mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-11-01 04:53:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1334 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * FLAC audio encoder
 | |
|  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/crc.h"
 | |
| #include "libavutil/intmath.h"
 | |
| #include "libavutil/md5.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| #include "get_bits.h"
 | |
| #include "golomb.h"
 | |
| #include "internal.h"
 | |
| #include "lpc.h"
 | |
| #include "flac.h"
 | |
| #include "flacdata.h"
 | |
| #include "flacdsp.h"
 | |
| 
 | |
| #define FLAC_SUBFRAME_CONSTANT  0
 | |
| #define FLAC_SUBFRAME_VERBATIM  1
 | |
| #define FLAC_SUBFRAME_FIXED     8
 | |
| #define FLAC_SUBFRAME_LPC      32
 | |
| 
 | |
| #define MAX_FIXED_ORDER     4
 | |
| #define MAX_PARTITION_ORDER 8
 | |
| #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
 | |
| #define MAX_LPC_PRECISION  15
 | |
| #define MAX_LPC_SHIFT      15
 | |
| 
 | |
| enum CodingMode {
 | |
|     CODING_MODE_RICE  = 4,
 | |
|     CODING_MODE_RICE2 = 5,
 | |
| };
 | |
| 
 | |
| typedef struct CompressionOptions {
 | |
|     int compression_level;
 | |
|     int block_time_ms;
 | |
|     enum FFLPCType lpc_type;
 | |
|     int lpc_passes;
 | |
|     int lpc_coeff_precision;
 | |
|     int min_prediction_order;
 | |
|     int max_prediction_order;
 | |
|     int prediction_order_method;
 | |
|     int min_partition_order;
 | |
|     int max_partition_order;
 | |
|     int ch_mode;
 | |
| } CompressionOptions;
 | |
| 
 | |
| typedef struct RiceContext {
 | |
|     enum CodingMode coding_mode;
 | |
|     int porder;
 | |
|     int params[MAX_PARTITIONS];
 | |
| } RiceContext;
 | |
| 
 | |
| typedef struct FlacSubframe {
 | |
|     int type;
 | |
|     int type_code;
 | |
|     int obits;
 | |
|     int wasted;
 | |
|     int order;
 | |
|     int32_t coefs[MAX_LPC_ORDER];
 | |
|     int shift;
 | |
|     RiceContext rc;
 | |
|     int32_t samples[FLAC_MAX_BLOCKSIZE];
 | |
|     int32_t residual[FLAC_MAX_BLOCKSIZE+1];
 | |
| } FlacSubframe;
 | |
| 
 | |
| typedef struct FlacFrame {
 | |
|     FlacSubframe subframes[FLAC_MAX_CHANNELS];
 | |
|     int blocksize;
 | |
|     int bs_code[2];
 | |
|     uint8_t crc8;
 | |
|     int ch_mode;
 | |
|     int verbatim_only;
 | |
| } FlacFrame;
 | |
| 
 | |
| typedef struct FlacEncodeContext {
 | |
|     AVClass *class;
 | |
|     PutBitContext pb;
 | |
|     int channels;
 | |
|     int samplerate;
 | |
|     int sr_code[2];
 | |
|     int bps_code;
 | |
|     int max_blocksize;
 | |
|     int min_framesize;
 | |
|     int max_framesize;
 | |
|     int max_encoded_framesize;
 | |
|     uint32_t frame_count;
 | |
|     uint64_t sample_count;
 | |
|     uint8_t md5sum[16];
 | |
|     FlacFrame frame;
 | |
|     CompressionOptions options;
 | |
|     AVCodecContext *avctx;
 | |
|     LPCContext lpc_ctx;
 | |
|     struct AVMD5 *md5ctx;
 | |
|     uint8_t *md5_buffer;
 | |
|     unsigned int md5_buffer_size;
 | |
|     DSPContext dsp;
 | |
|     FLACDSPContext flac_dsp;
 | |
| } FlacEncodeContext;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Write streaminfo metadata block to byte array.
 | |
|  */
 | |
| static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
 | |
| {
 | |
|     PutBitContext pb;
 | |
| 
 | |
|     memset(header, 0, FLAC_STREAMINFO_SIZE);
 | |
|     init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
 | |
| 
 | |
|     /* streaminfo metadata block */
 | |
|     put_bits(&pb, 16, s->max_blocksize);
 | |
|     put_bits(&pb, 16, s->max_blocksize);
 | |
|     put_bits(&pb, 24, s->min_framesize);
 | |
|     put_bits(&pb, 24, s->max_framesize);
 | |
|     put_bits(&pb, 20, s->samplerate);
 | |
|     put_bits(&pb, 3, s->channels-1);
 | |
|     put_bits(&pb,  5, s->avctx->bits_per_raw_sample - 1);
 | |
|     /* write 36-bit sample count in 2 put_bits() calls */
 | |
|     put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
 | |
|     put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
 | |
|     flush_put_bits(&pb);
 | |
|     memcpy(&header[18], s->md5sum, 16);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Set blocksize based on samplerate.
 | |
|  * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
 | |
|  */
 | |
| static int select_blocksize(int samplerate, int block_time_ms)
 | |
| {
 | |
|     int i;
 | |
|     int target;
 | |
|     int blocksize;
 | |
| 
 | |
|     assert(samplerate > 0);
 | |
|     blocksize = ff_flac_blocksize_table[1];
 | |
|     target    = (samplerate * block_time_ms) / 1000;
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         if (target >= ff_flac_blocksize_table[i] &&
 | |
|             ff_flac_blocksize_table[i] > blocksize) {
 | |
|             blocksize = ff_flac_blocksize_table[i];
 | |
|         }
 | |
|     }
 | |
|     return blocksize;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold void dprint_compression_options(FlacEncodeContext *s)
 | |
| {
 | |
|     AVCodecContext     *avctx = s->avctx;
 | |
|     CompressionOptions *opt   = &s->options;
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
 | |
| 
 | |
|     switch (opt->lpc_type) {
 | |
|     case FF_LPC_TYPE_NONE:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
 | |
|         break;
 | |
|     case FF_LPC_TYPE_FIXED:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
 | |
|         break;
 | |
|     case FF_LPC_TYPE_LEVINSON:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
 | |
|         break;
 | |
|     case FF_LPC_TYPE_CHOLESKY:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
 | |
|                opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
 | |
|            opt->min_prediction_order, opt->max_prediction_order);
 | |
| 
 | |
|     switch (opt->prediction_order_method) {
 | |
|     case ORDER_METHOD_EST:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
 | |
|         break;
 | |
|     case ORDER_METHOD_2LEVEL:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
 | |
|         break;
 | |
|     case ORDER_METHOD_4LEVEL:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
 | |
|         break;
 | |
|     case ORDER_METHOD_8LEVEL:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
 | |
|         break;
 | |
|     case ORDER_METHOD_SEARCH:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
 | |
|         break;
 | |
|     case ORDER_METHOD_LOG:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
 | |
|         break;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
 | |
|            opt->min_partition_order, opt->max_partition_order);
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
 | |
|            opt->lpc_coeff_precision);
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int flac_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int freq = avctx->sample_rate;
 | |
|     int channels = avctx->channels;
 | |
|     FlacEncodeContext *s = avctx->priv_data;
 | |
|     int i, level, ret;
 | |
|     uint8_t *streaminfo;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     switch (avctx->sample_fmt) {
 | |
|     case AV_SAMPLE_FMT_S16:
 | |
|         avctx->bits_per_raw_sample = 16;
 | |
|         s->bps_code                = 4;
 | |
|         break;
 | |
|     case AV_SAMPLE_FMT_S32:
 | |
|         if (avctx->bits_per_raw_sample != 24)
 | |
|             av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
 | |
|         avctx->bits_per_raw_sample = 24;
 | |
|         s->bps_code                = 6;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (channels < 1 || channels > FLAC_MAX_CHANNELS)
 | |
|         return -1;
 | |
|     s->channels = channels;
 | |
| 
 | |
|     /* find samplerate in table */
 | |
|     if (freq < 1)
 | |
|         return -1;
 | |
|     for (i = 4; i < 12; i++) {
 | |
|         if (freq == ff_flac_sample_rate_table[i]) {
 | |
|             s->samplerate = ff_flac_sample_rate_table[i];
 | |
|             s->sr_code[0] = i;
 | |
|             s->sr_code[1] = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     /* if not in table, samplerate is non-standard */
 | |
|     if (i == 12) {
 | |
|         if (freq % 1000 == 0 && freq < 255000) {
 | |
|             s->sr_code[0] = 12;
 | |
|             s->sr_code[1] = freq / 1000;
 | |
|         } else if (freq % 10 == 0 && freq < 655350) {
 | |
|             s->sr_code[0] = 14;
 | |
|             s->sr_code[1] = freq / 10;
 | |
|         } else if (freq < 65535) {
 | |
|             s->sr_code[0] = 13;
 | |
|             s->sr_code[1] = freq;
 | |
|         } else {
 | |
|             return -1;
 | |
|         }
 | |
|         s->samplerate = freq;
 | |
|     }
 | |
| 
 | |
|     /* set compression option defaults based on avctx->compression_level */
 | |
|     if (avctx->compression_level < 0)
 | |
|         s->options.compression_level = 5;
 | |
|     else
 | |
|         s->options.compression_level = avctx->compression_level;
 | |
| 
 | |
|     level = s->options.compression_level;
 | |
|     if (level > 12) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
 | |
|                s->options.compression_level);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
 | |
| 
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
 | |
|         s->options.lpc_type  = ((int[]){ FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,
 | |
|                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | |
|                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | |
|                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | |
|                                          FF_LPC_TYPE_LEVINSON})[level];
 | |
| 
 | |
|     s->options.min_prediction_order = ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
 | |
|     s->options.max_prediction_order = ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
 | |
| 
 | |
|     if (s->options.prediction_order_method < 0)
 | |
|         s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | |
|                                                        ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | |
|                                                        ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
 | |
|                                                        ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
 | |
|                                                        ORDER_METHOD_SEARCH})[level];
 | |
| 
 | |
|     if (s->options.min_partition_order > s->options.max_partition_order) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
 | |
|                s->options.min_partition_order, s->options.max_partition_order);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     if (s->options.min_partition_order < 0)
 | |
|         s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
 | |
|     if (s->options.max_partition_order < 0)
 | |
|         s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
 | |
| 
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
 | |
|         s->options.min_prediction_order = 0;
 | |
|     } else if (avctx->min_prediction_order >= 0) {
 | |
|         if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
 | |
|             if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | |
|                        avctx->min_prediction_order);
 | |
|                 return -1;
 | |
|             }
 | |
|         } else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
 | |
|                    avctx->min_prediction_order > MAX_LPC_ORDER) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | |
|                    avctx->min_prediction_order);
 | |
|             return -1;
 | |
|         }
 | |
|         s->options.min_prediction_order = avctx->min_prediction_order;
 | |
|     }
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
 | |
|         s->options.max_prediction_order = 0;
 | |
|     } else if (avctx->max_prediction_order >= 0) {
 | |
|         if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
 | |
|             if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | |
|                        avctx->max_prediction_order);
 | |
|                 return -1;
 | |
|             }
 | |
|         } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
 | |
|                    avctx->max_prediction_order > MAX_LPC_ORDER) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | |
|                    avctx->max_prediction_order);
 | |
|             return -1;
 | |
|         }
 | |
|         s->options.max_prediction_order = avctx->max_prediction_order;
 | |
|     }
 | |
|     if (s->options.max_prediction_order < s->options.min_prediction_order) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | |
|                s->options.min_prediction_order, s->options.max_prediction_order);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (avctx->frame_size > 0) {
 | |
|         if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
 | |
|                 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
 | |
|                    avctx->frame_size);
 | |
|             return -1;
 | |
|         }
 | |
|     } else {
 | |
|         s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
 | |
|     }
 | |
|     s->max_blocksize = s->avctx->frame_size;
 | |
| 
 | |
|     /* set maximum encoded frame size in verbatim mode */
 | |
|     s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
 | |
|                                                   s->channels,
 | |
|                                                   s->avctx->bits_per_raw_sample);
 | |
| 
 | |
|     /* initialize MD5 context */
 | |
|     s->md5ctx = av_md5_alloc();
 | |
|     if (!s->md5ctx)
 | |
|         return AVERROR(ENOMEM);
 | |
|     av_md5_init(s->md5ctx);
 | |
| 
 | |
|     streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
 | |
|     if (!streaminfo)
 | |
|         return AVERROR(ENOMEM);
 | |
|     write_streaminfo(s, streaminfo);
 | |
|     avctx->extradata = streaminfo;
 | |
|     avctx->extradata_size = FLAC_STREAMINFO_SIZE;
 | |
| 
 | |
|     s->frame_count   = 0;
 | |
|     s->min_framesize = s->max_framesize;
 | |
| 
 | |
|     ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
 | |
|                       s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
 | |
| 
 | |
|     ff_dsputil_init(&s->dsp, avctx);
 | |
|     ff_flacdsp_init(&s->flac_dsp, avctx->sample_fmt,
 | |
|                     avctx->bits_per_raw_sample);
 | |
| 
 | |
|     dprint_compression_options(s);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void init_frame(FlacEncodeContext *s, int nb_samples)
 | |
| {
 | |
|     int i, ch;
 | |
|     FlacFrame *frame;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         if (nb_samples == ff_flac_blocksize_table[i]) {
 | |
|             frame->blocksize  = ff_flac_blocksize_table[i];
 | |
|             frame->bs_code[0] = i;
 | |
|             frame->bs_code[1] = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (i == 16) {
 | |
|         frame->blocksize = nb_samples;
 | |
|         if (frame->blocksize <= 256) {
 | |
|             frame->bs_code[0] = 6;
 | |
|             frame->bs_code[1] = frame->blocksize-1;
 | |
|         } else {
 | |
|             frame->bs_code[0] = 7;
 | |
|             frame->bs_code[1] = frame->blocksize-1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FlacSubframe *sub = &frame->subframes[ch];
 | |
| 
 | |
|         sub->wasted = 0;
 | |
|         sub->obits  = s->avctx->bits_per_raw_sample;
 | |
| 
 | |
|         if (sub->obits > 16)
 | |
|             sub->rc.coding_mode = CODING_MODE_RICE2;
 | |
|         else
 | |
|             sub->rc.coding_mode = CODING_MODE_RICE;
 | |
|     }
 | |
| 
 | |
|     frame->verbatim_only = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Copy channel-interleaved input samples into separate subframes.
 | |
|  */
 | |
| static void copy_samples(FlacEncodeContext *s, const void *samples)
 | |
| {
 | |
|     int i, j, ch;
 | |
|     FlacFrame *frame;
 | |
|     int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
 | |
|                 s->avctx->bits_per_raw_sample;
 | |
| 
 | |
| #define COPY_SAMPLES(bits) do {                                     \
 | |
|     const int ## bits ## _t *samples0 = samples;                    \
 | |
|     frame = &s->frame;                                              \
 | |
|     for (i = 0, j = 0; i < frame->blocksize; i++)                   \
 | |
|         for (ch = 0; ch < s->channels; ch++, j++)                   \
 | |
|             frame->subframes[ch].samples[i] = samples0[j] >> shift; \
 | |
| } while (0)
 | |
| 
 | |
|     if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16)
 | |
|         COPY_SAMPLES(16);
 | |
|     else
 | |
|         COPY_SAMPLES(32);
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t rice_count_exact(int32_t *res, int n, int k)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t count = 0;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         int32_t v = -2 * res[i] - 1;
 | |
|         v ^= v >> 31;
 | |
|         count += (v >> k) + 1 + k;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
 | |
|                                      int pred_order)
 | |
| {
 | |
|     int p, porder, psize;
 | |
|     int i, part_end;
 | |
|     uint64_t count = 0;
 | |
| 
 | |
|     /* subframe header */
 | |
|     count += 8;
 | |
| 
 | |
|     /* subframe */
 | |
|     if (sub->type == FLAC_SUBFRAME_CONSTANT) {
 | |
|         count += sub->obits;
 | |
|     } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
 | |
|         count += s->frame.blocksize * sub->obits;
 | |
|     } else {
 | |
|         /* warm-up samples */
 | |
|         count += pred_order * sub->obits;
 | |
| 
 | |
|         /* LPC coefficients */
 | |
|         if (sub->type == FLAC_SUBFRAME_LPC)
 | |
|             count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
 | |
| 
 | |
|         /* rice-encoded block */
 | |
|         count += 2;
 | |
| 
 | |
|         /* partition order */
 | |
|         porder = sub->rc.porder;
 | |
|         psize  = s->frame.blocksize >> porder;
 | |
|         count += 4;
 | |
| 
 | |
|         /* residual */
 | |
|         i        = pred_order;
 | |
|         part_end = psize;
 | |
|         for (p = 0; p < 1 << porder; p++) {
 | |
|             int k = sub->rc.params[p];
 | |
|             count += sub->rc.coding_mode;
 | |
|             count += rice_count_exact(&sub->residual[i], part_end - i, k);
 | |
|             i = part_end;
 | |
|             part_end = FFMIN(s->frame.blocksize, part_end + psize);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
 | |
| 
 | |
| /**
 | |
|  * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
 | |
|  */
 | |
| static int find_optimal_param(uint64_t sum, int n, int max_param)
 | |
| {
 | |
|     int k;
 | |
|     uint64_t sum2;
 | |
| 
 | |
|     if (sum <= n >> 1)
 | |
|         return 0;
 | |
|     sum2 = sum - (n >> 1);
 | |
|     k    = av_log2(av_clipl_int32(sum2 / n));
 | |
|     return FFMIN(k, max_param);
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder,
 | |
|                                          uint64_t *sums, int n, int pred_order)
 | |
| {
 | |
|     int i;
 | |
|     int k, cnt, part, max_param;
 | |
|     uint64_t all_bits;
 | |
| 
 | |
|     max_param = (1 << rc->coding_mode) - 2;
 | |
| 
 | |
|     part     = (1 << porder);
 | |
|     all_bits = 4 * part;
 | |
| 
 | |
|     cnt = (n >> porder) - pred_order;
 | |
|     for (i = 0; i < part; i++) {
 | |
|         k = find_optimal_param(sums[i], cnt, max_param);
 | |
|         rc->params[i] = k;
 | |
|         all_bits += rice_encode_count(sums[i], cnt, k);
 | |
|         cnt = n >> porder;
 | |
|     }
 | |
| 
 | |
|     rc->porder = porder;
 | |
| 
 | |
|     return all_bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
 | |
|                       uint64_t sums[][MAX_PARTITIONS])
 | |
| {
 | |
|     int i, j;
 | |
|     int parts;
 | |
|     uint32_t *res, *res_end;
 | |
| 
 | |
|     /* sums for highest level */
 | |
|     parts   = (1 << pmax);
 | |
|     res     = &data[pred_order];
 | |
|     res_end = &data[n >> pmax];
 | |
|     for (i = 0; i < parts; i++) {
 | |
|         uint64_t sum = 0;
 | |
|         while (res < res_end)
 | |
|             sum += *(res++);
 | |
|         sums[pmax][i] = sum;
 | |
|         res_end += n >> pmax;
 | |
|     }
 | |
|     /* sums for lower levels */
 | |
|     for (i = pmax - 1; i >= pmin; i--) {
 | |
|         parts = (1 << i);
 | |
|         for (j = 0; j < parts; j++)
 | |
|             sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
 | |
|                                  int32_t *data, int n, int pred_order)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t bits[MAX_PARTITION_ORDER+1];
 | |
|     int opt_porder;
 | |
|     RiceContext tmp_rc;
 | |
|     uint32_t *udata;
 | |
|     uint64_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
 | |
| 
 | |
|     assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
 | |
|     assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
 | |
|     assert(pmin <= pmax);
 | |
| 
 | |
|     tmp_rc.coding_mode = rc->coding_mode;
 | |
| 
 | |
|     udata = av_malloc(n * sizeof(uint32_t));
 | |
|     for (i = 0; i < n; i++)
 | |
|         udata[i] = (2*data[i]) ^ (data[i]>>31);
 | |
| 
 | |
|     calc_sums(pmin, pmax, udata, n, pred_order, sums);
 | |
| 
 | |
|     opt_porder = pmin;
 | |
|     bits[pmin] = UINT32_MAX;
 | |
|     for (i = pmin; i <= pmax; i++) {
 | |
|         bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
 | |
|         if (bits[i] <= bits[opt_porder]) {
 | |
|             opt_porder = i;
 | |
|             *rc = tmp_rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_freep(&udata);
 | |
|     return bits[opt_porder];
 | |
| }
 | |
| 
 | |
| 
 | |
| static int get_max_p_order(int max_porder, int n, int order)
 | |
| {
 | |
|     int porder = FFMIN(max_porder, av_log2(n^(n-1)));
 | |
|     if (order > 0)
 | |
|         porder = FFMIN(porder, av_log2(n/order));
 | |
|     return porder;
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t find_subframe_rice_params(FlacEncodeContext *s,
 | |
|                                           FlacSubframe *sub, int pred_order)
 | |
| {
 | |
|     int pmin = get_max_p_order(s->options.min_partition_order,
 | |
|                                s->frame.blocksize, pred_order);
 | |
|     int pmax = get_max_p_order(s->options.max_partition_order,
 | |
|                                s->frame.blocksize, pred_order);
 | |
| 
 | |
|     uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode;
 | |
|     if (sub->type == FLAC_SUBFRAME_LPC)
 | |
|         bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
 | |
|     bits += calc_rice_params(&sub->rc, pmin, pmax, sub->residual,
 | |
|                              s->frame.blocksize, pred_order);
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
 | |
|                                   int order)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < order; i++)
 | |
|         res[i] = smp[i];
 | |
| 
 | |
|     if (order == 0) {
 | |
|         for (i = order; i < n; i++)
 | |
|             res[i] = smp[i];
 | |
|     } else if (order == 1) {
 | |
|         for (i = order; i < n; i++)
 | |
|             res[i] = smp[i] - smp[i-1];
 | |
|     } else if (order == 2) {
 | |
|         int a = smp[order-1] - smp[order-2];
 | |
|         for (i = order; i < n; i += 2) {
 | |
|             int b    = smp[i  ] - smp[i-1];
 | |
|             res[i]   = b - a;
 | |
|             a        = smp[i+1] - smp[i  ];
 | |
|             res[i+1] = a - b;
 | |
|         }
 | |
|     } else if (order == 3) {
 | |
|         int a = smp[order-1] -   smp[order-2];
 | |
|         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 | |
|         for (i = order; i < n; i += 2) {
 | |
|             int b    = smp[i  ] - smp[i-1];
 | |
|             int d    = b - a;
 | |
|             res[i]   = d - c;
 | |
|             a        = smp[i+1] - smp[i  ];
 | |
|             c        = a - b;
 | |
|             res[i+1] = c - d;
 | |
|         }
 | |
|     } else {
 | |
|         int a = smp[order-1] -   smp[order-2];
 | |
|         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
 | |
|         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 | |
|         for (i = order; i < n; i += 2) {
 | |
|             int b    = smp[i  ] - smp[i-1];
 | |
|             int d    = b - a;
 | |
|             int f    = d - c;
 | |
|             res[i  ] = f - e;
 | |
|             a        = smp[i+1] - smp[i  ];
 | |
|             c        = a - b;
 | |
|             e        = c - d;
 | |
|             res[i+1] = e - f;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int encode_residual_ch(FlacEncodeContext *s, int ch)
 | |
| {
 | |
|     int i, n;
 | |
|     int min_order, max_order, opt_order, omethod;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | |
|     int shift[MAX_LPC_ORDER];
 | |
|     int32_t *res, *smp;
 | |
| 
 | |
|     frame = &s->frame;
 | |
|     sub   = &frame->subframes[ch];
 | |
|     res   = sub->residual;
 | |
|     smp   = sub->samples;
 | |
|     n     = frame->blocksize;
 | |
| 
 | |
|     /* CONSTANT */
 | |
|     for (i = 1; i < n; i++)
 | |
|         if(smp[i] != smp[0])
 | |
|             break;
 | |
|     if (i == n) {
 | |
|         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | |
|         res[0] = smp[0];
 | |
|         return subframe_count_exact(s, sub, 0);
 | |
|     }
 | |
| 
 | |
|     /* VERBATIM */
 | |
|     if (frame->verbatim_only || n < 5) {
 | |
|         sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
 | |
|         memcpy(res, smp, n * sizeof(int32_t));
 | |
|         return subframe_count_exact(s, sub, 0);
 | |
|     }
 | |
| 
 | |
|     min_order  = s->options.min_prediction_order;
 | |
|     max_order  = s->options.max_prediction_order;
 | |
|     omethod    = s->options.prediction_order_method;
 | |
| 
 | |
|     /* FIXED */
 | |
|     sub->type = FLAC_SUBFRAME_FIXED;
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_NONE  ||
 | |
|         s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
 | |
|         uint64_t bits[MAX_FIXED_ORDER+1];
 | |
|         if (max_order > MAX_FIXED_ORDER)
 | |
|             max_order = MAX_FIXED_ORDER;
 | |
|         opt_order = 0;
 | |
|         bits[0]   = UINT32_MAX;
 | |
|         for (i = min_order; i <= max_order; i++) {
 | |
|             encode_residual_fixed(res, smp, n, i);
 | |
|             bits[i] = find_subframe_rice_params(s, sub, i);
 | |
|             if (bits[i] < bits[opt_order])
 | |
|                 opt_order = i;
 | |
|         }
 | |
|         sub->order     = opt_order;
 | |
|         sub->type_code = sub->type | sub->order;
 | |
|         if (sub->order != max_order) {
 | |
|             encode_residual_fixed(res, smp, n, sub->order);
 | |
|             find_subframe_rice_params(s, sub, sub->order);
 | |
|         }
 | |
|         return subframe_count_exact(s, sub, sub->order);
 | |
|     }
 | |
| 
 | |
|     /* LPC */
 | |
|     sub->type = FLAC_SUBFRAME_LPC;
 | |
|     opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
 | |
|                                   s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
 | |
|                                   s->options.lpc_passes, omethod,
 | |
|                                   MAX_LPC_SHIFT, 0);
 | |
| 
 | |
|     if (omethod == ORDER_METHOD_2LEVEL ||
 | |
|         omethod == ORDER_METHOD_4LEVEL ||
 | |
|         omethod == ORDER_METHOD_8LEVEL) {
 | |
|         int levels = 1 << omethod;
 | |
|         uint64_t bits[1 << ORDER_METHOD_8LEVEL];
 | |
|         int order       = -1;
 | |
|         int opt_index   = levels-1;
 | |
|         opt_order       = max_order-1;
 | |
|         bits[opt_index] = UINT32_MAX;
 | |
|         for (i = levels-1; i >= 0; i--) {
 | |
|             int last_order = order;
 | |
|             order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
 | |
|             order = av_clip(order, min_order - 1, max_order - 1);
 | |
|             if (order == last_order)
 | |
|                 continue;
 | |
|             s->flac_dsp.lpc_encode(res, smp, n, order+1, coefs[order],
 | |
|                                    shift[order]);
 | |
|             bits[i] = find_subframe_rice_params(s, sub, order+1);
 | |
|             if (bits[i] < bits[opt_index]) {
 | |
|                 opt_index = i;
 | |
|                 opt_order = order;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     } else if (omethod == ORDER_METHOD_SEARCH) {
 | |
|         // brute-force optimal order search
 | |
|         uint64_t bits[MAX_LPC_ORDER];
 | |
|         opt_order = 0;
 | |
|         bits[0]   = UINT32_MAX;
 | |
|         for (i = min_order-1; i < max_order; i++) {
 | |
|             s->flac_dsp.lpc_encode(res, smp, n, i+1, coefs[i], shift[i]);
 | |
|             bits[i] = find_subframe_rice_params(s, sub, i+1);
 | |
|             if (bits[i] < bits[opt_order])
 | |
|                 opt_order = i;
 | |
|         }
 | |
|         opt_order++;
 | |
|     } else if (omethod == ORDER_METHOD_LOG) {
 | |
|         uint64_t bits[MAX_LPC_ORDER];
 | |
|         int step;
 | |
| 
 | |
|         opt_order = min_order - 1 + (max_order-min_order)/3;
 | |
|         memset(bits, -1, sizeof(bits));
 | |
| 
 | |
|         for (step = 16; step; step >>= 1) {
 | |
|             int last = opt_order;
 | |
|             for (i = last-step; i <= last+step; i += step) {
 | |
|                 if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
 | |
|                     continue;
 | |
|                 s->flac_dsp.lpc_encode(res, smp, n, i+1, coefs[i], shift[i]);
 | |
|                 bits[i] = find_subframe_rice_params(s, sub, i+1);
 | |
|                 if (bits[i] < bits[opt_order])
 | |
|                     opt_order = i;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     }
 | |
| 
 | |
|     sub->order     = opt_order;
 | |
|     sub->type_code = sub->type | (sub->order-1);
 | |
|     sub->shift     = shift[sub->order-1];
 | |
|     for (i = 0; i < sub->order; i++)
 | |
|         sub->coefs[i] = coefs[sub->order-1][i];
 | |
| 
 | |
|     s->flac_dsp.lpc_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
 | |
| 
 | |
|     find_subframe_rice_params(s, sub, sub->order);
 | |
| 
 | |
|     return subframe_count_exact(s, sub, sub->order);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int count_frame_header(FlacEncodeContext *s)
 | |
| {
 | |
|     uint8_t av_unused tmp;
 | |
|     int count;
 | |
| 
 | |
|     /*
 | |
|     <14> Sync code
 | |
|     <1>  Reserved
 | |
|     <1>  Blocking strategy
 | |
|     <4>  Block size in inter-channel samples
 | |
|     <4>  Sample rate
 | |
|     <4>  Channel assignment
 | |
|     <3>  Sample size in bits
 | |
|     <1>  Reserved
 | |
|     */
 | |
|     count = 32;
 | |
| 
 | |
|     /* coded frame number */
 | |
|     PUT_UTF8(s->frame_count, tmp, count += 8;)
 | |
| 
 | |
|     /* explicit block size */
 | |
|     if (s->frame.bs_code[0] == 6)
 | |
|         count += 8;
 | |
|     else if (s->frame.bs_code[0] == 7)
 | |
|         count += 16;
 | |
| 
 | |
|     /* explicit sample rate */
 | |
|     count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12)) * 8;
 | |
| 
 | |
|     /* frame header CRC-8 */
 | |
|     count += 8;
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int encode_frame(FlacEncodeContext *s)
 | |
| {
 | |
|     int ch;
 | |
|     uint64_t count;
 | |
| 
 | |
|     count = count_frame_header(s);
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++)
 | |
|         count += encode_residual_ch(s, ch);
 | |
| 
 | |
|     count += (8 - (count & 7)) & 7; // byte alignment
 | |
|     count += 16;                    // CRC-16
 | |
| 
 | |
|     count >>= 3;
 | |
|     if (count > INT_MAX)
 | |
|         return AVERROR_BUG;
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void remove_wasted_bits(FlacEncodeContext *s)
 | |
| {
 | |
|     int ch, i;
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FlacSubframe *sub = &s->frame.subframes[ch];
 | |
|         int32_t v         = 0;
 | |
| 
 | |
|         for (i = 0; i < s->frame.blocksize; i++) {
 | |
|             v |= sub->samples[i];
 | |
|             if (v & 1)
 | |
|                 break;
 | |
|         }
 | |
| 
 | |
|         if (v && !(v & 1)) {
 | |
|             v = av_ctz(v);
 | |
| 
 | |
|             for (i = 0; i < s->frame.blocksize; i++)
 | |
|                 sub->samples[i] >>= v;
 | |
| 
 | |
|             sub->wasted = v;
 | |
|             sub->obits -= v;
 | |
| 
 | |
|             /* for 24-bit, check if removing wasted bits makes the range better
 | |
|                suited for using RICE instead of RICE2 for entropy coding */
 | |
|             if (sub->obits <= 17)
 | |
|                 sub->rc.coding_mode = CODING_MODE_RICE;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n,
 | |
|                                 int max_rice_param)
 | |
| {
 | |
|     int i, best;
 | |
|     int32_t lt, rt;
 | |
|     uint64_t sum[4];
 | |
|     uint64_t score[4];
 | |
|     int k;
 | |
| 
 | |
|     /* calculate sum of 2nd order residual for each channel */
 | |
|     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | |
|     for (i = 2; i < n; i++) {
 | |
|         lt = left_ch[i]  - 2*left_ch[i-1]  + left_ch[i-2];
 | |
|         rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
 | |
|         sum[2] += FFABS((lt + rt) >> 1);
 | |
|         sum[3] += FFABS(lt - rt);
 | |
|         sum[0] += FFABS(lt);
 | |
|         sum[1] += FFABS(rt);
 | |
|     }
 | |
|     /* estimate bit counts */
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         k      = find_optimal_param(2 * sum[i], n, max_rice_param);
 | |
|         sum[i] = rice_encode_count( 2 * sum[i], n, k);
 | |
|     }
 | |
| 
 | |
|     /* calculate score for each mode */
 | |
|     score[0] = sum[0] + sum[1];
 | |
|     score[1] = sum[0] + sum[3];
 | |
|     score[2] = sum[1] + sum[3];
 | |
|     score[3] = sum[2] + sum[3];
 | |
| 
 | |
|     /* return mode with lowest score */
 | |
|     best = 0;
 | |
|     for (i = 1; i < 4; i++)
 | |
|         if (score[i] < score[best])
 | |
|             best = i;
 | |
| 
 | |
|     return best;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Perform stereo channel decorrelation.
 | |
|  */
 | |
| static void channel_decorrelation(FlacEncodeContext *s)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     int32_t *left, *right;
 | |
|     int i, n;
 | |
| 
 | |
|     frame = &s->frame;
 | |
|     n     = frame->blocksize;
 | |
|     left  = frame->subframes[0].samples;
 | |
|     right = frame->subframes[1].samples;
 | |
| 
 | |
|     if (s->channels != 2) {
 | |
|         frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->options.ch_mode < 0) {
 | |
|         int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
 | |
|         frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param);
 | |
|     } else
 | |
|         frame->ch_mode = s->options.ch_mode;
 | |
| 
 | |
|     /* perform decorrelation and adjust bits-per-sample */
 | |
|     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
 | |
|         return;
 | |
|     if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
 | |
|         int32_t tmp;
 | |
|         for (i = 0; i < n; i++) {
 | |
|             tmp      = left[i];
 | |
|             left[i]  = (tmp + right[i]) >> 1;
 | |
|             right[i] =  tmp - right[i];
 | |
|         }
 | |
|         frame->subframes[1].obits++;
 | |
|     } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
 | |
|         for (i = 0; i < n; i++)
 | |
|             right[i] = left[i] - right[i];
 | |
|         frame->subframes[1].obits++;
 | |
|     } else {
 | |
|         for (i = 0; i < n; i++)
 | |
|             left[i] -= right[i];
 | |
|         frame->subframes[0].obits++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_utf8(PutBitContext *pb, uint32_t val)
 | |
| {
 | |
|     uint8_t tmp;
 | |
|     PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_frame_header(FlacEncodeContext *s)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     int crc;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     put_bits(&s->pb, 16, 0xFFF8);
 | |
|     put_bits(&s->pb, 4, frame->bs_code[0]);
 | |
|     put_bits(&s->pb, 4, s->sr_code[0]);
 | |
| 
 | |
|     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
 | |
|         put_bits(&s->pb, 4, s->channels-1);
 | |
|     else
 | |
|         put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
 | |
| 
 | |
|     put_bits(&s->pb, 3, s->bps_code);
 | |
|     put_bits(&s->pb, 1, 0);
 | |
|     write_utf8(&s->pb, s->frame_count);
 | |
| 
 | |
|     if (frame->bs_code[0] == 6)
 | |
|         put_bits(&s->pb, 8, frame->bs_code[1]);
 | |
|     else if (frame->bs_code[0] == 7)
 | |
|         put_bits(&s->pb, 16, frame->bs_code[1]);
 | |
| 
 | |
|     if (s->sr_code[0] == 12)
 | |
|         put_bits(&s->pb, 8, s->sr_code[1]);
 | |
|     else if (s->sr_code[0] > 12)
 | |
|         put_bits(&s->pb, 16, s->sr_code[1]);
 | |
| 
 | |
|     flush_put_bits(&s->pb);
 | |
|     crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
 | |
|                  put_bits_count(&s->pb) >> 3);
 | |
|     put_bits(&s->pb, 8, crc);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_subframes(FlacEncodeContext *s)
 | |
| {
 | |
|     int ch;
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FlacSubframe *sub = &s->frame.subframes[ch];
 | |
|         int i, p, porder, psize;
 | |
|         int32_t *part_end;
 | |
|         int32_t *res       =  sub->residual;
 | |
|         int32_t *frame_end = &sub->residual[s->frame.blocksize];
 | |
| 
 | |
|         /* subframe header */
 | |
|         put_bits(&s->pb, 1, 0);
 | |
|         put_bits(&s->pb, 6, sub->type_code);
 | |
|         put_bits(&s->pb, 1, !!sub->wasted);
 | |
|         if (sub->wasted)
 | |
|             put_bits(&s->pb, sub->wasted, 1);
 | |
| 
 | |
|         /* subframe */
 | |
|         if (sub->type == FLAC_SUBFRAME_CONSTANT) {
 | |
|             put_sbits(&s->pb, sub->obits, res[0]);
 | |
|         } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
 | |
|             while (res < frame_end)
 | |
|                 put_sbits(&s->pb, sub->obits, *res++);
 | |
|         } else {
 | |
|             /* warm-up samples */
 | |
|             for (i = 0; i < sub->order; i++)
 | |
|                 put_sbits(&s->pb, sub->obits, *res++);
 | |
| 
 | |
|             /* LPC coefficients */
 | |
|             if (sub->type == FLAC_SUBFRAME_LPC) {
 | |
|                 int cbits = s->options.lpc_coeff_precision;
 | |
|                 put_bits( &s->pb, 4, cbits-1);
 | |
|                 put_sbits(&s->pb, 5, sub->shift);
 | |
|                 for (i = 0; i < sub->order; i++)
 | |
|                     put_sbits(&s->pb, cbits, sub->coefs[i]);
 | |
|             }
 | |
| 
 | |
|             /* rice-encoded block */
 | |
|             put_bits(&s->pb, 2, sub->rc.coding_mode - 4);
 | |
| 
 | |
|             /* partition order */
 | |
|             porder  = sub->rc.porder;
 | |
|             psize   = s->frame.blocksize >> porder;
 | |
|             put_bits(&s->pb, 4, porder);
 | |
| 
 | |
|             /* residual */
 | |
|             part_end  = &sub->residual[psize];
 | |
|             for (p = 0; p < 1 << porder; p++) {
 | |
|                 int k = sub->rc.params[p];
 | |
|                 put_bits(&s->pb, sub->rc.coding_mode, k);
 | |
|                 while (res < part_end)
 | |
|                     set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
 | |
|                 part_end = FFMIN(frame_end, part_end + psize);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_frame_footer(FlacEncodeContext *s)
 | |
| {
 | |
|     int crc;
 | |
|     flush_put_bits(&s->pb);
 | |
|     crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
 | |
|                             put_bits_count(&s->pb)>>3));
 | |
|     put_bits(&s->pb, 16, crc);
 | |
|     flush_put_bits(&s->pb);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
 | |
| {
 | |
|     init_put_bits(&s->pb, avpkt->data, avpkt->size);
 | |
|     write_frame_header(s);
 | |
|     write_subframes(s);
 | |
|     write_frame_footer(s);
 | |
|     return put_bits_count(&s->pb) >> 3;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int update_md5_sum(FlacEncodeContext *s, const void *samples)
 | |
| {
 | |
|     const uint8_t *buf;
 | |
|     int buf_size = s->frame.blocksize * s->channels *
 | |
|                    ((s->avctx->bits_per_raw_sample + 7) / 8);
 | |
| 
 | |
|     if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
 | |
|         av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size);
 | |
|         if (!s->md5_buffer)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     if (s->avctx->bits_per_raw_sample <= 16) {
 | |
|         buf = (const uint8_t *)samples;
 | |
| #if HAVE_BIGENDIAN
 | |
|         s->dsp.bswap16_buf((uint16_t *)s->md5_buffer,
 | |
|                            (const uint16_t *)samples, buf_size / 2);
 | |
|         buf = s->md5_buffer;
 | |
| #endif
 | |
|     } else {
 | |
|         int i;
 | |
|         const int32_t *samples0 = samples;
 | |
|         uint8_t *tmp            = s->md5_buffer;
 | |
| 
 | |
|         for (i = 0; i < s->frame.blocksize * s->channels; i++) {
 | |
|             int32_t v = samples0[i] >> 8;
 | |
|             *tmp++    = (v      ) & 0xFF;
 | |
|             *tmp++    = (v >>  8) & 0xFF;
 | |
|             *tmp++    = (v >> 16) & 0xFF;
 | |
|         }
 | |
|         buf = s->md5_buffer;
 | |
|     }
 | |
|     av_md5_update(s->md5ctx, buf, buf_size);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                              const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     FlacEncodeContext *s;
 | |
|     int frame_bytes, out_bytes, ret;
 | |
| 
 | |
|     s = avctx->priv_data;
 | |
| 
 | |
|     /* when the last block is reached, update the header in extradata */
 | |
|     if (!frame) {
 | |
|         s->max_framesize = s->max_encoded_framesize;
 | |
|         av_md5_final(s->md5ctx, s->md5sum);
 | |
|         write_streaminfo(s, avctx->extradata);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* change max_framesize for small final frame */
 | |
|     if (frame->nb_samples < s->frame.blocksize) {
 | |
|         s->max_framesize = ff_flac_get_max_frame_size(frame->nb_samples,
 | |
|                                                       s->channels,
 | |
|                                                       avctx->bits_per_raw_sample);
 | |
|     }
 | |
| 
 | |
|     init_frame(s, frame->nb_samples);
 | |
| 
 | |
|     copy_samples(s, frame->data[0]);
 | |
| 
 | |
|     channel_decorrelation(s);
 | |
| 
 | |
|     remove_wasted_bits(s);
 | |
| 
 | |
|     frame_bytes = encode_frame(s);
 | |
| 
 | |
|     /* Fall back on verbatim mode if the compressed frame is larger than it
 | |
|        would be if encoded uncompressed. */
 | |
|     if (frame_bytes < 0 || frame_bytes > s->max_framesize) {
 | |
|         s->frame.verbatim_only = 1;
 | |
|         frame_bytes = encode_frame(s);
 | |
|         if (frame_bytes < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Bad frame count\n");
 | |
|             return frame_bytes;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((ret = ff_alloc_packet(avpkt, frame_bytes))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     out_bytes = write_frame(s, avpkt);
 | |
| 
 | |
|     s->frame_count++;
 | |
|     s->sample_count += frame->nb_samples;
 | |
|     if ((ret = update_md5_sum(s, frame->data[0])) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n");
 | |
|         return ret;
 | |
|     }
 | |
|     if (out_bytes > s->max_encoded_framesize)
 | |
|         s->max_encoded_framesize = out_bytes;
 | |
|     if (out_bytes < s->min_framesize)
 | |
|         s->min_framesize = out_bytes;
 | |
| 
 | |
|     avpkt->pts      = frame->pts;
 | |
|     avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
 | |
|     avpkt->size     = out_bytes;
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int flac_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     if (avctx->priv_data) {
 | |
|         FlacEncodeContext *s = avctx->priv_data;
 | |
|         av_freep(&s->md5ctx);
 | |
|         av_freep(&s->md5_buffer);
 | |
|         ff_lpc_end(&s->lpc_ctx);
 | |
|     }
 | |
|     av_freep(&avctx->extradata);
 | |
|     avctx->extradata_size = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 | |
| static const AVOption options[] = {
 | |
| { "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
 | |
| { "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
 | |
| { "none",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE },     INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | |
| { "fixed",    NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED },    INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | |
| { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | |
| { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | |
| { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes),  AV_OPT_TYPE_INT, {.i64 = 1 }, 1, INT_MAX, FLAGS },
 | |
| { "min_partition_order",  NULL, offsetof(FlacEncodeContext, options.min_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
 | |
| { "max_partition_order",  NULL, offsetof(FlacEncodeContext, options.max_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
 | |
| { "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
 | |
| { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    INT_MIN, INT_MAX, FLAGS, "predm" },
 | |
| { "2level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | |
| { "4level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | |
| { "8level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | |
| { "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | |
| { "log",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG },    INT_MIN, INT_MAX, FLAGS, "predm" },
 | |
| { "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" },
 | |
| { "auto",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1                      }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | |
| { "indep",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | |
| { "left_side",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE   }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | |
| { "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE  }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | |
| { "mid_side",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE    }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | |
| { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass flac_encoder_class = {
 | |
|     "FLAC encoder",
 | |
|     av_default_item_name,
 | |
|     options,
 | |
|     LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_flac_encoder = {
 | |
|     .name           = "flac",
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_FLAC,
 | |
|     .priv_data_size = sizeof(FlacEncodeContext),
 | |
|     .init           = flac_encode_init,
 | |
|     .encode2        = flac_encode_frame,
 | |
|     .close          = flac_encode_close,
 | |
|     .capabilities   = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
 | |
|                                                      AV_SAMPLE_FMT_S32,
 | |
|                                                      AV_SAMPLE_FMT_NONE },
 | |
|     .priv_class     = &flac_encoder_class,
 | |
| };
 | 
