mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	 30cdf384d1
			
		
	
	30cdf384d1
	
	
	
		
			
			* commit 'd3f5b94762fb803c0f3b29f9ad6c5eaa813998ba': aarch64: opus NEON iMDCT and FFT Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			273 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2013-2014 Mozilla Corporation
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Celt non-power of 2 iMDCT
 | |
|  */
 | |
| 
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| 
 | |
| #include "config.h"
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/common.h"
 | |
| 
 | |
| #include "avfft.h"
 | |
| #include "opus.h"
 | |
| #include "opus_imdct.h"
 | |
| 
 | |
| // minimal iMDCT size to make SIMD opts easier
 | |
| #define CELT_MIN_IMDCT_SIZE 120
 | |
| 
 | |
| // complex c = a * b
 | |
| #define CMUL3(cre, cim, are, aim, bre, bim)          \
 | |
| do {                                                 \
 | |
|     cre = are * bre - aim * bim;                     \
 | |
|     cim = are * bim + aim * bre;                     \
 | |
| } while (0)
 | |
| 
 | |
| #define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
 | |
| 
 | |
| // complex c = a * b
 | |
| //         d = a * conjugate(b)
 | |
| #define CMUL2(c, d, a, b)                            \
 | |
| do {                                                 \
 | |
|     float are = (a).re;                              \
 | |
|     float aim = (a).im;                              \
 | |
|     float bre = (b).re;                              \
 | |
|     float bim = (b).im;                              \
 | |
|     float rr  = are * bre;                           \
 | |
|     float ri  = are * bim;                           \
 | |
|     float ir  = aim * bre;                           \
 | |
|     float ii  = aim * bim;                           \
 | |
|     (c).re =  rr - ii;                               \
 | |
|     (c).im =  ri + ir;                               \
 | |
|     (d).re =  rr + ii;                               \
 | |
|     (d).im = -ri + ir;                               \
 | |
| } while (0)
 | |
| 
 | |
| av_cold void ff_celt_imdct_uninit(CeltIMDCTContext **ps)
 | |
| {
 | |
|     CeltIMDCTContext *s = *ps;
 | |
|     int i;
 | |
| 
 | |
|     if (!s)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++)
 | |
|         av_freep(&s->exptab[i]);
 | |
| 
 | |
|     av_freep(&s->twiddle_exptab);
 | |
| 
 | |
|     av_freep(&s->tmp);
 | |
| 
 | |
|     av_freep(ps);
 | |
| }
 | |
| 
 | |
| static void celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
 | |
|                             ptrdiff_t stride, float scale);
 | |
| 
 | |
| av_cold int ff_celt_imdct_init(CeltIMDCTContext **ps, int N)
 | |
| {
 | |
|     CeltIMDCTContext *s;
 | |
|     int len2 = 15 * (1 << N);
 | |
|     int len  = 2 * len2;
 | |
|     int i, j;
 | |
| 
 | |
|     if (len2 > CELT_MAX_FRAME_SIZE || len2 < CELT_MIN_IMDCT_SIZE)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     s = av_mallocz(sizeof(*s));
 | |
|     if (!s)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->fft_n = N - 1;
 | |
|     s->len4 = len2 / 2;
 | |
|     s->len2 = len2;
 | |
| 
 | |
|     s->tmp  = av_malloc(len * 2 * sizeof(*s->tmp));
 | |
|     if (!s->tmp)
 | |
|         goto fail;
 | |
| 
 | |
|     s->twiddle_exptab  = av_malloc(s->len4 * sizeof(*s->twiddle_exptab));
 | |
|     if (!s->twiddle_exptab)
 | |
|         goto fail;
 | |
| 
 | |
|     for (i = 0; i < s->len4; i++) {
 | |
|         s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125 + s->len4) / len);
 | |
|         s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125 + s->len4) / len);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++) {
 | |
|         int N = 15 * (1 << i);
 | |
|         s->exptab[i] = av_malloc(sizeof(*s->exptab[i]) * FFMAX(N, 19));
 | |
|         if (!s->exptab[i])
 | |
|             goto fail;
 | |
| 
 | |
|         for (j = 0; j < N; j++) {
 | |
|             s->exptab[i][j].re = cos(2 * M_PI * j / N);
 | |
|             s->exptab[i][j].im = sin(2 * M_PI * j / N);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // wrap around to simplify fft15
 | |
|     for (j = 15; j < 19; j++)
 | |
|         s->exptab[0][j] = s->exptab[0][j - 15];
 | |
| 
 | |
|     s->imdct_half = celt_imdct_half;
 | |
| 
 | |
|     if (ARCH_AARCH64)
 | |
|         ff_celt_imdct_init_aarch64(s);
 | |
| 
 | |
|     *ps = s;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     ff_celt_imdct_uninit(&s);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static void fft5(FFTComplex *out, const FFTComplex *in, ptrdiff_t stride)
 | |
| {
 | |
|     // [0] = exp(2 * i * pi / 5), [1] = exp(2 * i * pi * 2 / 5)
 | |
|     static const FFTComplex fact[] = { { 0.30901699437494745,  0.95105651629515353 },
 | |
|                                        { -0.80901699437494734, 0.58778525229247325 } };
 | |
| 
 | |
|     FFTComplex z[4][4];
 | |
| 
 | |
|     CMUL2(z[0][0], z[0][3], in[1 * stride], fact[0]);
 | |
|     CMUL2(z[0][1], z[0][2], in[1 * stride], fact[1]);
 | |
|     CMUL2(z[1][0], z[1][3], in[2 * stride], fact[0]);
 | |
|     CMUL2(z[1][1], z[1][2], in[2 * stride], fact[1]);
 | |
|     CMUL2(z[2][0], z[2][3], in[3 * stride], fact[0]);
 | |
|     CMUL2(z[2][1], z[2][2], in[3 * stride], fact[1]);
 | |
|     CMUL2(z[3][0], z[3][3], in[4 * stride], fact[0]);
 | |
|     CMUL2(z[3][1], z[3][2], in[4 * stride], fact[1]);
 | |
| 
 | |
|     out[0].re = in[0].re + in[stride].re + in[2 * stride].re + in[3 * stride].re + in[4 * stride].re;
 | |
|     out[0].im = in[0].im + in[stride].im + in[2 * stride].im + in[3 * stride].im + in[4 * stride].im;
 | |
| 
 | |
|     out[1].re = in[0].re + z[0][0].re + z[1][1].re + z[2][2].re + z[3][3].re;
 | |
|     out[1].im = in[0].im + z[0][0].im + z[1][1].im + z[2][2].im + z[3][3].im;
 | |
| 
 | |
|     out[2].re = in[0].re + z[0][1].re + z[1][3].re + z[2][0].re + z[3][2].re;
 | |
|     out[2].im = in[0].im + z[0][1].im + z[1][3].im + z[2][0].im + z[3][2].im;
 | |
| 
 | |
|     out[3].re = in[0].re + z[0][2].re + z[1][0].re + z[2][3].re + z[3][1].re;
 | |
|     out[3].im = in[0].im + z[0][2].im + z[1][0].im + z[2][3].im + z[3][1].im;
 | |
| 
 | |
|     out[4].re = in[0].re + z[0][3].re + z[1][2].re + z[2][1].re + z[3][0].re;
 | |
|     out[4].im = in[0].im + z[0][3].im + z[1][2].im + z[2][1].im + z[3][0].im;
 | |
| }
 | |
| 
 | |
| static void fft15(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, ptrdiff_t stride)
 | |
| {
 | |
|     const FFTComplex *exptab = s->exptab[0];
 | |
|     FFTComplex tmp[5];
 | |
|     FFTComplex tmp1[5];
 | |
|     FFTComplex tmp2[5];
 | |
|     int k;
 | |
| 
 | |
|     fft5(tmp,  in,              stride * 3);
 | |
|     fft5(tmp1, in +     stride, stride * 3);
 | |
|     fft5(tmp2, in + 2 * stride, stride * 3);
 | |
| 
 | |
|     for (k = 0; k < 5; k++) {
 | |
|         FFTComplex t1, t2;
 | |
| 
 | |
|         CMUL(t1, tmp1[k], exptab[k]);
 | |
|         CMUL(t2, tmp2[k], exptab[2 * k]);
 | |
|         out[k].re = tmp[k].re + t1.re + t2.re;
 | |
|         out[k].im = tmp[k].im + t1.im + t2.im;
 | |
| 
 | |
|         CMUL(t1, tmp1[k], exptab[k + 5]);
 | |
|         CMUL(t2, tmp2[k], exptab[2 * (k + 5)]);
 | |
|         out[k + 5].re = tmp[k].re + t1.re + t2.re;
 | |
|         out[k + 5].im = tmp[k].im + t1.im + t2.im;
 | |
| 
 | |
|         CMUL(t1, tmp1[k], exptab[k + 10]);
 | |
|         CMUL(t2, tmp2[k], exptab[2 * k + 5]);
 | |
|         out[k + 10].re = tmp[k].re + t1.re + t2.re;
 | |
|         out[k + 10].im = tmp[k].im + t1.im + t2.im;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FFT of the length 15 * (2^N)
 | |
|  */
 | |
| static void fft_calc(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in,
 | |
|                      int N, ptrdiff_t stride)
 | |
| {
 | |
|     if (N) {
 | |
|         const FFTComplex *exptab = s->exptab[N];
 | |
|         const int len2 = 15 * (1 << (N - 1));
 | |
|         int k;
 | |
| 
 | |
|         fft_calc(s, out,        in,          N - 1, stride * 2);
 | |
|         fft_calc(s, out + len2, in + stride, N - 1, stride * 2);
 | |
| 
 | |
|         for (k = 0; k < len2; k++) {
 | |
|             FFTComplex t;
 | |
| 
 | |
|             CMUL(t, out[len2 + k], exptab[k]);
 | |
| 
 | |
|             out[len2 + k].re = out[k].re - t.re;
 | |
|             out[len2 + k].im = out[k].im - t.im;
 | |
| 
 | |
|             out[k].re += t.re;
 | |
|             out[k].im += t.im;
 | |
|         }
 | |
|     } else
 | |
|         fft15(s, out, in, stride);
 | |
| }
 | |
| 
 | |
| static void celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
 | |
|                             ptrdiff_t stride, float scale)
 | |
| {
 | |
|     FFTComplex *z = (FFTComplex *)dst;
 | |
|     const int len8 = s->len4 / 2;
 | |
|     const float *in1 = src;
 | |
|     const float *in2 = src + (s->len2 - 1) * stride;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->len4; i++) {
 | |
|         FFTComplex tmp = { *in2, *in1 };
 | |
|         CMUL(s->tmp[i], tmp, s->twiddle_exptab[i]);
 | |
|         in1 += 2 * stride;
 | |
|         in2 -= 2 * stride;
 | |
|     }
 | |
| 
 | |
|     fft_calc(s, z, s->tmp, s->fft_n, 1);
 | |
| 
 | |
|     for (i = 0; i < len8; i++) {
 | |
|         float r0, i0, r1, i1;
 | |
| 
 | |
|         CMUL3(r0, i1, z[len8 - i - 1].im, z[len8 - i - 1].re,  s->twiddle_exptab[len8 - i - 1].im, s->twiddle_exptab[len8 - i - 1].re);
 | |
|         CMUL3(r1, i0, z[len8 + i].im,     z[len8 + i].re,      s->twiddle_exptab[len8 + i].im,     s->twiddle_exptab[len8 + i].re);
 | |
|         z[len8 - i - 1].re = scale * r0;
 | |
|         z[len8 - i - 1].im = scale * i0;
 | |
|         z[len8 + i].re     = scale * r1;
 | |
|         z[len8 + i].im     = scale * i1;
 | |
|     }
 | |
| }
 |