mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 04:02:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			388 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			388 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Atrac 1 compatible decoder
 | |
|  * Copyright (c) 2009 Maxim Poliakovski
 | |
|  * Copyright (c) 2009 Benjamin Larsson
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Atrac 1 compatible decoder.
 | |
|  * This decoder handles raw ATRAC1 data and probably SDDS data.
 | |
|  */
 | |
| 
 | |
| /* Many thanks to Tim Craig for all the help! */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "fft.h"
 | |
| #include "internal.h"
 | |
| #include "sinewin.h"
 | |
| 
 | |
| #include "atrac.h"
 | |
| #include "atrac1data.h"
 | |
| 
 | |
| #define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
 | |
| #define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
 | |
| #define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
 | |
| #define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
 | |
| #define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
 | |
| #define AT1_MAX_CHANNELS 2
 | |
| 
 | |
| #define AT1_QMF_BANDS    3
 | |
| #define IDX_LOW_BAND     0
 | |
| #define IDX_MID_BAND     1
 | |
| #define IDX_HIGH_BAND    2
 | |
| 
 | |
| /**
 | |
|  * Sound unit struct, one unit is used per channel
 | |
|  */
 | |
| typedef struct {
 | |
|     int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
 | |
|     int                 num_bfus;                           ///< number of Block Floating Units
 | |
|     float*              spectrum[2];
 | |
|     DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
 | |
|     DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
 | |
|     DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
 | |
|     DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
 | |
|     DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23];    ///< delay line for the last stacked QMF filter
 | |
| } AT1SUCtx;
 | |
| 
 | |
| /**
 | |
|  * The atrac1 context, holds all needed parameters for decoding
 | |
|  */
 | |
| typedef struct {
 | |
|     AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
 | |
|     DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
 | |
| 
 | |
|     DECLARE_ALIGNED(32, float,  low)[256];
 | |
|     DECLARE_ALIGNED(32, float,  mid)[256];
 | |
|     DECLARE_ALIGNED(32, float, high)[512];
 | |
|     float*              bands[3];
 | |
|     FFTContext          mdct_ctx[3];
 | |
|     AVFloatDSPContext   fdsp;
 | |
| } AT1Ctx;
 | |
| 
 | |
| /** size of the transform in samples in the long mode for each QMF band */
 | |
| static const uint16_t samples_per_band[3] = {128, 128, 256};
 | |
| static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
 | |
| 
 | |
| 
 | |
| static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
 | |
|                       int rev_spec)
 | |
| {
 | |
|     FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
 | |
|     int transf_size = 1 << nbits;
 | |
| 
 | |
|     if (rev_spec) {
 | |
|         int i;
 | |
|         for (i = 0; i < transf_size / 2; i++)
 | |
|             FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
 | |
|     }
 | |
|     mdct_context->imdct_half(mdct_context, out, spec);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
 | |
| {
 | |
|     int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
 | |
|     unsigned int start_pos, ref_pos = 0, pos = 0;
 | |
| 
 | |
|     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
 | |
|         float *prev_buf;
 | |
|         int j;
 | |
| 
 | |
|         band_samples = samples_per_band[band_num];
 | |
|         log2_block_count = su->log2_block_count[band_num];
 | |
| 
 | |
|         /* number of mdct blocks in the current QMF band: 1 - for long mode */
 | |
|         /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
 | |
|         num_blocks = 1 << log2_block_count;
 | |
| 
 | |
|         if (num_blocks == 1) {
 | |
|             /* mdct block size in samples: 128 (long mode, low & mid bands), */
 | |
|             /* 256 (long mode, high band) and 32 (short mode, all bands) */
 | |
|             block_size = band_samples >> log2_block_count;
 | |
| 
 | |
|             /* calc transform size in bits according to the block_size_mode */
 | |
|             nbits = mdct_long_nbits[band_num] - log2_block_count;
 | |
| 
 | |
|             if (nbits != 5 && nbits != 7 && nbits != 8)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|         } else {
 | |
|             block_size = 32;
 | |
|             nbits = 5;
 | |
|         }
 | |
| 
 | |
|         start_pos = 0;
 | |
|         prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
 | |
|         for (j=0; j < num_blocks; j++) {
 | |
|             at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
 | |
| 
 | |
|             /* overlap and window */
 | |
|             q->fdsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
 | |
|                                        &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
 | |
| 
 | |
|             prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
 | |
|             start_pos += block_size;
 | |
|             pos += block_size;
 | |
|         }
 | |
| 
 | |
|         if (num_blocks == 1)
 | |
|             memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
 | |
| 
 | |
|         ref_pos += band_samples;
 | |
|     }
 | |
| 
 | |
|     /* Swap buffers so the mdct overlap works */
 | |
|     FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the block size mode byte
 | |
|  */
 | |
| 
 | |
| static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
 | |
| {
 | |
|     int log2_block_count_tmp, i;
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         /* low and mid band */
 | |
|         log2_block_count_tmp = get_bits(gb, 2);
 | |
|         if (log2_block_count_tmp & 1)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         log2_block_cnt[i] = 2 - log2_block_count_tmp;
 | |
|     }
 | |
| 
 | |
|     /* high band */
 | |
|     log2_block_count_tmp = get_bits(gb, 2);
 | |
|     if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
 | |
| 
 | |
|     skip_bits(gb, 2);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
 | |
|                               float spec[AT1_SU_SAMPLES])
 | |
| {
 | |
|     int bits_used, band_num, bfu_num, i;
 | |
|     uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
 | |
|     uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
 | |
| 
 | |
|     /* parse the info byte (2nd byte) telling how much BFUs were coded */
 | |
|     su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
 | |
| 
 | |
|     /* calc number of consumed bits:
 | |
|         num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
 | |
|         + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
 | |
|     bits_used = su->num_bfus * 10 + 32 +
 | |
|                 bfu_amount_tab2[get_bits(gb, 2)] +
 | |
|                 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
 | |
| 
 | |
|     /* get word length index (idwl) for each BFU */
 | |
|     for (i = 0; i < su->num_bfus; i++)
 | |
|         idwls[i] = get_bits(gb, 4);
 | |
| 
 | |
|     /* get scalefactor index (idsf) for each BFU */
 | |
|     for (i = 0; i < su->num_bfus; i++)
 | |
|         idsfs[i] = get_bits(gb, 6);
 | |
| 
 | |
|     /* zero idwl/idsf for empty BFUs */
 | |
|     for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
 | |
|         idwls[i] = idsfs[i] = 0;
 | |
| 
 | |
|     /* read in the spectral data and reconstruct MDCT spectrum of this channel */
 | |
|     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
 | |
|         for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
 | |
|             int pos;
 | |
| 
 | |
|             int num_specs = specs_per_bfu[bfu_num];
 | |
|             int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
 | |
|             float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
 | |
|             bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
 | |
| 
 | |
|             /* check for bitstream overflow */
 | |
|             if (bits_used > AT1_SU_MAX_BITS)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             /* get the position of the 1st spec according to the block size mode */
 | |
|             pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
 | |
| 
 | |
|             if (word_len) {
 | |
|                 float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
 | |
| 
 | |
|                 for (i = 0; i < num_specs; i++) {
 | |
|                     /* read in a quantized spec and convert it to
 | |
|                      * signed int and then inverse quantization
 | |
|                      */
 | |
|                     spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
 | |
|                 }
 | |
|             } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
 | |
|                 memset(&spec[pos], 0, num_specs * sizeof(float));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
 | |
| {
 | |
|     float temp[256];
 | |
|     float iqmf_temp[512 + 46];
 | |
| 
 | |
|     /* combine low and middle bands */
 | |
|     ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
 | |
| 
 | |
|     /* delay the signal of the high band by 23 samples */
 | |
|     memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  23);
 | |
|     memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float) * 256);
 | |
| 
 | |
|     /* combine (low + middle) and high bands */
 | |
|     ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                                int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     AT1Ctx *q          = avctx->priv_data;
 | |
|     int ch, ret;
 | |
|     GetBitContext gb;
 | |
| 
 | |
| 
 | |
|     if (buf_size < 212 * avctx->channels) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = AT1_SU_SAMPLES;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < avctx->channels; ch++) {
 | |
|         AT1SUCtx* su = &q->SUs[ch];
 | |
| 
 | |
|         init_get_bits(&gb, &buf[212 * ch], 212 * 8);
 | |
| 
 | |
|         /* parse block_size_mode, 1st byte */
 | |
|         ret = at1_parse_bsm(&gb, su->log2_block_count);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         ret = at1_unpack_dequant(&gb, su, q->spec);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         ret = at1_imdct_block(su, q);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return avctx->block_align;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int atrac1_decode_end(AVCodecContext * avctx)
 | |
| {
 | |
|     AT1Ctx *q = avctx->priv_data;
 | |
| 
 | |
|     ff_mdct_end(&q->mdct_ctx[0]);
 | |
|     ff_mdct_end(&q->mdct_ctx[1]);
 | |
|     ff_mdct_end(&q->mdct_ctx[2]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int atrac1_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AT1Ctx *q = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
| 
 | |
|     if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
 | |
|                avctx->channels);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* Init the mdct transforms */
 | |
|     if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
 | |
|         (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
 | |
|         (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
 | |
|         atrac1_decode_end(avctx);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ff_init_ff_sine_windows(5);
 | |
| 
 | |
|     ff_atrac_generate_tables();
 | |
| 
 | |
|     avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
| 
 | |
|     q->bands[0] = q->low;
 | |
|     q->bands[1] = q->mid;
 | |
|     q->bands[2] = q->high;
 | |
| 
 | |
|     /* Prepare the mdct overlap buffers */
 | |
|     q->SUs[0].spectrum[0] = q->SUs[0].spec1;
 | |
|     q->SUs[0].spectrum[1] = q->SUs[0].spec2;
 | |
|     q->SUs[1].spectrum[0] = q->SUs[1].spec1;
 | |
|     q->SUs[1].spectrum[1] = q->SUs[1].spec2;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| AVCodec ff_atrac1_decoder = {
 | |
|     .name           = "atrac1",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_ATRAC1,
 | |
|     .priv_data_size = sizeof(AT1Ctx),
 | |
|     .init           = atrac1_decode_init,
 | |
|     .close          = atrac1_decode_end,
 | |
|     .decode         = atrac1_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_DR1,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 | 
