */
 | |
| 
 | |
|     /* recover coefficients if rematrixing is in use */
 | |
|     if (s->channel_mode == AC3_CHMODE_STEREO)
 | |
|         do_rematrixing(s);
 | |
| 
 | |
|     /* apply scaling to coefficients (headroom, dynrng) */
 | |
|     for (ch = 1; ch <= s->channels; ch++) {
 | |
|         float gain = 1.0 / 4194304.0f;
 | |
|         if (s->channel_mode == AC3_CHMODE_DUALMONO) {
 | |
|             gain *= s->dynamic_range[2 - ch];
 | |
|         } else {
 | |
|             gain *= s->dynamic_range[0];
 | |
|         }
 | |
|         s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
 | |
|                                                s->fixed_coeffs[ch], gain, 256);
 | |
|     }
 | |
| 
 | |
|     /* apply spectral extension to high frequency bins */
 | |
|     if (s->spx_in_use && CONFIG_EAC3_DECODER) {
 | |
|         ff_eac3_apply_spectral_extension(s);
 | |
|     }
 | |
| 
 | |
|     /* downmix and MDCT. order depends on whether block switching is used for
 | |
|        any channel in this block. this is because coefficients for the long
 | |
|        and short transforms cannot be mixed. */
 | |
|     downmix_output = s->channels != s->out_channels &&
 | |
|                      !((s->output_mode & AC3_OUTPUT_LFEON) &&
 | |
|                      s->fbw_channels == s->out_channels);
 | |
|     if (different_transforms) {
 | |
|         /* the delay samples have already been downmixed, so we upmix the delay
 | |
|            samples in order to reconstruct all channels before downmixing. */
 | |
|         if (s->downmixed) {
 | |
|             s->downmixed = 0;
 | |
|             ac3_upmix_delay(s);
 | |
|         }
 | |
| 
 | |
|         do_imdct(s, s->channels);
 | |
| 
 | |
|         if (downmix_output) {
 | |
|             s->ac3dsp.downmix(s->outptr, s->downmix_coeffs,
 | |
|                               s->out_channels, s->fbw_channels, 256);
 | |
|         }
 | |
|     } else {
 | |
|         if (downmix_output) {
 | |
|             s->ac3dsp.downmix(s->xcfptr + 1, s->downmix_coeffs,
 | |
|                               s->out_channels, s->fbw_channels, 256);
 | |
|         }
 | |
| 
 | |
|         if (downmix_output && !s->downmixed) {
 | |
|             s->downmixed = 1;
 | |
|             s->ac3dsp.downmix(s->dlyptr, s->downmix_coeffs, s->out_channels,
 | |
|                               s->fbw_channels, 128);
 | |
|         }
 | |
| 
 | |
|         do_imdct(s, s->out_channels);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a single AC-3 frame.
 | |
|  */
 | |
| static int ac3_decode_frame(AVCodecContext * avctx, void *data,
 | |
|                             int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     int blk, ch, err, ret;
 | |
|     const uint8_t *channel_map;
 | |
|     const float *output[AC3_MAX_CHANNELS];
 | |
| 
 | |
|     /* copy input buffer to decoder context to avoid reading past the end
 | |
|        of the buffer, which can be caused by a damaged input stream. */
 | |
|     if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
 | |
|         // seems to be byte-swapped AC-3
 | |
|         int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
 | |
|         s->dsp.bswap16_buf((uint16_t *)s->input_buffer, (const uint16_t *)buf, cnt);
 | |
|     } else
 | |
|         memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
 | |
|     buf = s->input_buffer;
 | |
|     /* initialize the GetBitContext with the start of valid AC-3 Frame */
 | |
|     init_get_bits(&s->gbc, buf, buf_size * 8);
 | |
| 
 | |
|     /* parse the syncinfo */
 | |
|     err = parse_frame_header(s);
 | |
| 
 | |
|     if (err) {
 | |
|         switch (err) {
 | |
|         case AAC_AC3_PARSE_ERROR_SYNC:
 | |
|             av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         case AAC_AC3_PARSE_ERROR_BSID:
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
 | |
|             break;
 | |
|         case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 | |
|             break;
 | |
|         case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
 | |
|             break;
 | |
|         case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
 | |
|             /* skip frame if CRC is ok. otherwise use error concealment. */
 | |
|             /* TODO: add support for substreams and dependent frames */
 | |
|             if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
 | |
|                 av_log(avctx, AV_LOG_WARNING, "unsupported frame type : "
 | |
|                        "skipping frame\n");
 | |
|                 *got_frame_ptr = 0;
 | |
|                 return buf_size;
 | |
|             } else {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
 | |
|             }
 | |
|             break;
 | |
|         case AAC_AC3_PARSE_ERROR_CRC:
 | |
|         case AAC_AC3_PARSE_ERROR_CHANNEL_CFG:
 | |
|             break;
 | |
|         default: // Normal AVERROR do not try to recover.
 | |
|             *got_frame_ptr = 0;
 | |
|             return err;
 | |
|         }
 | |
|     } else {
 | |
|         /* check that reported frame size fits in input buffer */
 | |
|         if (s->frame_size > buf_size) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 | |
|             err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
 | |
|         } else if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
 | |
|             /* check for crc mismatch */
 | |
|             if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
 | |
|                        s->frame_size - 2)) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
 | |
|                 if (avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 err = AAC_AC3_PARSE_ERROR_CRC;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* if frame is ok, set audio parameters */
 | |
|     if (!err) {
 | |
|         avctx->sample_rate = s->sample_rate;
 | |
|         avctx->bit_rate    = s->bit_rate;
 | |
|     }
 | |
| 
 | |
|     /* channel config */
 | |
|     if (!err || (s->channels && s->out_channels != s->channels)) {
 | |
|         s->out_channels = s->channels;
 | |
|         s->output_mode  = s->channel_mode;
 | |
|         if (s->lfe_on)
 | |
|             s->output_mode |= AC3_OUTPUT_LFEON;
 | |
|         if (s->channels > 1 &&
 | |
|             avctx->request_channel_layout == AV_CH_LAYOUT_MONO) {
 | |
|             s->out_channels = 1;
 | |
|             s->output_mode  = AC3_CHMODE_MONO;
 | |
|         } else if (s->channels > 2 &&
 | |
|                    avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
 | |
|             s->out_channels = 2;
 | |
|             s->output_mode  = AC3_CHMODE_STEREO;
 | |
|         }
 | |
| 
 | |
|         s->loro_center_mix_level   = gain_levels[s->  center_mix_level];
 | |
|         s->loro_surround_mix_level = gain_levels[s->surround_mix_level];
 | |
|         s->ltrt_center_mix_level   = LEVEL_MINUS_3DB;
 | |
|         s->ltrt_surround_mix_level = LEVEL_MINUS_3DB;
 | |
|         /* set downmixing coefficients if needed */
 | |
|         if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
 | |
|                 s->fbw_channels == s->out_channels)) {
 | |
|             set_downmix_coeffs(s);
 | |
|         }
 | |
|     } else if (!s->channels) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "unable to determine channel mode\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     avctx->channels = s->out_channels;
 | |
|     avctx->channel_layout = avpriv_ac3_channel_layout_tab[s->output_mode & ~AC3_OUTPUT_LFEON];
 | |
|     if (s->output_mode & AC3_OUTPUT_LFEON)
 | |
|         avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
 | |
| 
 | |
|     /* set audio service type based on bitstream mode for AC-3 */
 | |
|     avctx->audio_service_type = s->bitstream_mode;
 | |
|     if (s->bitstream_mode == 0x7 && s->channels > 1)
 | |
|         avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = s->num_blocks * AC3_BLOCK_SIZE;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* decode the audio blocks */
 | |
|     channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
 | |
|     for (ch = 0; ch < AC3_MAX_CHANNELS; ch++) {
 | |
|         output[ch] = s->output[ch];
 | |
|         s->outptr[ch] = s->output[ch];
 | |
|     }
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         if (ch < s->out_channels)
 | |
|             s->outptr[channel_map[ch]] = (float *)frame->data[ch];
 | |
|     }
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         if (!err && decode_audio_block(s, blk)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
 | |
|             err = 1;
 | |
|         }
 | |
|         if (err)
 | |
|             for (ch = 0; ch < s->out_channels; ch++)
 | |
|                 memcpy(((float*)frame->data[ch]) + AC3_BLOCK_SIZE*blk, output[ch], sizeof(**output) * AC3_BLOCK_SIZE);
 | |
|         for (ch = 0; ch < s->out_channels; ch++)
 | |
|             output[ch] = s->outptr[channel_map[ch]];
 | |
|         for (ch = 0; ch < s->out_channels; ch++) {
 | |
|             if (!ch || channel_map[ch])
 | |
|                 s->outptr[channel_map[ch]] += AC3_BLOCK_SIZE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_frame_set_decode_error_flags(frame, err ? FF_DECODE_ERROR_INVALID_BITSTREAM : 0);
 | |
| 
 | |
|     /* keep last block for error concealment in next frame */
 | |
|     for (ch = 0; ch < s->out_channels; ch++)
 | |
|         memcpy(s->output[ch], output[ch], sizeof(**output) * AC3_BLOCK_SIZE);
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return FFMIN(buf_size, s->frame_size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Uninitialize the AC-3 decoder.
 | |
|  */
 | |
| static av_cold int ac3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     ff_mdct_end(&s->imdct_512);
 | |
|     ff_mdct_end(&s->imdct_256);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(AC3DecodeContext, x)
 | |
| #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
 | |
| static const AVOption options[] = {
 | |
|     { "drc_scale", "percentage of dynamic range compression to apply", OFFSET(drc_scale), AV_OPT_TYPE_FLOAT, {.dbl = 1.0}, 0.0, 1.0, PAR },
 | |
| 
 | |
| {"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, 2, 0, "dmix_mode"},
 | |
| {"ltrt_cmixlev",   "Lt/Rt Center Mix Level",   OFFSET(ltrt_center_mix_level),    AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 | |
| {"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level),  AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 | |
| {"loro_cmixlev",   "Lo/Ro Center Mix Level",   OFFSET(loro_center_mix_level),    AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 | |
| {"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level),  AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
 | |
| 
 | |
|     { NULL},
 | |
| };
 | |
| 
 | |
| static const AVClass ac3_decoder_class = {
 | |
|     .class_name = "AC3 decoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_ac3_decoder = {
 | |
|     .name           = "ac3",
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_AC3,
 | |
|     .priv_data_size = sizeof (AC3DecodeContext),
 | |
|     .init           = ac3_decode_init,
 | |
|     .close          = ac3_decode_end,
 | |
|     .decode         = ac3_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
|     .priv_class     = &ac3_decoder_class,
 | |
| };
 | |
| 
 | |
| #if CONFIG_EAC3_DECODER
 | |
| static const AVClass eac3_decoder_class = {
 | |
|     .class_name = "E-AC3 decoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_eac3_decoder = {
 | |
|     .name           = "eac3",
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_EAC3,
 | |
|     .priv_data_size = sizeof (AC3DecodeContext),
 | |
|     .init           = ac3_decode_init,
 | |
|     .close          = ac3_decode_end,
 | |
|     .decode         = ac3_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
|     .priv_class     = &eac3_decoder_class,
 | |
| };
 | |
| #endif
 |