mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1637 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1637 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ADPCM codecs
 | |
|  * Copyright (c) 2001-2003 The ffmpeg Project
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| #include "avcodec.h"
 | |
| #include "bitstream.h"
 | |
| #include "bytestream.h"
 | |
| 
 | |
| /**
 | |
|  * @file adpcm.c
 | |
|  * ADPCM codecs.
 | |
|  * First version by Francois Revol (revol@free.fr)
 | |
|  * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
 | |
|  *   by Mike Melanson (melanson@pcisys.net)
 | |
|  * CD-ROM XA ADPCM codec by BERO
 | |
|  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
 | |
|  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
 | |
|  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
 | |
|  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
 | |
|  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
 | |
|  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
 | |
|  *
 | |
|  * Features and limitations:
 | |
|  *
 | |
|  * Reference documents:
 | |
|  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
 | |
|  * http://www.geocities.com/SiliconValley/8682/aud3.txt
 | |
|  * http://openquicktime.sourceforge.net/plugins.htm
 | |
|  * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
 | |
|  * http://www.cs.ucla.edu/~leec/mediabench/applications.html
 | |
|  * SoX source code http://home.sprynet.com/~cbagwell/sox.html
 | |
|  *
 | |
|  * CD-ROM XA:
 | |
|  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
 | |
|  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
 | |
|  * readstr http://www.geocities.co.jp/Playtown/2004/
 | |
|  */
 | |
| 
 | |
| #define BLKSIZE 1024
 | |
| 
 | |
| /* step_table[] and index_table[] are from the ADPCM reference source */
 | |
| /* This is the index table: */
 | |
| static const int index_table[16] = {
 | |
|     -1, -1, -1, -1, 2, 4, 6, 8,
 | |
|     -1, -1, -1, -1, 2, 4, 6, 8,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * This is the step table. Note that many programs use slight deviations from
 | |
|  * this table, but such deviations are negligible:
 | |
|  */
 | |
| static const int step_table[89] = {
 | |
|     7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
 | |
|     19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
 | |
|     50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
 | |
|     130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
 | |
|     337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
 | |
|     876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
 | |
|     2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
 | |
|     5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
 | |
|     15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
 | |
| };
 | |
| 
 | |
| /* These are for MS-ADPCM */
 | |
| /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
 | |
| static const int AdaptationTable[] = {
 | |
|         230, 230, 230, 230, 307, 409, 512, 614,
 | |
|         768, 614, 512, 409, 307, 230, 230, 230
 | |
| };
 | |
| 
 | |
| static const int AdaptCoeff1[] = {
 | |
|         256, 512, 0, 192, 240, 460, 392
 | |
| };
 | |
| 
 | |
| static const int AdaptCoeff2[] = {
 | |
|         0, -256, 0, 64, 0, -208, -232
 | |
| };
 | |
| 
 | |
| /* These are for CD-ROM XA ADPCM */
 | |
| static const int xa_adpcm_table[5][2] = {
 | |
|    {   0,   0 },
 | |
|    {  60,   0 },
 | |
|    { 115, -52 },
 | |
|    {  98, -55 },
 | |
|    { 122, -60 }
 | |
| };
 | |
| 
 | |
| static const int ea_adpcm_table[] = {
 | |
|     0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
 | |
|     3, 4, 7, 8, 10, 11, 0, -1, -3, -4
 | |
| };
 | |
| 
 | |
| static const int ct_adpcm_table[8] = {
 | |
|     0x00E6, 0x00E6, 0x00E6, 0x00E6,
 | |
|     0x0133, 0x0199, 0x0200, 0x0266
 | |
| };
 | |
| 
 | |
| // padded to zero where table size is less then 16
 | |
| static const int swf_index_tables[4][16] = {
 | |
|     /*2*/ { -1, 2 },
 | |
|     /*3*/ { -1, -1, 2, 4 },
 | |
|     /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
 | |
|     /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
 | |
| };
 | |
| 
 | |
| static const int yamaha_indexscale[] = {
 | |
|     230, 230, 230, 230, 307, 409, 512, 614,
 | |
|     230, 230, 230, 230, 307, 409, 512, 614
 | |
| };
 | |
| 
 | |
| static const int yamaha_difflookup[] = {
 | |
|     1, 3, 5, 7, 9, 11, 13, 15,
 | |
|     -1, -3, -5, -7, -9, -11, -13, -15
 | |
| };
 | |
| 
 | |
| /* end of tables */
 | |
| 
 | |
| typedef struct ADPCMChannelStatus {
 | |
|     int predictor;
 | |
|     short int step_index;
 | |
|     int step;
 | |
|     /* for encoding */
 | |
|     int prev_sample;
 | |
| 
 | |
|     /* MS version */
 | |
|     short sample1;
 | |
|     short sample2;
 | |
|     int coeff1;
 | |
|     int coeff2;
 | |
|     int idelta;
 | |
| } ADPCMChannelStatus;
 | |
| 
 | |
| typedef struct ADPCMContext {
 | |
|     int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
 | |
|     ADPCMChannelStatus status[6];
 | |
| } ADPCMContext;
 | |
| 
 | |
| /* XXX: implement encoding */
 | |
| 
 | |
| #ifdef CONFIG_ENCODERS
 | |
| static int adpcm_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     if (avctx->channels > 2)
 | |
|         return -1; /* only stereo or mono =) */
 | |
|     switch(avctx->codec->id) {
 | |
|     case CODEC_ID_ADPCM_IMA_WAV:
 | |
|         avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
 | |
|                                                              /* and we have 4 bytes per channel overhead */
 | |
|         avctx->block_align = BLKSIZE;
 | |
|         /* seems frame_size isn't taken into account... have to buffer the samples :-( */
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_QT:
 | |
|         avctx->frame_size = 64;
 | |
|         avctx->block_align = 34 * avctx->channels;
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_MS:
 | |
|         avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
 | |
|                                                              /* and we have 7 bytes per channel overhead */
 | |
|         avctx->block_align = BLKSIZE;
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_YAMAHA:
 | |
|         avctx->frame_size = BLKSIZE * avctx->channels;
 | |
|         avctx->block_align = BLKSIZE;
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_SWF:
 | |
|         if (avctx->sample_rate != 11025 &&
 | |
|             avctx->sample_rate != 22050 &&
 | |
|             avctx->sample_rate != 44100) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
 | |
|             return -1;
 | |
|         }
 | |
|         avctx->frame_size = 512 * (avctx->sample_rate / 11025);
 | |
|         break;
 | |
|     default:
 | |
|         return -1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     avctx->coded_frame= avcodec_alloc_frame();
 | |
|     avctx->coded_frame->key_frame= 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int adpcm_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     av_freep(&avctx->coded_frame);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
 | |
| {
 | |
|     int delta = sample - c->prev_sample;
 | |
|     int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
 | |
|     c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
 | |
|     c->prev_sample = av_clip_int16(c->prev_sample);
 | |
|     c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
 | |
| {
 | |
|     int predictor, nibble, bias;
 | |
| 
 | |
|     predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
 | |
| 
 | |
|     nibble= sample - predictor;
 | |
|     if(nibble>=0) bias= c->idelta/2;
 | |
|     else          bias=-c->idelta/2;
 | |
| 
 | |
|     nibble= (nibble + bias) / c->idelta;
 | |
|     nibble= av_clip(nibble, -8, 7)&0x0F;
 | |
| 
 | |
|     predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
 | |
| 
 | |
|     c->sample2 = c->sample1;
 | |
|     c->sample1 = av_clip_int16(predictor);
 | |
| 
 | |
|     c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
 | |
|     if (c->idelta < 16) c->idelta = 16;
 | |
| 
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
 | |
| {
 | |
|     int nibble, delta;
 | |
| 
 | |
|     if(!c->step) {
 | |
|         c->predictor = 0;
 | |
|         c->step = 127;
 | |
|     }
 | |
| 
 | |
|     delta = sample - c->predictor;
 | |
| 
 | |
|     nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
 | |
| 
 | |
|     c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
 | |
|     c->predictor = av_clip_int16(c->predictor);
 | |
|     c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
 | |
|     c->step = av_clip(c->step, 127, 24567);
 | |
| 
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| typedef struct TrellisPath {
 | |
|     int nibble;
 | |
|     int prev;
 | |
| } TrellisPath;
 | |
| 
 | |
| typedef struct TrellisNode {
 | |
|     uint32_t ssd;
 | |
|     int path;
 | |
|     int sample1;
 | |
|     int sample2;
 | |
|     int step;
 | |
| } TrellisNode;
 | |
| 
 | |
| static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
 | |
|                                    uint8_t *dst, ADPCMChannelStatus *c, int n)
 | |
| {
 | |
| #define FREEZE_INTERVAL 128
 | |
|     //FIXME 6% faster if frontier is a compile-time constant
 | |
|     const int frontier = 1 << avctx->trellis;
 | |
|     const int stride = avctx->channels;
 | |
|     const int version = avctx->codec->id;
 | |
|     const int max_paths = frontier*FREEZE_INTERVAL;
 | |
|     TrellisPath paths[max_paths], *p;
 | |
|     TrellisNode node_buf[2][frontier];
 | |
|     TrellisNode *nodep_buf[2][frontier];
 | |
|     TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
 | |
|     TrellisNode **nodes_next = nodep_buf[1];
 | |
|     int pathn = 0, froze = -1, i, j, k;
 | |
| 
 | |
|     assert(!(max_paths&(max_paths-1)));
 | |
| 
 | |
|     memset(nodep_buf, 0, sizeof(nodep_buf));
 | |
|     nodes[0] = &node_buf[1][0];
 | |
|     nodes[0]->ssd = 0;
 | |
|     nodes[0]->path = 0;
 | |
|     nodes[0]->step = c->step_index;
 | |
|     nodes[0]->sample1 = c->sample1;
 | |
|     nodes[0]->sample2 = c->sample2;
 | |
|     if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
 | |
|         nodes[0]->sample1 = c->prev_sample;
 | |
|     if(version == CODEC_ID_ADPCM_MS)
 | |
|         nodes[0]->step = c->idelta;
 | |
|     if(version == CODEC_ID_ADPCM_YAMAHA) {
 | |
|         if(c->step == 0) {
 | |
|             nodes[0]->step = 127;
 | |
|             nodes[0]->sample1 = 0;
 | |
|         } else {
 | |
|             nodes[0]->step = c->step;
 | |
|             nodes[0]->sample1 = c->predictor;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(i=0; i<n; i++) {
 | |
|         TrellisNode *t = node_buf[i&1];
 | |
|         TrellisNode **u;
 | |
|         int sample = samples[i*stride];
 | |
|         memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
 | |
|         for(j=0; j<frontier && nodes[j]; j++) {
 | |
|             // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
 | |
|             const int range = (j < frontier/2) ? 1 : 0;
 | |
|             const int step = nodes[j]->step;
 | |
|             int nidx;
 | |
|             if(version == CODEC_ID_ADPCM_MS) {
 | |
|                 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
 | |
|                 const int div = (sample - predictor) / step;
 | |
|                 const int nmin = av_clip(div-range, -8, 6);
 | |
|                 const int nmax = av_clip(div+range, -7, 7);
 | |
|                 for(nidx=nmin; nidx<=nmax; nidx++) {
 | |
|                     const int nibble = nidx & 0xf;
 | |
|                     int dec_sample = predictor + nidx * step;
 | |
| #define STORE_NODE(NAME, STEP_INDEX)\
 | |
|                     int d;\
 | |
|                     uint32_t ssd;\
 | |
|                     dec_sample = av_clip_int16(dec_sample);\
 | |
|                     d = sample - dec_sample;\
 | |
|                     ssd = nodes[j]->ssd + d*d;\
 | |
|                     if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
 | |
|                         continue;\
 | |
|                     /* Collapse any two states with the same previous sample value. \
 | |
|                      * One could also distinguish states by step and by 2nd to last
 | |
|                      * sample, but the effects of that are negligible. */\
 | |
|                     for(k=0; k<frontier && nodes_next[k]; k++) {\
 | |
|                         if(dec_sample == nodes_next[k]->sample1) {\
 | |
|                             assert(ssd >= nodes_next[k]->ssd);\
 | |
|                             goto next_##NAME;\
 | |
|                         }\
 | |
|                     }\
 | |
|                     for(k=0; k<frontier; k++) {\
 | |
|                         if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
 | |
|                             TrellisNode *u = nodes_next[frontier-1];\
 | |
|                             if(!u) {\
 | |
|                                 assert(pathn < max_paths);\
 | |
|                                 u = t++;\
 | |
|                                 u->path = pathn++;\
 | |
|                             }\
 | |
|                             u->ssd = ssd;\
 | |
|                             u->step = STEP_INDEX;\
 | |
|                             u->sample2 = nodes[j]->sample1;\
 | |
|                             u->sample1 = dec_sample;\
 | |
|                             paths[u->path].nibble = nibble;\
 | |
|                             paths[u->path].prev = nodes[j]->path;\
 | |
|                             memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
 | |
|                             nodes_next[k] = u;\
 | |
|                             break;\
 | |
|                         }\
 | |
|                     }\
 | |
|                     next_##NAME:;
 | |
|                     STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
 | |
|                 }
 | |
|             } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
 | |
| #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
 | |
|                 const int predictor = nodes[j]->sample1;\
 | |
|                 const int div = (sample - predictor) * 4 / STEP_TABLE;\
 | |
|                 int nmin = av_clip(div-range, -7, 6);\
 | |
|                 int nmax = av_clip(div+range, -6, 7);\
 | |
|                 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
 | |
|                 if(nmax<0) nmax--;\
 | |
|                 for(nidx=nmin; nidx<=nmax; nidx++) {\
 | |
|                     const int nibble = nidx<0 ? 7-nidx : nidx;\
 | |
|                     int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
 | |
|                     STORE_NODE(NAME, STEP_INDEX);\
 | |
|                 }
 | |
|                 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
 | |
|             } else { //CODEC_ID_ADPCM_YAMAHA
 | |
|                 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
 | |
| #undef LOOP_NODES
 | |
| #undef STORE_NODE
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         u = nodes;
 | |
|         nodes = nodes_next;
 | |
|         nodes_next = u;
 | |
| 
 | |
|         // prevent overflow
 | |
|         if(nodes[0]->ssd > (1<<28)) {
 | |
|             for(j=1; j<frontier && nodes[j]; j++)
 | |
|                 nodes[j]->ssd -= nodes[0]->ssd;
 | |
|             nodes[0]->ssd = 0;
 | |
|         }
 | |
| 
 | |
|         // merge old paths to save memory
 | |
|         if(i == froze + FREEZE_INTERVAL) {
 | |
|             p = &paths[nodes[0]->path];
 | |
|             for(k=i; k>froze; k--) {
 | |
|                 dst[k] = p->nibble;
 | |
|                 p = &paths[p->prev];
 | |
|             }
 | |
|             froze = i;
 | |
|             pathn = 0;
 | |
|             // other nodes might use paths that don't coincide with the frozen one.
 | |
|             // checking which nodes do so is too slow, so just kill them all.
 | |
|             // this also slightly improves quality, but I don't know why.
 | |
|             memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     p = &paths[nodes[0]->path];
 | |
|     for(i=n-1; i>froze; i--) {
 | |
|         dst[i] = p->nibble;
 | |
|         p = &paths[p->prev];
 | |
|     }
 | |
| 
 | |
|     c->predictor = nodes[0]->sample1;
 | |
|     c->sample1 = nodes[0]->sample1;
 | |
|     c->sample2 = nodes[0]->sample2;
 | |
|     c->step_index = nodes[0]->step;
 | |
|     c->step = nodes[0]->step;
 | |
|     c->idelta = nodes[0]->step;
 | |
| }
 | |
| 
 | |
| static int adpcm_encode_frame(AVCodecContext *avctx,
 | |
|                             unsigned char *frame, int buf_size, void *data)
 | |
| {
 | |
|     int n, i, st;
 | |
|     short *samples;
 | |
|     unsigned char *dst;
 | |
|     ADPCMContext *c = avctx->priv_data;
 | |
| 
 | |
|     dst = frame;
 | |
|     samples = (short *)data;
 | |
|     st= avctx->channels == 2;
 | |
| /*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
 | |
| 
 | |
|     switch(avctx->codec->id) {
 | |
|     case CODEC_ID_ADPCM_IMA_WAV:
 | |
|         n = avctx->frame_size / 8;
 | |
|             c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
 | |
| /*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
 | |
|             bytestream_put_le16(&dst, c->status[0].prev_sample);
 | |
|             *dst++ = (unsigned char)c->status[0].step_index;
 | |
|             *dst++ = 0; /* unknown */
 | |
|             samples++;
 | |
|             if (avctx->channels == 2) {
 | |
|                 c->status[1].prev_sample = (signed short)samples[0];
 | |
| /*                c->status[1].step_index = 0; */
 | |
|                 bytestream_put_le16(&dst, c->status[1].prev_sample);
 | |
|                 *dst++ = (unsigned char)c->status[1].step_index;
 | |
|                 *dst++ = 0;
 | |
|                 samples++;
 | |
|             }
 | |
| 
 | |
|             /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
 | |
|             if(avctx->trellis > 0) {
 | |
|                 uint8_t buf[2][n*8];
 | |
|                 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
 | |
|                 if(avctx->channels == 2)
 | |
|                     adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
 | |
|                 for(i=0; i<n; i++) {
 | |
|                     *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
 | |
|                     *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
 | |
|                     *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
 | |
|                     *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
 | |
|                     if (avctx->channels == 2) {
 | |
|                         *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
 | |
|                         *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
 | |
|                         *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
 | |
|                         *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
 | |
|                     }
 | |
|                 }
 | |
|             } else
 | |
|             for (; n>0; n--) {
 | |
|                 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
 | |
|                 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
 | |
|                 dst++;
 | |
|                 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
 | |
|                 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
 | |
|                 dst++;
 | |
|                 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
 | |
|                 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
 | |
|                 dst++;
 | |
|                 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
 | |
|                 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
 | |
|                 dst++;
 | |
|                 /* right channel */
 | |
|                 if (avctx->channels == 2) {
 | |
|                     *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
 | |
|                     *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
 | |
|                     dst++;
 | |
|                     *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
 | |
|                     *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
 | |
|                     dst++;
 | |
|                     *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
 | |
|                     *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
 | |
|                     dst++;
 | |
|                     *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
 | |
|                     *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
 | |
|                     dst++;
 | |
|                 }
 | |
|                 samples += 8 * avctx->channels;
 | |
|             }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_QT:
 | |
|     {
 | |
|         int ch, i;
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, buf_size*8);
 | |
| 
 | |
|         for(ch=0; ch<avctx->channels; ch++){
 | |
|             put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
 | |
|             put_bits(&pb, 7, c->status[ch].step_index);
 | |
|             if(avctx->trellis > 0) {
 | |
|                 uint8_t buf[64];
 | |
|                 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
 | |
|                 for(i=0; i<64; i++)
 | |
|                     put_bits(&pb, 4, buf[i^1]);
 | |
|                 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
 | |
|             } else {
 | |
|                 for (i=0; i<64; i+=2){
 | |
|                     int t1, t2;
 | |
|                     t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
 | |
|                     t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
 | |
|                     put_bits(&pb, 4, t2);
 | |
|                     put_bits(&pb, 4, t1);
 | |
|                 }
 | |
|                 c->status[ch].prev_sample &= ~0x7F;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         dst += put_bits_count(&pb)>>3;
 | |
|         break;
 | |
|     }
 | |
|     case CODEC_ID_ADPCM_SWF:
 | |
|     {
 | |
|         int i;
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, buf_size*8);
 | |
| 
 | |
|         n = avctx->frame_size-1;
 | |
| 
 | |
|         //Store AdpcmCodeSize
 | |
|         put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
 | |
| 
 | |
|         //Init the encoder state
 | |
|         for(i=0; i<avctx->channels; i++){
 | |
|             c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
 | |
|             put_bits(&pb, 16, samples[i] & 0xFFFF);
 | |
|             put_bits(&pb, 6, c->status[i].step_index);
 | |
|             c->status[i].prev_sample = (signed short)samples[i];
 | |
|         }
 | |
| 
 | |
|         if(avctx->trellis > 0) {
 | |
|             uint8_t buf[2][n];
 | |
|             adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
 | |
|             if (avctx->channels == 2)
 | |
|                 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
 | |
|             for(i=0; i<n; i++) {
 | |
|                 put_bits(&pb, 4, buf[0][i]);
 | |
|                 if (avctx->channels == 2)
 | |
|                     put_bits(&pb, 4, buf[1][i]);
 | |
|             }
 | |
|         } else {
 | |
|             for (i=1; i<avctx->frame_size; i++) {
 | |
|                 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
 | |
|                 if (avctx->channels == 2)
 | |
|                     put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
 | |
|             }
 | |
|         }
 | |
|         flush_put_bits(&pb);
 | |
|         dst += put_bits_count(&pb)>>3;
 | |
|         break;
 | |
|     }
 | |
|     case CODEC_ID_ADPCM_MS:
 | |
|         for(i=0; i<avctx->channels; i++){
 | |
|             int predictor=0;
 | |
| 
 | |
|             *dst++ = predictor;
 | |
|             c->status[i].coeff1 = AdaptCoeff1[predictor];
 | |
|             c->status[i].coeff2 = AdaptCoeff2[predictor];
 | |
|         }
 | |
|         for(i=0; i<avctx->channels; i++){
 | |
|             if (c->status[i].idelta < 16)
 | |
|                 c->status[i].idelta = 16;
 | |
| 
 | |
|             bytestream_put_le16(&dst, c->status[i].idelta);
 | |
|         }
 | |
|         for(i=0; i<avctx->channels; i++){
 | |
|             c->status[i].sample1= *samples++;
 | |
| 
 | |
|             bytestream_put_le16(&dst, c->status[i].sample1);
 | |
|         }
 | |
|         for(i=0; i<avctx->channels; i++){
 | |
|             c->status[i].sample2= *samples++;
 | |
| 
 | |
|             bytestream_put_le16(&dst, c->status[i].sample2);
 | |
|         }
 | |
| 
 | |
|         if(avctx->trellis > 0) {
 | |
|             int n = avctx->block_align - 7*avctx->channels;
 | |
|             uint8_t buf[2][n];
 | |
|             if(avctx->channels == 1) {
 | |
|                 n *= 2;
 | |
|                 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
 | |
|                 for(i=0; i<n; i+=2)
 | |
|                     *dst++ = (buf[0][i] << 4) | buf[0][i+1];
 | |
|             } else {
 | |
|                 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
 | |
|                 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
 | |
|                 for(i=0; i<n; i++)
 | |
|                     *dst++ = (buf[0][i] << 4) | buf[1][i];
 | |
|             }
 | |
|         } else
 | |
|         for(i=7*avctx->channels; i<avctx->block_align; i++) {
 | |
|             int nibble;
 | |
|             nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
 | |
|             nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
 | |
|             *dst++ = nibble;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_YAMAHA:
 | |
|         n = avctx->frame_size / 2;
 | |
|         if(avctx->trellis > 0) {
 | |
|             uint8_t buf[2][n*2];
 | |
|             n *= 2;
 | |
|             if(avctx->channels == 1) {
 | |
|                 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
 | |
|                 for(i=0; i<n; i+=2)
 | |
|                     *dst++ = buf[0][i] | (buf[0][i+1] << 4);
 | |
|             } else {
 | |
|                 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
 | |
|                 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
 | |
|                 for(i=0; i<n; i++)
 | |
|                     *dst++ = buf[0][i] | (buf[1][i] << 4);
 | |
|             }
 | |
|         } else
 | |
|         for (; n>0; n--) {
 | |
|             for(i = 0; i < avctx->channels; i++) {
 | |
|                 int nibble;
 | |
|                 nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
 | |
|                 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
 | |
|                 *dst++ = nibble;
 | |
|             }
 | |
|             samples += 2 * avctx->channels;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
|     return dst - frame;
 | |
| }
 | |
| #endif //CONFIG_ENCODERS
 | |
| 
 | |
| static int adpcm_decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     ADPCMContext *c = avctx->priv_data;
 | |
|     unsigned int max_channels = 2;
 | |
| 
 | |
|     switch(avctx->codec->id) {
 | |
|     case CODEC_ID_ADPCM_EA_R1:
 | |
|     case CODEC_ID_ADPCM_EA_R2:
 | |
|     case CODEC_ID_ADPCM_EA_R3:
 | |
|         max_channels = 6;
 | |
|         break;
 | |
|     }
 | |
|     if(avctx->channels > max_channels){
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     switch(avctx->codec->id) {
 | |
|     case CODEC_ID_ADPCM_CT:
 | |
|         c->status[0].step = c->status[1].step = 511;
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_WS:
 | |
|         if (avctx->extradata && avctx->extradata_size == 2 * 4) {
 | |
|             c->status[0].predictor = AV_RL32(avctx->extradata);
 | |
|             c->status[1].predictor = AV_RL32(avctx->extradata + 4);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
 | |
| {
 | |
|     int step_index;
 | |
|     int predictor;
 | |
|     int sign, delta, diff, step;
 | |
| 
 | |
|     step = step_table[c->step_index];
 | |
|     step_index = c->step_index + index_table[(unsigned)nibble];
 | |
|     if (step_index < 0) step_index = 0;
 | |
|     else if (step_index > 88) step_index = 88;
 | |
| 
 | |
|     sign = nibble & 8;
 | |
|     delta = nibble & 7;
 | |
|     /* perform direct multiplication instead of series of jumps proposed by
 | |
|      * the reference ADPCM implementation since modern CPUs can do the mults
 | |
|      * quickly enough */
 | |
|     diff = ((2 * delta + 1) * step) >> shift;
 | |
|     predictor = c->predictor;
 | |
|     if (sign) predictor -= diff;
 | |
|     else predictor += diff;
 | |
| 
 | |
|     c->predictor = av_clip_int16(predictor);
 | |
|     c->step_index = step_index;
 | |
| 
 | |
|     return (short)c->predictor;
 | |
| }
 | |
| 
 | |
| static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
 | |
| {
 | |
|     int predictor;
 | |
| 
 | |
|     predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
 | |
|     predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
 | |
| 
 | |
|     c->sample2 = c->sample1;
 | |
|     c->sample1 = av_clip_int16(predictor);
 | |
|     c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
 | |
|     if (c->idelta < 16) c->idelta = 16;
 | |
| 
 | |
|     return c->sample1;
 | |
| }
 | |
| 
 | |
| static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
 | |
| {
 | |
|     int sign, delta, diff;
 | |
|     int new_step;
 | |
| 
 | |
|     sign = nibble & 8;
 | |
|     delta = nibble & 7;
 | |
|     /* perform direct multiplication instead of series of jumps proposed by
 | |
|      * the reference ADPCM implementation since modern CPUs can do the mults
 | |
|      * quickly enough */
 | |
|     diff = ((2 * delta + 1) * c->step) >> 3;
 | |
|     /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
 | |
|     c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
 | |
|     c->predictor = av_clip_int16(c->predictor);
 | |
|     /* calculate new step and clamp it to range 511..32767 */
 | |
|     new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
 | |
|     c->step = av_clip(new_step, 511, 32767);
 | |
| 
 | |
|     return (short)c->predictor;
 | |
| }
 | |
| 
 | |
| static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
 | |
| {
 | |
|     int sign, delta, diff;
 | |
| 
 | |
|     sign = nibble & (1<<(size-1));
 | |
|     delta = nibble & ((1<<(size-1))-1);
 | |
|     diff = delta << (7 + c->step + shift);
 | |
| 
 | |
|     /* clamp result */
 | |
|     c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
 | |
| 
 | |
|     /* calculate new step */
 | |
|     if (delta >= (2*size - 3) && c->step < 3)
 | |
|         c->step++;
 | |
|     else if (delta == 0 && c->step > 0)
 | |
|         c->step--;
 | |
| 
 | |
|     return (short) c->predictor;
 | |
| }
 | |
| 
 | |
| static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
 | |
| {
 | |
|     if(!c->step) {
 | |
|         c->predictor = 0;
 | |
|         c->step = 127;
 | |
|     }
 | |
| 
 | |
|     c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
 | |
|     c->predictor = av_clip_int16(c->predictor);
 | |
|     c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
 | |
|     c->step = av_clip(c->step, 127, 24567);
 | |
|     return c->predictor;
 | |
| }
 | |
| 
 | |
| static void xa_decode(short *out, const unsigned char *in,
 | |
|     ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
 | |
| {
 | |
|     int i, j;
 | |
|     int shift,filter,f0,f1;
 | |
|     int s_1,s_2;
 | |
|     int d,s,t;
 | |
| 
 | |
|     for(i=0;i<4;i++) {
 | |
| 
 | |
|         shift  = 12 - (in[4+i*2] & 15);
 | |
|         filter = in[4+i*2] >> 4;
 | |
|         f0 = xa_adpcm_table[filter][0];
 | |
|         f1 = xa_adpcm_table[filter][1];
 | |
| 
 | |
|         s_1 = left->sample1;
 | |
|         s_2 = left->sample2;
 | |
| 
 | |
|         for(j=0;j<28;j++) {
 | |
|             d = in[16+i+j*4];
 | |
| 
 | |
|             t = (signed char)(d<<4)>>4;
 | |
|             s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
 | |
|             s_2 = s_1;
 | |
|             s_1 = av_clip_int16(s);
 | |
|             *out = s_1;
 | |
|             out += inc;
 | |
|         }
 | |
| 
 | |
|         if (inc==2) { /* stereo */
 | |
|             left->sample1 = s_1;
 | |
|             left->sample2 = s_2;
 | |
|             s_1 = right->sample1;
 | |
|             s_2 = right->sample2;
 | |
|             out = out + 1 - 28*2;
 | |
|         }
 | |
| 
 | |
|         shift  = 12 - (in[5+i*2] & 15);
 | |
|         filter = in[5+i*2] >> 4;
 | |
| 
 | |
|         f0 = xa_adpcm_table[filter][0];
 | |
|         f1 = xa_adpcm_table[filter][1];
 | |
| 
 | |
|         for(j=0;j<28;j++) {
 | |
|             d = in[16+i+j*4];
 | |
| 
 | |
|             t = (signed char)d >> 4;
 | |
|             s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
 | |
|             s_2 = s_1;
 | |
|             s_1 = av_clip_int16(s);
 | |
|             *out = s_1;
 | |
|             out += inc;
 | |
|         }
 | |
| 
 | |
|         if (inc==2) { /* stereo */
 | |
|             right->sample1 = s_1;
 | |
|             right->sample2 = s_2;
 | |
|             out -= 1;
 | |
|         } else {
 | |
|             left->sample1 = s_1;
 | |
|             left->sample2 = s_2;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* DK3 ADPCM support macro */
 | |
| #define DK3_GET_NEXT_NIBBLE() \
 | |
|     if (decode_top_nibble_next) \
 | |
|     { \
 | |
|         nibble = (last_byte >> 4) & 0x0F; \
 | |
|         decode_top_nibble_next = 0; \
 | |
|     } \
 | |
|     else \
 | |
|     { \
 | |
|         last_byte = *src++; \
 | |
|         if (src >= buf + buf_size) break; \
 | |
|         nibble = last_byte & 0x0F; \
 | |
|         decode_top_nibble_next = 1; \
 | |
|     }
 | |
| 
 | |
| static int adpcm_decode_frame(AVCodecContext *avctx,
 | |
|                             void *data, int *data_size,
 | |
|                             const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     ADPCMContext *c = avctx->priv_data;
 | |
|     ADPCMChannelStatus *cs;
 | |
|     int n, m, channel, i;
 | |
|     int block_predictor[2];
 | |
|     short *samples;
 | |
|     short *samples_end;
 | |
|     const uint8_t *src;
 | |
|     int st; /* stereo */
 | |
| 
 | |
|     /* DK3 ADPCM accounting variables */
 | |
|     unsigned char last_byte = 0;
 | |
|     unsigned char nibble;
 | |
|     int decode_top_nibble_next = 0;
 | |
|     int diff_channel;
 | |
| 
 | |
|     /* EA ADPCM state variables */
 | |
|     uint32_t samples_in_chunk;
 | |
|     int32_t previous_left_sample, previous_right_sample;
 | |
|     int32_t current_left_sample, current_right_sample;
 | |
|     int32_t next_left_sample, next_right_sample;
 | |
|     int32_t coeff1l, coeff2l, coeff1r, coeff2r;
 | |
|     uint8_t shift_left, shift_right;
 | |
|     int count1, count2;
 | |
| 
 | |
|     if (!buf_size)
 | |
|         return 0;
 | |
| 
 | |
|     //should protect all 4bit ADPCM variants
 | |
|     //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
 | |
|     //
 | |
|     if(*data_size/4 < buf_size + 8)
 | |
|         return -1;
 | |
| 
 | |
|     samples = data;
 | |
|     samples_end= samples + *data_size/2;
 | |
|     *data_size= 0;
 | |
|     src = buf;
 | |
| 
 | |
|     st = avctx->channels == 2 ? 1 : 0;
 | |
| 
 | |
|     switch(avctx->codec->id) {
 | |
|     case CODEC_ID_ADPCM_IMA_QT:
 | |
|         n = (buf_size - 2);/* >> 2*avctx->channels;*/
 | |
|         channel = c->channel;
 | |
|         cs = &(c->status[channel]);
 | |
|         /* (pppppp) (piiiiiii) */
 | |
| 
 | |
|         /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
 | |
|         cs->predictor = (*src++) << 8;
 | |
|         cs->predictor |= (*src & 0x80);
 | |
|         cs->predictor &= 0xFF80;
 | |
| 
 | |
|         /* sign extension */
 | |
|         if(cs->predictor & 0x8000)
 | |
|             cs->predictor -= 0x10000;
 | |
| 
 | |
|         cs->predictor = av_clip_int16(cs->predictor);
 | |
| 
 | |
|         cs->step_index = (*src++) & 0x7F;
 | |
| 
 | |
|         if (cs->step_index > 88){
 | |
|             av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
 | |
|             cs->step_index = 88;
 | |
|         }
 | |
| 
 | |
|         cs->step = step_table[cs->step_index];
 | |
| 
 | |
|         if (st && channel)
 | |
|             samples++;
 | |
| 
 | |
|         for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
 | |
|             *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
 | |
|             samples += avctx->channels;
 | |
|             *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
 | |
|             samples += avctx->channels;
 | |
|             src ++;
 | |
|         }
 | |
| 
 | |
|         if(st) { /* handle stereo interlacing */
 | |
|             c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
 | |
|             if(channel == 1) { /* wait for the other packet before outputing anything */
 | |
|                 return src - buf;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_WAV:
 | |
|         if (avctx->block_align != 0 && buf_size > avctx->block_align)
 | |
|             buf_size = avctx->block_align;
 | |
| 
 | |
| //        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
 | |
| 
 | |
|         for(i=0; i<avctx->channels; i++){
 | |
|             cs = &(c->status[i]);
 | |
|             cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8));
 | |
|             src+=2;
 | |
| 
 | |
|             cs->step_index = *src++;
 | |
|             if (cs->step_index > 88){
 | |
|                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
 | |
|                 cs->step_index = 88;
 | |
|             }
 | |
|             if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
 | |
|         }
 | |
| 
 | |
|         while(src < buf + buf_size){
 | |
|             for(m=0; m<4; m++){
 | |
|                 for(i=0; i<=st; i++)
 | |
|                     *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
 | |
|                 for(i=0; i<=st; i++)
 | |
|                     *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
 | |
|                 src++;
 | |
|             }
 | |
|             src += 4*st;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_4XM:
 | |
|         cs = &(c->status[0]);
 | |
|         c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
 | |
|         if(st){
 | |
|             c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
 | |
|         }
 | |
|         c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
 | |
|         if(st){
 | |
|             c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
 | |
|         }
 | |
|         if (cs->step_index < 0) cs->step_index = 0;
 | |
|         if (cs->step_index > 88) cs->step_index = 88;
 | |
| 
 | |
|         m= (buf_size - (src - buf))>>st;
 | |
|         for(i=0; i<m; i++) {
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
 | |
|             if (st)
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
 | |
|             if (st)
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
 | |
|         }
 | |
| 
 | |
|         src += m<<st;
 | |
| 
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_MS:
 | |
|         if (avctx->block_align != 0 && buf_size > avctx->block_align)
 | |
|             buf_size = avctx->block_align;
 | |
|         n = buf_size - 7 * avctx->channels;
 | |
|         if (n < 0)
 | |
|             return -1;
 | |
|         block_predictor[0] = av_clip(*src++, 0, 7);
 | |
|         block_predictor[1] = 0;
 | |
|         if (st)
 | |
|             block_predictor[1] = av_clip(*src++, 0, 7);
 | |
|         c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
 | |
|         src+=2;
 | |
|         if (st){
 | |
|             c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
 | |
|             src+=2;
 | |
|         }
 | |
|         c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
 | |
|         c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
 | |
|         c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
 | |
|         c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
 | |
| 
 | |
|         c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
 | |
|         src+=2;
 | |
|         if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
 | |
|         if (st) src+=2;
 | |
|         c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
 | |
|         src+=2;
 | |
|         if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
 | |
|         if (st) src+=2;
 | |
| 
 | |
|         *samples++ = c->status[0].sample1;
 | |
|         if (st) *samples++ = c->status[1].sample1;
 | |
|         *samples++ = c->status[0].sample2;
 | |
|         if (st) *samples++ = c->status[1].sample2;
 | |
|         for(;n>0;n--) {
 | |
|             *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
 | |
|             *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
 | |
|             src ++;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_DK4:
 | |
|         if (avctx->block_align != 0 && buf_size > avctx->block_align)
 | |
|             buf_size = avctx->block_align;
 | |
| 
 | |
|         c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
 | |
|         c->status[0].step_index = src[2];
 | |
|         src += 4;
 | |
|         *samples++ = c->status[0].predictor;
 | |
|         if (st) {
 | |
|             c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
 | |
|             c->status[1].step_index = src[2];
 | |
|             src += 4;
 | |
|             *samples++ = c->status[1].predictor;
 | |
|         }
 | |
|         while (src < buf + buf_size) {
 | |
| 
 | |
|             /* take care of the top nibble (always left or mono channel) */
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                 (src[0] >> 4) & 0x0F, 3);
 | |
| 
 | |
|             /* take care of the bottom nibble, which is right sample for
 | |
|              * stereo, or another mono sample */
 | |
|             if (st)
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
 | |
|                     src[0] & 0x0F, 3);
 | |
|             else
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                     src[0] & 0x0F, 3);
 | |
| 
 | |
|             src++;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_DK3:
 | |
|         if (avctx->block_align != 0 && buf_size > avctx->block_align)
 | |
|             buf_size = avctx->block_align;
 | |
| 
 | |
|         if(buf_size + 16 > (samples_end - samples)*3/8)
 | |
|             return -1;
 | |
| 
 | |
|         c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
 | |
|         c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
 | |
|         c->status[0].step_index = src[14];
 | |
|         c->status[1].step_index = src[15];
 | |
|         /* sign extend the predictors */
 | |
|         src += 16;
 | |
|         diff_channel = c->status[1].predictor;
 | |
| 
 | |
|         /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
 | |
|          * the buffer is consumed */
 | |
|         while (1) {
 | |
| 
 | |
|             /* for this algorithm, c->status[0] is the sum channel and
 | |
|              * c->status[1] is the diff channel */
 | |
| 
 | |
|             /* process the first predictor of the sum channel */
 | |
|             DK3_GET_NEXT_NIBBLE();
 | |
|             adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
 | |
| 
 | |
|             /* process the diff channel predictor */
 | |
|             DK3_GET_NEXT_NIBBLE();
 | |
|             adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
 | |
| 
 | |
|             /* process the first pair of stereo PCM samples */
 | |
|             diff_channel = (diff_channel + c->status[1].predictor) / 2;
 | |
|             *samples++ = c->status[0].predictor + c->status[1].predictor;
 | |
|             *samples++ = c->status[0].predictor - c->status[1].predictor;
 | |
| 
 | |
|             /* process the second predictor of the sum channel */
 | |
|             DK3_GET_NEXT_NIBBLE();
 | |
|             adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
 | |
| 
 | |
|             /* process the second pair of stereo PCM samples */
 | |
|             diff_channel = (diff_channel + c->status[1].predictor) / 2;
 | |
|             *samples++ = c->status[0].predictor + c->status[1].predictor;
 | |
|             *samples++ = c->status[0].predictor - c->status[1].predictor;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_WS:
 | |
|         /* no per-block initialization; just start decoding the data */
 | |
|         while (src < buf + buf_size) {
 | |
| 
 | |
|             if (st) {
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 4) & 0x0F, 3);
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
 | |
|                     src[0] & 0x0F, 3);
 | |
|             } else {
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 4) & 0x0F, 3);
 | |
|                 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                     src[0] & 0x0F, 3);
 | |
|             }
 | |
| 
 | |
|             src++;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_XA:
 | |
|         while (buf_size >= 128) {
 | |
|             xa_decode(samples, src, &c->status[0], &c->status[1],
 | |
|                 avctx->channels);
 | |
|             src += 128;
 | |
|             samples += 28 * 8;
 | |
|             buf_size -= 128;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_EA_EACS:
 | |
|         samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
 | |
| 
 | |
|         if (samples_in_chunk > buf_size-4-(8<<st)) {
 | |
|             src += buf_size - 4;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         for (i=0; i<=st; i++)
 | |
|             c->status[i].step_index = bytestream_get_le32(&src);
 | |
|         for (i=0; i<=st; i++)
 | |
|             c->status[i].predictor  = bytestream_get_le32(&src);
 | |
| 
 | |
|         for (; samples_in_chunk; samples_in_chunk--, src++) {
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_EA_SEAD:
 | |
|         for (; src < buf+buf_size; src++) {
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_EA:
 | |
|         samples_in_chunk = AV_RL32(src);
 | |
|         if (samples_in_chunk >= ((buf_size - 12) * 2)) {
 | |
|             src += buf_size;
 | |
|             break;
 | |
|         }
 | |
|         src += 4;
 | |
|         current_left_sample = (int16_t)AV_RL16(src);
 | |
|         src += 2;
 | |
|         previous_left_sample = (int16_t)AV_RL16(src);
 | |
|         src += 2;
 | |
|         current_right_sample = (int16_t)AV_RL16(src);
 | |
|         src += 2;
 | |
|         previous_right_sample = (int16_t)AV_RL16(src);
 | |
|         src += 2;
 | |
| 
 | |
|         for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
 | |
|             coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
 | |
|             coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
 | |
|             coeff1r = ea_adpcm_table[*src & 0x0F];
 | |
|             coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
 | |
|             src++;
 | |
| 
 | |
|             shift_left = ((*src >> 4) & 0x0F) + 8;
 | |
|             shift_right = (*src & 0x0F) + 8;
 | |
|             src++;
 | |
| 
 | |
|             for (count2 = 0; count2 < 28; count2++) {
 | |
|                 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
 | |
|                 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
 | |
|                 src++;
 | |
| 
 | |
|                 next_left_sample = (next_left_sample +
 | |
|                     (current_left_sample * coeff1l) +
 | |
|                     (previous_left_sample * coeff2l) + 0x80) >> 8;
 | |
|                 next_right_sample = (next_right_sample +
 | |
|                     (current_right_sample * coeff1r) +
 | |
|                     (previous_right_sample * coeff2r) + 0x80) >> 8;
 | |
| 
 | |
|                 previous_left_sample = current_left_sample;
 | |
|                 current_left_sample = av_clip_int16(next_left_sample);
 | |
|                 previous_right_sample = current_right_sample;
 | |
|                 current_right_sample = av_clip_int16(next_right_sample);
 | |
|                 *samples++ = (unsigned short)current_left_sample;
 | |
|                 *samples++ = (unsigned short)current_right_sample;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_EA_R1:
 | |
|     case CODEC_ID_ADPCM_EA_R2:
 | |
|     case CODEC_ID_ADPCM_EA_R3: {
 | |
|         /* channel numbering
 | |
|            2chan: 0=fl, 1=fr
 | |
|            4chan: 0=fl, 1=rl, 2=fr, 3=rr
 | |
|            6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
 | |
|         const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
 | |
|         int32_t previous_sample, current_sample, next_sample;
 | |
|         int32_t coeff1, coeff2;
 | |
|         uint8_t shift;
 | |
|         unsigned int channel;
 | |
|         uint16_t *samplesC;
 | |
|         const uint8_t *srcC;
 | |
| 
 | |
|         samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
 | |
|                                        : bytestream_get_le32(&src)) / 28;
 | |
|         if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
 | |
|             28*samples_in_chunk*avctx->channels > samples_end-samples) {
 | |
|             src += buf_size - 4;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         for (channel=0; channel<avctx->channels; channel++) {
 | |
|             srcC = src + (big_endian ? bytestream_get_be32(&src)
 | |
|                                      : bytestream_get_le32(&src))
 | |
|                        + (avctx->channels-channel-1) * 4;
 | |
|             samplesC = samples + channel;
 | |
| 
 | |
|             if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
 | |
|                 current_sample  = (int16_t)bytestream_get_le16(&srcC);
 | |
|                 previous_sample = (int16_t)bytestream_get_le16(&srcC);
 | |
|             } else {
 | |
|                 current_sample  = c->status[channel].predictor;
 | |
|                 previous_sample = c->status[channel].prev_sample;
 | |
|             }
 | |
| 
 | |
|             for (count1=0; count1<samples_in_chunk; count1++) {
 | |
|                 if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
 | |
|                     srcC++;
 | |
|                     current_sample  = (int16_t)bytestream_get_be16(&srcC);
 | |
|                     previous_sample = (int16_t)bytestream_get_be16(&srcC);
 | |
| 
 | |
|                     for (count2=0; count2<28; count2++) {
 | |
|                         *samplesC = (int16_t)bytestream_get_be16(&srcC);
 | |
|                         samplesC += avctx->channels;
 | |
|                     }
 | |
|                 } else {
 | |
|                     coeff1 = ea_adpcm_table[ (*srcC>>4) & 0x0F     ];
 | |
|                     coeff2 = ea_adpcm_table[((*srcC>>4) & 0x0F) + 4];
 | |
|                     shift = (*srcC++ & 0x0F) + 8;
 | |
| 
 | |
|                     for (count2=0; count2<28; count2++) {
 | |
|                         if (count2 & 1)
 | |
|                             next_sample = ((*srcC++ & 0x0F) << 28) >> shift;
 | |
|                         else
 | |
|                             next_sample = ((*srcC   & 0xF0) << 24) >> shift;
 | |
| 
 | |
|                         next_sample += (current_sample  * coeff1) +
 | |
|                                        (previous_sample * coeff2);
 | |
|                         next_sample = av_clip_int16(next_sample >> 8);
 | |
| 
 | |
|                         previous_sample = current_sample;
 | |
|                         current_sample  = next_sample;
 | |
|                         *samplesC = current_sample;
 | |
|                         samplesC += avctx->channels;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
 | |
|                 c->status[channel].predictor   = current_sample;
 | |
|                 c->status[channel].prev_sample = previous_sample;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         src = src + buf_size - (4 + 4*avctx->channels);
 | |
|         samples += 28 * samples_in_chunk * avctx->channels;
 | |
|         break;
 | |
|     }
 | |
|     case CODEC_ID_ADPCM_EA_XAS:
 | |
|         if (samples_end-samples < 32*4*avctx->channels
 | |
|             || buf_size < (4+15)*4*avctx->channels) {
 | |
|             src += buf_size;
 | |
|             break;
 | |
|         }
 | |
|         for (channel=0; channel<avctx->channels; channel++) {
 | |
|             int coeff[2][4], shift[4];
 | |
|             short *s2, *s = &samples[channel];
 | |
|             for (n=0; n<4; n++, s+=32*avctx->channels) {
 | |
|                 for (i=0; i<2; i++)
 | |
|                     coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
 | |
|                 shift[n] = (src[2]&0x0F) + 8;
 | |
|                 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
 | |
|                     s2[0] = (src[0]&0xF0) + (src[1]<<8);
 | |
|             }
 | |
| 
 | |
|             for (m=2; m<32; m+=2) {
 | |
|                 s = &samples[m*avctx->channels + channel];
 | |
|                 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
 | |
|                     for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
 | |
|                         int level = ((*src & (0xF0>>i)) << (24+i)) >> shift[n];
 | |
|                         int pred  = s2[-1*avctx->channels] * coeff[0][n]
 | |
|                                   + s2[-2*avctx->channels] * coeff[1][n];
 | |
|                         s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         samples += 32*4*avctx->channels;
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_IMA_AMV:
 | |
|     case CODEC_ID_ADPCM_IMA_SMJPEG:
 | |
|         c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
 | |
|         c->status[0].step_index = bytestream_get_le16(&src);
 | |
| 
 | |
|         if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
 | |
|             src+=4;
 | |
| 
 | |
|         while (src < buf + buf_size) {
 | |
|             char hi, lo;
 | |
|             lo = *src & 0x0F;
 | |
|             hi = (*src >> 4) & 0x0F;
 | |
| 
 | |
|             if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
 | |
|                 FFSWAP(char, hi, lo);
 | |
| 
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                 lo, 3);
 | |
|             *samples++ = adpcm_ima_expand_nibble(&c->status[0],
 | |
|                 hi, 3);
 | |
|             src++;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_CT:
 | |
|         while (src < buf + buf_size) {
 | |
|             if (st) {
 | |
|                 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 4) & 0x0F);
 | |
|                 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
 | |
|                     src[0] & 0x0F);
 | |
|             } else {
 | |
|                 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 4) & 0x0F);
 | |
|                 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
 | |
|                     src[0] & 0x0F);
 | |
|             }
 | |
|             src++;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_SBPRO_4:
 | |
|     case CODEC_ID_ADPCM_SBPRO_3:
 | |
|     case CODEC_ID_ADPCM_SBPRO_2:
 | |
|         if (!c->status[0].step_index) {
 | |
|             /* the first byte is a raw sample */
 | |
|             *samples++ = 128 * (*src++ - 0x80);
 | |
|             if (st)
 | |
|               *samples++ = 128 * (*src++ - 0x80);
 | |
|             c->status[0].step_index = 1;
 | |
|         }
 | |
|         if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
 | |
|             while (src < buf + buf_size) {
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 4) & 0x0F, 4, 0);
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
 | |
|                     src[0] & 0x0F, 4, 0);
 | |
|                 src++;
 | |
|             }
 | |
|         } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
 | |
|             while (src < buf + buf_size && samples + 2 < samples_end) {
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 5) & 0x07, 3, 0);
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 2) & 0x07, 3, 0);
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
 | |
|                     src[0] & 0x03, 2, 0);
 | |
|                 src++;
 | |
|             }
 | |
|         } else {
 | |
|             while (src < buf + buf_size && samples + 3 < samples_end) {
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 6) & 0x03, 2, 2);
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
 | |
|                     (src[0] >> 4) & 0x03, 2, 2);
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
 | |
|                     (src[0] >> 2) & 0x03, 2, 2);
 | |
|                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
 | |
|                     src[0] & 0x03, 2, 2);
 | |
|                 src++;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_SWF:
 | |
|     {
 | |
|         GetBitContext gb;
 | |
|         const int *table;
 | |
|         int k0, signmask, nb_bits, count;
 | |
|         int size = buf_size*8;
 | |
| 
 | |
|         init_get_bits(&gb, buf, size);
 | |
| 
 | |
|         //read bits & initial values
 | |
|         nb_bits = get_bits(&gb, 2)+2;
 | |
|         //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
 | |
|         table = swf_index_tables[nb_bits-2];
 | |
|         k0 = 1 << (nb_bits-2);
 | |
|         signmask = 1 << (nb_bits-1);
 | |
| 
 | |
|         while (get_bits_count(&gb) <= size - 22*avctx->channels) {
 | |
|             for (i = 0; i < avctx->channels; i++) {
 | |
|                 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
 | |
|                 c->status[i].step_index = get_bits(&gb, 6);
 | |
|             }
 | |
| 
 | |
|             for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
 | |
|                 int i;
 | |
| 
 | |
|                 for (i = 0; i < avctx->channels; i++) {
 | |
|                     // similar to IMA adpcm
 | |
|                     int delta = get_bits(&gb, nb_bits);
 | |
|                     int step = step_table[c->status[i].step_index];
 | |
|                     long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
 | |
|                     int k = k0;
 | |
| 
 | |
|                     do {
 | |
|                         if (delta & k)
 | |
|                             vpdiff += step;
 | |
|                         step >>= 1;
 | |
|                         k >>= 1;
 | |
|                     } while(k);
 | |
|                     vpdiff += step;
 | |
| 
 | |
|                     if (delta & signmask)
 | |
|                         c->status[i].predictor -= vpdiff;
 | |
|                     else
 | |
|                         c->status[i].predictor += vpdiff;
 | |
| 
 | |
|                     c->status[i].step_index += table[delta & (~signmask)];
 | |
| 
 | |
|                     c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
 | |
|                     c->status[i].predictor = av_clip_int16(c->status[i].predictor);
 | |
| 
 | |
|                     *samples++ = c->status[i].predictor;
 | |
|                     if (samples >= samples_end) {
 | |
|                         av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
 | |
|                         return -1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         src += buf_size;
 | |
|         break;
 | |
|     }
 | |
|     case CODEC_ID_ADPCM_YAMAHA:
 | |
|         while (src < buf + buf_size) {
 | |
|             if (st) {
 | |
|                 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
 | |
|                         src[0] & 0x0F);
 | |
|                 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
 | |
|                         (src[0] >> 4) & 0x0F);
 | |
|             } else {
 | |
|                 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
 | |
|                         src[0] & 0x0F);
 | |
|                 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
 | |
|                         (src[0] >> 4) & 0x0F);
 | |
|             }
 | |
|             src++;
 | |
|         }
 | |
|         break;
 | |
|     case CODEC_ID_ADPCM_THP:
 | |
|     {
 | |
|         int table[2][16];
 | |
|         unsigned int samplecnt;
 | |
|         int prev[2][2];
 | |
|         int ch;
 | |
| 
 | |
|         if (buf_size < 80) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "frame too small\n");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         src+=4;
 | |
|         samplecnt = bytestream_get_be32(&src);
 | |
| 
 | |
|         for (i = 0; i < 32; i++)
 | |
|             table[0][i] = (int16_t)bytestream_get_be16(&src);
 | |
| 
 | |
|         /* Initialize the previous sample.  */
 | |
|         for (i = 0; i < 4; i++)
 | |
|             prev[0][i] = (int16_t)bytestream_get_be16(&src);
 | |
| 
 | |
|         if (samplecnt >= (samples_end - samples) /  (st + 1)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         for (ch = 0; ch <= st; ch++) {
 | |
|             samples = (unsigned short *) data + ch;
 | |
| 
 | |
|             /* Read in every sample for this channel.  */
 | |
|             for (i = 0; i < samplecnt / 14; i++) {
 | |
|                 int index = (*src >> 4) & 7;
 | |
|                 unsigned int exp = 28 - (*src++ & 15);
 | |
|                 int factor1 = table[ch][index * 2];
 | |
|                 int factor2 = table[ch][index * 2 + 1];
 | |
| 
 | |
|                 /* Decode 14 samples.  */
 | |
|                 for (n = 0; n < 14; n++) {
 | |
|                     int32_t sampledat;
 | |
|                     if(n&1) sampledat=  *src++    <<28;
 | |
|                     else    sampledat= (*src&0xF0)<<24;
 | |
| 
 | |
|                     sampledat = ((prev[ch][0]*factor1
 | |
|                                 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
 | |
|                     *samples = av_clip_int16(sampledat);
 | |
|                     prev[ch][1] = prev[ch][0];
 | |
|                     prev[ch][0] = *samples++;
 | |
| 
 | |
|                     /* In case of stereo, skip one sample, this sample
 | |
|                        is for the other channel.  */
 | |
|                     samples += st;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* In the previous loop, in case stereo is used, samples is
 | |
|            increased exactly one time too often.  */
 | |
|         samples -= st;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|         return -1;
 | |
|     }
 | |
|     *data_size = (uint8_t *)samples - (uint8_t *)data;
 | |
|     return src - buf;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_ENCODERS
 | |
| #define ADPCM_ENCODER(id,name)                  \
 | |
| AVCodec name ## _encoder = {                    \
 | |
|     #name,                                      \
 | |
|     CODEC_TYPE_AUDIO,                           \
 | |
|     id,                                         \
 | |
|     sizeof(ADPCMContext),                       \
 | |
|     adpcm_encode_init,                          \
 | |
|     adpcm_encode_frame,                         \
 | |
|     adpcm_encode_close,                         \
 | |
|     NULL,                                       \
 | |
| };
 | |
| #else
 | |
| #define ADPCM_ENCODER(id,name)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DECODERS
 | |
| #define ADPCM_DECODER(id,name)                  \
 | |
| AVCodec name ## _decoder = {                    \
 | |
|     #name,                                      \
 | |
|     CODEC_TYPE_AUDIO,                           \
 | |
|     id,                                         \
 | |
|     sizeof(ADPCMContext),                       \
 | |
|     adpcm_decode_init,                          \
 | |
|     NULL,                                       \
 | |
|     NULL,                                       \
 | |
|     adpcm_decode_frame,                         \
 | |
| };
 | |
| #else
 | |
| #define ADPCM_DECODER(id,name)
 | |
| #endif
 | |
| 
 | |
| #define ADPCM_CODEC(id, name)                   \
 | |
| ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
 | |
| 
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead);
 | |
| ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
 | |
| ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
 | |
| ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
 | |
| ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp);
 | |
| ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa);
 | |
| ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
 | 
