mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-27 02:41:54 +08:00 
			
		
		
		
	 fd57f70c97
			
		
	
	fd57f70c97
	
	
	
		
			
			This reworks the code a bit and also disallows NULL contexts. Fixes Coverity CID 1396273, 1396279. Signed-off-by: Marton Balint <cus@passwd.hu>
		
			
				
	
	
		
			770 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			770 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2011 Jan Kokemüller
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  * This file is based on libebur128 which is available at
 | |
|  * https://github.com/jiixyj/libebur128/
 | |
|  *
 | |
|  * Libebur128 has the following copyright:
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
| */
 | |
| 
 | |
| #include "ebur128.h"
 | |
| 
 | |
| #include <float.h>
 | |
| #include <limits.h>
 | |
| #include <math.h>               /* You may have to define _USE_MATH_DEFINES if you use MSVC */
 | |
| 
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/mem.h"
 | |
| #include "libavutil/thread.h"
 | |
| 
 | |
| #define CHECK_ERROR(condition, errorcode, goto_point)                          \
 | |
|     if ((condition)) {                                                         \
 | |
|         errcode = (errorcode);                                                 \
 | |
|         goto goto_point;                                                       \
 | |
|     }
 | |
| 
 | |
| #define ALMOST_ZERO 0.000001
 | |
| 
 | |
| #define RELATIVE_GATE         (-10.0)
 | |
| #define RELATIVE_GATE_FACTOR  pow(10.0, RELATIVE_GATE / 10.0)
 | |
| #define MINUS_20DB            pow(10.0, -20.0 / 10.0)
 | |
| 
 | |
| struct FFEBUR128StateInternal {
 | |
|     /** Filtered audio data (used as ring buffer). */
 | |
|     double *audio_data;
 | |
|     /** Size of audio_data array. */
 | |
|     size_t audio_data_frames;
 | |
|     /** Current index for audio_data. */
 | |
|     size_t audio_data_index;
 | |
|     /** How many frames are needed for a gating block. Will correspond to 400ms
 | |
|      *  of audio at initialization, and 100ms after the first block (75% overlap
 | |
|      *  as specified in the 2011 revision of BS1770). */
 | |
|     unsigned long needed_frames;
 | |
|     /** The channel map. Has as many elements as there are channels. */
 | |
|     int *channel_map;
 | |
|     /** How many samples fit in 100ms (rounded). */
 | |
|     unsigned long samples_in_100ms;
 | |
|     /** BS.1770 filter coefficients (nominator). */
 | |
|     double b[5];
 | |
|     /** BS.1770 filter coefficients (denominator). */
 | |
|     double a[5];
 | |
|     /** BS.1770 filter state. */
 | |
|     double v[5][5];
 | |
|     /** Histograms, used to calculate LRA. */
 | |
|     unsigned long *block_energy_histogram;
 | |
|     unsigned long *short_term_block_energy_histogram;
 | |
|     /** Keeps track of when a new short term block is needed. */
 | |
|     size_t short_term_frame_counter;
 | |
|     /** Maximum sample peak, one per channel */
 | |
|     double *sample_peak;
 | |
|     /** The maximum window duration in ms. */
 | |
|     unsigned long window;
 | |
|     /** Data pointer array for interleaved data */
 | |
|     void **data_ptrs;
 | |
| };
 | |
| 
 | |
| static AVOnce histogram_init = AV_ONCE_INIT;
 | |
| static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
 | |
| static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];
 | |
| 
 | |
| static void ebur128_init_filter(FFEBUR128State * st)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     double f0 = 1681.974450955533;
 | |
|     double G = 3.999843853973347;
 | |
|     double Q = 0.7071752369554196;
 | |
| 
 | |
|     double K = tan(M_PI * f0 / (double) st->samplerate);
 | |
|     double Vh = pow(10.0, G / 20.0);
 | |
|     double Vb = pow(Vh, 0.4996667741545416);
 | |
| 
 | |
|     double pb[3] = { 0.0, 0.0, 0.0 };
 | |
|     double pa[3] = { 1.0, 0.0, 0.0 };
 | |
|     double rb[3] = { 1.0, -2.0, 1.0 };
 | |
|     double ra[3] = { 1.0, 0.0, 0.0 };
 | |
| 
 | |
|     double a0 = 1.0 + K / Q + K * K;
 | |
|     pb[0] = (Vh + Vb * K / Q + K * K) / a0;
 | |
|     pb[1] = 2.0 * (K * K - Vh) / a0;
 | |
|     pb[2] = (Vh - Vb * K / Q + K * K) / a0;
 | |
|     pa[1] = 2.0 * (K * K - 1.0) / a0;
 | |
|     pa[2] = (1.0 - K / Q + K * K) / a0;
 | |
| 
 | |
|     f0 = 38.13547087602444;
 | |
|     Q = 0.5003270373238773;
 | |
|     K = tan(M_PI * f0 / (double) st->samplerate);
 | |
| 
 | |
|     ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
 | |
|     ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
 | |
| 
 | |
|     st->d->b[0] = pb[0] * rb[0];
 | |
|     st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
 | |
|     st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
 | |
|     st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
 | |
|     st->d->b[4] = pb[2] * rb[2];
 | |
| 
 | |
|     st->d->a[0] = pa[0] * ra[0];
 | |
|     st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
 | |
|     st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
 | |
|     st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
 | |
|     st->d->a[4] = pa[2] * ra[2];
 | |
| 
 | |
|     for (i = 0; i < 5; ++i) {
 | |
|         for (j = 0; j < 5; ++j) {
 | |
|             st->d->v[i][j] = 0.0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int ebur128_init_channel_map(FFEBUR128State * st)
 | |
| {
 | |
|     size_t i;
 | |
|     st->d->channel_map =
 | |
|         (int *) av_malloc_array(st->channels, sizeof(int));
 | |
|     if (!st->d->channel_map)
 | |
|         return AVERROR(ENOMEM);
 | |
|     if (st->channels == 4) {
 | |
|         st->d->channel_map[0] = FF_EBUR128_LEFT;
 | |
|         st->d->channel_map[1] = FF_EBUR128_RIGHT;
 | |
|         st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
 | |
|         st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
 | |
|     } else if (st->channels == 5) {
 | |
|         st->d->channel_map[0] = FF_EBUR128_LEFT;
 | |
|         st->d->channel_map[1] = FF_EBUR128_RIGHT;
 | |
|         st->d->channel_map[2] = FF_EBUR128_CENTER;
 | |
|         st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
 | |
|         st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
 | |
|     } else {
 | |
|         for (i = 0; i < st->channels; ++i) {
 | |
|             switch (i) {
 | |
|             case 0:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_LEFT;
 | |
|                 break;
 | |
|             case 1:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_RIGHT;
 | |
|                 break;
 | |
|             case 2:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_CENTER;
 | |
|                 break;
 | |
|             case 3:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_UNUSED;
 | |
|                 break;
 | |
|             case 4:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
 | |
|                 break;
 | |
|             case 5:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
 | |
|                 break;
 | |
|             default:
 | |
|                 st->d->channel_map[i] = FF_EBUR128_UNUSED;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void init_histogram(void)
 | |
| {
 | |
|     int i;
 | |
|     /* initialize static constants */
 | |
|     histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
 | |
|     for (i = 0; i < 1000; ++i) {
 | |
|         histogram_energies[i] =
 | |
|             pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
 | |
|     }
 | |
|     for (i = 1; i < 1001; ++i) {
 | |
|         histogram_energy_boundaries[i] =
 | |
|             pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| FFEBUR128State *ff_ebur128_init(unsigned int channels,
 | |
|                                 unsigned long samplerate,
 | |
|                                 unsigned long window, int mode)
 | |
| {
 | |
|     int errcode;
 | |
|     FFEBUR128State *st;
 | |
| 
 | |
|     st = (FFEBUR128State *) av_malloc(sizeof(FFEBUR128State));
 | |
|     CHECK_ERROR(!st, 0, exit)
 | |
|     st->d = (struct FFEBUR128StateInternal *)
 | |
|         av_malloc(sizeof(struct FFEBUR128StateInternal));
 | |
|     CHECK_ERROR(!st->d, 0, free_state)
 | |
|     st->channels = channels;
 | |
|     errcode = ebur128_init_channel_map(st);
 | |
|     CHECK_ERROR(errcode, 0, free_internal)
 | |
| 
 | |
|     st->d->sample_peak =
 | |
|         (double *) av_mallocz_array(channels, sizeof(double));
 | |
|     CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)
 | |
| 
 | |
|     st->samplerate = samplerate;
 | |
|     st->d->samples_in_100ms = (st->samplerate + 5) / 10;
 | |
|     st->mode = mode;
 | |
|     if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
 | |
|         st->d->window = FFMAX(window, 3000);
 | |
|     } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
 | |
|         st->d->window = FFMAX(window, 400);
 | |
|     } else {
 | |
|         goto free_sample_peak;
 | |
|     }
 | |
|     st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
 | |
|     if (st->d->audio_data_frames % st->d->samples_in_100ms) {
 | |
|         /* round up to multiple of samples_in_100ms */
 | |
|         st->d->audio_data_frames = st->d->audio_data_frames
 | |
|             + st->d->samples_in_100ms
 | |
|             - (st->d->audio_data_frames % st->d->samples_in_100ms);
 | |
|     }
 | |
|     st->d->audio_data =
 | |
|         (double *) av_mallocz_array(st->d->audio_data_frames,
 | |
|                                     st->channels * sizeof(double));
 | |
|     CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)
 | |
| 
 | |
|     ebur128_init_filter(st);
 | |
| 
 | |
|     st->d->block_energy_histogram =
 | |
|         av_mallocz(1000 * sizeof(unsigned long));
 | |
|     CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
 | |
|     st->d->short_term_block_energy_histogram =
 | |
|         av_mallocz(1000 * sizeof(unsigned long));
 | |
|     CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
 | |
|                 free_block_energy_histogram)
 | |
|     st->d->short_term_frame_counter = 0;
 | |
| 
 | |
|     /* the first block needs 400ms of audio data */
 | |
|     st->d->needed_frames = st->d->samples_in_100ms * 4;
 | |
|     /* start at the beginning of the buffer */
 | |
|     st->d->audio_data_index = 0;
 | |
| 
 | |
|     if (ff_thread_once(&histogram_init, &init_histogram) != 0)
 | |
|         goto free_short_term_block_energy_histogram;
 | |
| 
 | |
|     st->d->data_ptrs = av_malloc_array(channels, sizeof(void *));
 | |
|     CHECK_ERROR(!st->d->data_ptrs, 0,
 | |
|                 free_short_term_block_energy_histogram);
 | |
| 
 | |
|     return st;
 | |
| 
 | |
| free_short_term_block_energy_histogram:
 | |
|     av_free(st->d->short_term_block_energy_histogram);
 | |
| free_block_energy_histogram:
 | |
|     av_free(st->d->block_energy_histogram);
 | |
| free_audio_data:
 | |
|     av_free(st->d->audio_data);
 | |
| free_sample_peak:
 | |
|     av_free(st->d->sample_peak);
 | |
| free_channel_map:
 | |
|     av_free(st->d->channel_map);
 | |
| free_internal:
 | |
|     av_free(st->d);
 | |
| free_state:
 | |
|     av_free(st);
 | |
| exit:
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void ff_ebur128_destroy(FFEBUR128State ** st)
 | |
| {
 | |
|     av_free((*st)->d->block_energy_histogram);
 | |
|     av_free((*st)->d->short_term_block_energy_histogram);
 | |
|     av_free((*st)->d->audio_data);
 | |
|     av_free((*st)->d->channel_map);
 | |
|     av_free((*st)->d->sample_peak);
 | |
|     av_free((*st)->d->data_ptrs);
 | |
|     av_free((*st)->d);
 | |
|     av_free(*st);
 | |
|     *st = NULL;
 | |
| }
 | |
| 
 | |
| #define EBUR128_FILTER(type, scaling_factor)                                       \
 | |
| static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs,           \
 | |
|                                   size_t src_index, size_t frames,                 \
 | |
|                                   int stride) {                                    \
 | |
|     double* audio_data = st->d->audio_data + st->d->audio_data_index;              \
 | |
|     size_t i, c;                                                                   \
 | |
|                                                                                    \
 | |
|     if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
 | |
|         for (c = 0; c < st->channels; ++c) {                                       \
 | |
|             double max = 0.0;                                                      \
 | |
|             for (i = 0; i < frames; ++i) {                                         \
 | |
|                 type v = srcs[c][src_index + i * stride];                          \
 | |
|                 if (v > max) {                                                     \
 | |
|                     max =        v;                                                \
 | |
|                 } else if (-v > max) {                                             \
 | |
|                     max = -1.0 * v;                                                \
 | |
|                 }                                                                  \
 | |
|             }                                                                      \
 | |
|             max /= scaling_factor;                                                 \
 | |
|             if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max;          \
 | |
|         }                                                                          \
 | |
|     }                                                                              \
 | |
|     for (c = 0; c < st->channels; ++c) {                                           \
 | |
|         int ci = st->d->channel_map[c] - 1;                                        \
 | |
|         if (ci < 0) continue;                                                      \
 | |
|         else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */            \
 | |
|         for (i = 0; i < frames; ++i) {                                             \
 | |
|             st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
 | |
|                          - st->d->a[1] * st->d->v[ci][1]                           \
 | |
|                          - st->d->a[2] * st->d->v[ci][2]                           \
 | |
|                          - st->d->a[3] * st->d->v[ci][3]                           \
 | |
|                          - st->d->a[4] * st->d->v[ci][4];                          \
 | |
|             audio_data[i * st->channels + c] =                                     \
 | |
|                            st->d->b[0] * st->d->v[ci][0]                           \
 | |
|                          + st->d->b[1] * st->d->v[ci][1]                           \
 | |
|                          + st->d->b[2] * st->d->v[ci][2]                           \
 | |
|                          + st->d->b[3] * st->d->v[ci][3]                           \
 | |
|                          + st->d->b[4] * st->d->v[ci][4];                          \
 | |
|             st->d->v[ci][4] = st->d->v[ci][3];                                     \
 | |
|             st->d->v[ci][3] = st->d->v[ci][2];                                     \
 | |
|             st->d->v[ci][2] = st->d->v[ci][1];                                     \
 | |
|             st->d->v[ci][1] = st->d->v[ci][0];                                     \
 | |
|         }                                                                          \
 | |
|         st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
 | |
|         st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
 | |
|         st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
 | |
|         st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
 | |
|     }                                                                              \
 | |
| }
 | |
| EBUR128_FILTER(short, -((double)SHRT_MIN))
 | |
| EBUR128_FILTER(int, -((double)INT_MIN))
 | |
| EBUR128_FILTER(float,  1.0)
 | |
| EBUR128_FILTER(double, 1.0)
 | |
| 
 | |
| static double ebur128_energy_to_loudness(double energy)
 | |
| {
 | |
|     return 10 * (log(energy) / log(10.0)) - 0.691;
 | |
| }
 | |
| 
 | |
| static size_t find_histogram_index(double energy)
 | |
| {
 | |
|     size_t index_min = 0;
 | |
|     size_t index_max = 1000;
 | |
|     size_t index_mid;
 | |
| 
 | |
|     do {
 | |
|         index_mid = (index_min + index_max) / 2;
 | |
|         if (energy >= histogram_energy_boundaries[index_mid]) {
 | |
|             index_min = index_mid;
 | |
|         } else {
 | |
|             index_max = index_mid;
 | |
|         }
 | |
|     } while (index_max - index_min != 1);
 | |
| 
 | |
|     return index_min;
 | |
| }
 | |
| 
 | |
| static void ebur128_calc_gating_block(FFEBUR128State * st,
 | |
|                                       size_t frames_per_block,
 | |
|                                       double *optional_output)
 | |
| {
 | |
|     size_t i, c;
 | |
|     double sum = 0.0;
 | |
|     double channel_sum;
 | |
|     for (c = 0; c < st->channels; ++c) {
 | |
|         if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
 | |
|             continue;
 | |
|         channel_sum = 0.0;
 | |
|         if (st->d->audio_data_index < frames_per_block * st->channels) {
 | |
|             for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
 | |
|                 channel_sum += st->d->audio_data[i * st->channels + c] *
 | |
|                     st->d->audio_data[i * st->channels + c];
 | |
|             }
 | |
|             for (i = st->d->audio_data_frames -
 | |
|                  (frames_per_block -
 | |
|                   st->d->audio_data_index / st->channels);
 | |
|                  i < st->d->audio_data_frames; ++i) {
 | |
|                 channel_sum += st->d->audio_data[i * st->channels + c] *
 | |
|                     st->d->audio_data[i * st->channels + c];
 | |
|             }
 | |
|         } else {
 | |
|             for (i =
 | |
|                  st->d->audio_data_index / st->channels - frames_per_block;
 | |
|                  i < st->d->audio_data_index / st->channels; ++i) {
 | |
|                 channel_sum +=
 | |
|                     st->d->audio_data[i * st->channels +
 | |
|                                       c] * st->d->audio_data[i *
 | |
|                                                              st->channels +
 | |
|                                                              c];
 | |
|             }
 | |
|         }
 | |
|         if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
 | |
|             st->d->channel_map[c] == FF_EBUR128_Mm110 ||
 | |
|             st->d->channel_map[c] == FF_EBUR128_Mp060 ||
 | |
|             st->d->channel_map[c] == FF_EBUR128_Mm060 ||
 | |
|             st->d->channel_map[c] == FF_EBUR128_Mp090 ||
 | |
|             st->d->channel_map[c] == FF_EBUR128_Mm090) {
 | |
|             channel_sum *= 1.41;
 | |
|         } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
 | |
|             channel_sum *= 2.0;
 | |
|         }
 | |
|         sum += channel_sum;
 | |
|     }
 | |
|     sum /= (double) frames_per_block;
 | |
|     if (optional_output) {
 | |
|         *optional_output = sum;
 | |
|     } else if (sum >= histogram_energy_boundaries[0]) {
 | |
|         ++st->d->block_energy_histogram[find_histogram_index(sum)];
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_ebur128_set_channel(FFEBUR128State * st,
 | |
|                            unsigned int channel_number, int value)
 | |
| {
 | |
|     if (channel_number >= st->channels) {
 | |
|         return 1;
 | |
|     }
 | |
|     if (value == FF_EBUR128_DUAL_MONO &&
 | |
|         (st->channels != 1 || channel_number != 0)) {
 | |
|         return 1;
 | |
|     }
 | |
|     st->d->channel_map[channel_number] = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
 | |
| #define FF_EBUR128_ADD_FRAMES_PLANAR(type)                                             \
 | |
| void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs,        \
 | |
|                                  size_t frames, int stride) {                          \
 | |
|     size_t src_index = 0;                                                              \
 | |
|     while (frames > 0) {                                                               \
 | |
|         if (frames >= st->d->needed_frames) {                                          \
 | |
|             ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride);  \
 | |
|             src_index += st->d->needed_frames * stride;                                \
 | |
|             frames -= st->d->needed_frames;                                            \
 | |
|             st->d->audio_data_index += st->d->needed_frames * st->channels;            \
 | |
|             /* calculate the new gating block */                                       \
 | |
|             if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) {                 \
 | |
|                 ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL);      \
 | |
|             }                                                                          \
 | |
|             if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
 | |
|                 st->d->short_term_frame_counter += st->d->needed_frames;               \
 | |
|                 if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
 | |
|                     double st_energy;                                                  \
 | |
|                     ebur128_energy_shortterm(st, &st_energy);                          \
 | |
|                     if (st_energy >= histogram_energy_boundaries[0]) {                 \
 | |
|                         ++st->d->short_term_block_energy_histogram[                    \
 | |
|                                                     find_histogram_index(st_energy)];  \
 | |
|                     }                                                                  \
 | |
|                     st->d->short_term_frame_counter = st->d->samples_in_100ms * 20;    \
 | |
|                 }                                                                      \
 | |
|             }                                                                          \
 | |
|             /* 100ms are needed for all blocks besides the first one */                \
 | |
|             st->d->needed_frames = st->d->samples_in_100ms;                            \
 | |
|             /* reset audio_data_index when buffer full */                              \
 | |
|             if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) {  \
 | |
|                 st->d->audio_data_index = 0;                                           \
 | |
|             }                                                                          \
 | |
|         } else {                                                                       \
 | |
|             ebur128_filter_##type(st, srcs, src_index, frames, stride);                \
 | |
|             st->d->audio_data_index += frames * st->channels;                          \
 | |
|             if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
 | |
|                 st->d->short_term_frame_counter += frames;                             \
 | |
|             }                                                                          \
 | |
|             st->d->needed_frames -= frames;                                            \
 | |
|             frames = 0;                                                                \
 | |
|         }                                                                              \
 | |
|     }                                                                                  \
 | |
| }
 | |
| FF_EBUR128_ADD_FRAMES_PLANAR(short)
 | |
| FF_EBUR128_ADD_FRAMES_PLANAR(int)
 | |
| FF_EBUR128_ADD_FRAMES_PLANAR(float)
 | |
| FF_EBUR128_ADD_FRAMES_PLANAR(double)
 | |
| #define FF_EBUR128_ADD_FRAMES(type)                                            \
 | |
| void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src,         \
 | |
|                                     size_t frames) {                           \
 | |
|   int i;                                                                       \
 | |
|   const type **buf = (const type**)st->d->data_ptrs;                           \
 | |
|   for (i = 0; i < st->channels; i++)                                           \
 | |
|     buf[i] = src + i;                                                          \
 | |
|   ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels);          \
 | |
| }
 | |
| FF_EBUR128_ADD_FRAMES(short)
 | |
| FF_EBUR128_ADD_FRAMES(int)
 | |
| FF_EBUR128_ADD_FRAMES(float)
 | |
| FF_EBUR128_ADD_FRAMES(double)
 | |
| 
 | |
| static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
 | |
|                                            double *relative_threshold)
 | |
| {
 | |
|     size_t i, j;
 | |
|     int above_thresh_counter = 0;
 | |
|     *relative_threshold = 0.0;
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
 | |
|         for (j = 0; j < 1000; ++j) {
 | |
|             *relative_threshold += block_energy_histogram[j] * histogram_energies[j];
 | |
|             above_thresh_counter += block_energy_histogram[j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (above_thresh_counter != 0) {
 | |
|         *relative_threshold /= (double)above_thresh_counter;
 | |
|         *relative_threshold *= RELATIVE_GATE_FACTOR;
 | |
|     }
 | |
| 
 | |
|     return above_thresh_counter;
 | |
| }
 | |
| 
 | |
| static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
 | |
|                                   double *out)
 | |
| {
 | |
|     double gated_loudness = 0.0;
 | |
|     double relative_threshold;
 | |
|     size_t above_thresh_counter;
 | |
|     size_t i, j, start_index;
 | |
| 
 | |
|     for (i = 0; i < size; i++)
 | |
|         if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
 | |
|             return AVERROR(EINVAL);
 | |
| 
 | |
|     if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
 | |
|         *out = -HUGE_VAL;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     above_thresh_counter = 0;
 | |
|     if (relative_threshold < histogram_energy_boundaries[0]) {
 | |
|         start_index = 0;
 | |
|     } else {
 | |
|         start_index = find_histogram_index(relative_threshold);
 | |
|         if (relative_threshold > histogram_energies[start_index]) {
 | |
|             ++start_index;
 | |
|         }
 | |
|     }
 | |
|     for (i = 0; i < size; i++) {
 | |
|         for (j = start_index; j < 1000; ++j) {
 | |
|             gated_loudness += sts[i]->d->block_energy_histogram[j] *
 | |
|                 histogram_energies[j];
 | |
|             above_thresh_counter += sts[i]->d->block_energy_histogram[j];
 | |
|         }
 | |
|     }
 | |
|     if (!above_thresh_counter) {
 | |
|         *out = -HUGE_VAL;
 | |
|         return 0;
 | |
|     }
 | |
|     gated_loudness /= (double) above_thresh_counter;
 | |
|     *out = ebur128_energy_to_loudness(gated_loudness);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
 | |
| {
 | |
|     double relative_threshold;
 | |
| 
 | |
|     if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
 | |
|         *out = -70.0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     *out = ebur128_energy_to_loudness(relative_threshold);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
 | |
| {
 | |
|     return ebur128_gated_loudness(&st, 1, out);
 | |
| }
 | |
| 
 | |
| int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size,
 | |
|                                         double *out)
 | |
| {
 | |
|     return ebur128_gated_loudness(sts, size, out);
 | |
| }
 | |
| 
 | |
| static int ebur128_energy_in_interval(FFEBUR128State * st,
 | |
|                                       size_t interval_frames, double *out)
 | |
| {
 | |
|     if (interval_frames > st->d->audio_data_frames) {
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     ebur128_calc_gating_block(st, interval_frames, out);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
 | |
| {
 | |
|     return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
 | |
|                                       out);
 | |
| }
 | |
| 
 | |
| int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out)
 | |
| {
 | |
|     double energy;
 | |
|     int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4,
 | |
|                                            &energy);
 | |
|     if (error) {
 | |
|         return error;
 | |
|     } else if (energy <= 0.0) {
 | |
|         *out = -HUGE_VAL;
 | |
|         return 0;
 | |
|     }
 | |
|     *out = ebur128_energy_to_loudness(energy);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
 | |
| {
 | |
|     double energy;
 | |
|     int error = ebur128_energy_shortterm(st, &energy);
 | |
|     if (error) {
 | |
|         return error;
 | |
|     } else if (energy <= 0.0) {
 | |
|         *out = -HUGE_VAL;
 | |
|         return 0;
 | |
|     }
 | |
|     *out = ebur128_energy_to_loudness(energy);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_ebur128_loudness_window(FFEBUR128State * st,
 | |
|                                unsigned long window, double *out)
 | |
| {
 | |
|     double energy;
 | |
|     size_t interval_frames = st->samplerate * window / 1000;
 | |
|     int error = ebur128_energy_in_interval(st, interval_frames, &energy);
 | |
|     if (error) {
 | |
|         return error;
 | |
|     } else if (energy <= 0.0) {
 | |
|         *out = -HUGE_VAL;
 | |
|         return 0;
 | |
|     }
 | |
|     *out = ebur128_energy_to_loudness(energy);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* EBU - TECH 3342 */
 | |
| int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
 | |
|                                        double *out)
 | |
| {
 | |
|     size_t i, j;
 | |
|     size_t stl_size;
 | |
|     double stl_power, stl_integrated;
 | |
|     /* High and low percentile energy */
 | |
|     double h_en, l_en;
 | |
|     unsigned long hist[1000] = { 0 };
 | |
|     size_t percentile_low, percentile_high;
 | |
|     size_t index;
 | |
| 
 | |
|     for (i = 0; i < size; ++i) {
 | |
|         if (sts[i]) {
 | |
|             if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
 | |
|                 FF_EBUR128_MODE_LRA) {
 | |
|                 return AVERROR(EINVAL);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     stl_size = 0;
 | |
|     stl_power = 0.0;
 | |
|     for (i = 0; i < size; ++i) {
 | |
|         if (!sts[i])
 | |
|             continue;
 | |
|         for (j = 0; j < 1000; ++j) {
 | |
|             hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
 | |
|             stl_size += sts[i]->d->short_term_block_energy_histogram[j];
 | |
|             stl_power += sts[i]->d->short_term_block_energy_histogram[j]
 | |
|                 * histogram_energies[j];
 | |
|         }
 | |
|     }
 | |
|     if (!stl_size) {
 | |
|         *out = 0.0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     stl_power /= stl_size;
 | |
|     stl_integrated = MINUS_20DB * stl_power;
 | |
| 
 | |
|     if (stl_integrated < histogram_energy_boundaries[0]) {
 | |
|         index = 0;
 | |
|     } else {
 | |
|         index = find_histogram_index(stl_integrated);
 | |
|         if (stl_integrated > histogram_energies[index]) {
 | |
|             ++index;
 | |
|         }
 | |
|     }
 | |
|     stl_size = 0;
 | |
|     for (j = index; j < 1000; ++j) {
 | |
|         stl_size += hist[j];
 | |
|     }
 | |
|     if (!stl_size) {
 | |
|         *out = 0.0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
 | |
|     percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);
 | |
| 
 | |
|     stl_size = 0;
 | |
|     j = index;
 | |
|     while (stl_size <= percentile_low) {
 | |
|         stl_size += hist[j++];
 | |
|     }
 | |
|     l_en = histogram_energies[j - 1];
 | |
|     while (stl_size <= percentile_high) {
 | |
|         stl_size += hist[j++];
 | |
|     }
 | |
|     h_en = histogram_energies[j - 1];
 | |
|     *out =
 | |
|         ebur128_energy_to_loudness(h_en) -
 | |
|         ebur128_energy_to_loudness(l_en);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
 | |
| {
 | |
|     return ff_ebur128_loudness_range_multiple(&st, 1, out);
 | |
| }
 | |
| 
 | |
| int ff_ebur128_sample_peak(FFEBUR128State * st,
 | |
|                            unsigned int channel_number, double *out)
 | |
| {
 | |
|     if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
 | |
|         FF_EBUR128_MODE_SAMPLE_PEAK) {
 | |
|         return AVERROR(EINVAL);
 | |
|     } else if (channel_number >= st->channels) {
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     *out = st->d->sample_peak[channel_number];
 | |
|     return 0;
 | |
| }
 |