mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	 e2760de605
			
		
	
	e2760de605
	
	
	
		
			
			it was always 1 before with ISOBMFF(cherry picked from commit fb1402b1ec78d80acd6ced76bf78d65560965c4c) Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			3255 lines
		
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3255 lines
		
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * HEVC video Decoder
 | |
|  *
 | |
|  * Copyright (C) 2012 - 2013 Guillaume Martres
 | |
|  * Copyright (C) 2012 - 2013 Mickael Raulet
 | |
|  * Copyright (C) 2012 - 2013 Gildas Cocherel
 | |
|  * Copyright (C) 2012 - 2013 Wassim Hamidouche
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/atomic.h"
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/internal.h"
 | |
| #include "libavutil/md5.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/pixdesc.h"
 | |
| #include "libavutil/stereo3d.h"
 | |
| 
 | |
| #include "bytestream.h"
 | |
| #include "cabac_functions.h"
 | |
| #include "dsputil.h"
 | |
| #include "golomb.h"
 | |
| #include "hevc.h"
 | |
| 
 | |
| const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
 | |
| 
 | |
| /**
 | |
|  * NOTE: Each function hls_foo correspond to the function foo in the
 | |
|  * specification (HLS stands for High Level Syntax).
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Section 5.7
 | |
|  */
 | |
| 
 | |
| /* free everything allocated  by pic_arrays_init() */
 | |
| static void pic_arrays_free(HEVCContext *s)
 | |
| {
 | |
|     av_freep(&s->sao);
 | |
|     av_freep(&s->deblock);
 | |
|     av_freep(&s->split_cu_flag);
 | |
| 
 | |
|     av_freep(&s->skip_flag);
 | |
|     av_freep(&s->tab_ct_depth);
 | |
| 
 | |
|     av_freep(&s->tab_ipm);
 | |
|     av_freep(&s->cbf_luma);
 | |
|     av_freep(&s->is_pcm);
 | |
| 
 | |
|     av_freep(&s->qp_y_tab);
 | |
|     av_freep(&s->tab_slice_address);
 | |
|     av_freep(&s->filter_slice_edges);
 | |
| 
 | |
|     av_freep(&s->horizontal_bs);
 | |
|     av_freep(&s->vertical_bs);
 | |
| 
 | |
|     av_freep(&s->sh.entry_point_offset);
 | |
|     av_freep(&s->sh.size);
 | |
|     av_freep(&s->sh.offset);
 | |
| 
 | |
|     av_buffer_pool_uninit(&s->tab_mvf_pool);
 | |
|     av_buffer_pool_uninit(&s->rpl_tab_pool);
 | |
| }
 | |
| 
 | |
| /* allocate arrays that depend on frame dimensions */
 | |
| static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
 | |
| {
 | |
|     int log2_min_cb_size = sps->log2_min_cb_size;
 | |
|     int width            = sps->width;
 | |
|     int height           = sps->height;
 | |
|     int pic_size         = width * height;
 | |
|     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
 | |
|                            ((height >> log2_min_cb_size) + 1);
 | |
|     int ctb_count        = sps->ctb_width * sps->ctb_height;
 | |
|     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
 | |
| 
 | |
|     s->bs_width  = width  >> 3;
 | |
|     s->bs_height = height >> 3;
 | |
| 
 | |
|     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
 | |
|     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
 | |
|     s->split_cu_flag = av_malloc(pic_size);
 | |
|     if (!s->sao || !s->deblock || !s->split_cu_flag)
 | |
|         goto fail;
 | |
| 
 | |
|     s->skip_flag    = av_malloc(pic_size_in_ctb);
 | |
|     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
 | |
|     if (!s->skip_flag || !s->tab_ct_depth)
 | |
|         goto fail;
 | |
| 
 | |
|     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
 | |
|     s->tab_ipm  = av_mallocz(min_pu_size);
 | |
|     s->is_pcm   = av_malloc(min_pu_size);
 | |
|     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
 | |
|         goto fail;
 | |
| 
 | |
|     s->filter_slice_edges = av_malloc(ctb_count);
 | |
|     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
 | |
|                                       sizeof(*s->tab_slice_address));
 | |
|     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
 | |
|                                       sizeof(*s->qp_y_tab));
 | |
|     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
 | |
|         goto fail;
 | |
| 
 | |
|     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
 | |
|     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
 | |
|     if (!s->horizontal_bs || !s->vertical_bs)
 | |
|         goto fail;
 | |
| 
 | |
|     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
 | |
|                                           av_buffer_allocz);
 | |
|     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
 | |
|                                           av_buffer_allocz);
 | |
|     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
 | |
|         goto fail;
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     pic_arrays_free(s);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i = 0;
 | |
|     int j = 0;
 | |
|     uint8_t luma_weight_l0_flag[16];
 | |
|     uint8_t chroma_weight_l0_flag[16];
 | |
|     uint8_t luma_weight_l1_flag[16];
 | |
|     uint8_t chroma_weight_l1_flag[16];
 | |
| 
 | |
|     s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
 | |
|     if (s->sps->chroma_format_idc != 0) {
 | |
|         int delta = get_se_golomb(gb);
 | |
|         s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | |
|         luma_weight_l0_flag[i] = get_bits1(gb);
 | |
|         if (!luma_weight_l0_flag[i]) {
 | |
|             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
 | |
|             s->sh.luma_offset_l0[i] = 0;
 | |
|         }
 | |
|     }
 | |
|     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
 | |
|         for (i = 0; i < s->sh.nb_refs[L0]; i++)
 | |
|             chroma_weight_l0_flag[i] = get_bits1(gb);
 | |
|     } else {
 | |
|         for (i = 0; i < s->sh.nb_refs[L0]; i++)
 | |
|             chroma_weight_l0_flag[i] = 0;
 | |
|     }
 | |
|     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | |
|         if (luma_weight_l0_flag[i]) {
 | |
|             int delta_luma_weight_l0 = get_se_golomb(gb);
 | |
|             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
 | |
|             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
 | |
|         }
 | |
|         if (chroma_weight_l0_flag[i]) {
 | |
|             for (j = 0; j < 2; j++) {
 | |
|                 int delta_chroma_weight_l0 = get_se_golomb(gb);
 | |
|                 int delta_chroma_offset_l0 = get_se_golomb(gb);
 | |
|                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
 | |
|                 s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
 | |
|                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
 | |
|             }
 | |
|         } else {
 | |
|             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|             s->sh.chroma_offset_l0[i][0] = 0;
 | |
|             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|             s->sh.chroma_offset_l0[i][1] = 0;
 | |
|         }
 | |
|     }
 | |
|     if (s->sh.slice_type == B_SLICE) {
 | |
|         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | |
|             luma_weight_l1_flag[i] = get_bits1(gb);
 | |
|             if (!luma_weight_l1_flag[i]) {
 | |
|                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
 | |
|                 s->sh.luma_offset_l1[i] = 0;
 | |
|             }
 | |
|         }
 | |
|         if (s->sps->chroma_format_idc != 0) {
 | |
|             for (i = 0; i < s->sh.nb_refs[L1]; i++)
 | |
|                 chroma_weight_l1_flag[i] = get_bits1(gb);
 | |
|         } else {
 | |
|             for (i = 0; i < s->sh.nb_refs[L1]; i++)
 | |
|                 chroma_weight_l1_flag[i] = 0;
 | |
|         }
 | |
|         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | |
|             if (luma_weight_l1_flag[i]) {
 | |
|                 int delta_luma_weight_l1 = get_se_golomb(gb);
 | |
|                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
 | |
|                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
 | |
|             }
 | |
|             if (chroma_weight_l1_flag[i]) {
 | |
|                 for (j = 0; j < 2; j++) {
 | |
|                     int delta_chroma_weight_l1 = get_se_golomb(gb);
 | |
|                     int delta_chroma_offset_l1 = get_se_golomb(gb);
 | |
|                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
 | |
|                     s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
 | |
|                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
 | |
|                 }
 | |
|             } else {
 | |
|                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|                 s->sh.chroma_offset_l1[i][0] = 0;
 | |
|                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|                 s->sh.chroma_offset_l1[i][1] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
 | |
| {
 | |
|     const HEVCSPS *sps = s->sps;
 | |
|     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
 | |
|     int prev_delta_msb = 0;
 | |
|     unsigned int nb_sps = 0, nb_sh;
 | |
|     int i;
 | |
| 
 | |
|     rps->nb_refs = 0;
 | |
|     if (!sps->long_term_ref_pics_present_flag)
 | |
|         return 0;
 | |
| 
 | |
|     if (sps->num_long_term_ref_pics_sps > 0)
 | |
|         nb_sps = get_ue_golomb_long(gb);
 | |
|     nb_sh = get_ue_golomb_long(gb);
 | |
| 
 | |
|     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     rps->nb_refs = nb_sh + nb_sps;
 | |
| 
 | |
|     for (i = 0; i < rps->nb_refs; i++) {
 | |
|         uint8_t delta_poc_msb_present;
 | |
| 
 | |
|         if (i < nb_sps) {
 | |
|             uint8_t lt_idx_sps = 0;
 | |
| 
 | |
|             if (sps->num_long_term_ref_pics_sps > 1)
 | |
|                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
 | |
| 
 | |
|             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
 | |
|             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
 | |
|         } else {
 | |
|             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
 | |
|             rps->used[i] = get_bits1(gb);
 | |
|         }
 | |
| 
 | |
|         delta_poc_msb_present = get_bits1(gb);
 | |
|         if (delta_poc_msb_present) {
 | |
|             int delta = get_ue_golomb_long(gb);
 | |
| 
 | |
|             if (i && i != nb_sps)
 | |
|                 delta += prev_delta_msb;
 | |
| 
 | |
|             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
 | |
|             prev_delta_msb = delta;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int set_sps(HEVCContext *s, const HEVCSPS *sps)
 | |
| {
 | |
|     int ret;
 | |
|     unsigned int num = 0, den = 0;
 | |
| 
 | |
|     pic_arrays_free(s);
 | |
|     ret = pic_arrays_init(s, sps);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     s->avctx->coded_width         = sps->width;
 | |
|     s->avctx->coded_height        = sps->height;
 | |
|     s->avctx->width               = sps->output_width;
 | |
|     s->avctx->height              = sps->output_height;
 | |
|     s->avctx->pix_fmt             = sps->pix_fmt;
 | |
|     s->avctx->sample_aspect_ratio = sps->vui.sar;
 | |
|     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
 | |
| 
 | |
|     if (sps->vui.video_signal_type_present_flag)
 | |
|         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
 | |
|                                                                : AVCOL_RANGE_MPEG;
 | |
|     else
 | |
|         s->avctx->color_range = AVCOL_RANGE_MPEG;
 | |
| 
 | |
|     if (sps->vui.colour_description_present_flag) {
 | |
|         s->avctx->color_primaries = sps->vui.colour_primaries;
 | |
|         s->avctx->color_trc       = sps->vui.transfer_characteristic;
 | |
|         s->avctx->colorspace      = sps->vui.matrix_coeffs;
 | |
|     } else {
 | |
|         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
 | |
|         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
 | |
|         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
 | |
|     }
 | |
| 
 | |
|     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
 | |
|     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
 | |
|     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
 | |
| 
 | |
|     if (sps->sao_enabled) {
 | |
|         av_frame_unref(s->tmp_frame);
 | |
|         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         s->frame = s->tmp_frame;
 | |
|     }
 | |
| 
 | |
|     s->sps = sps;
 | |
|     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
 | |
| 
 | |
|     if (s->vps->vps_timing_info_present_flag) {
 | |
|         num = s->vps->vps_num_units_in_tick;
 | |
|         den = s->vps->vps_time_scale;
 | |
|     } else if (sps->vui.vui_timing_info_present_flag) {
 | |
|         num = sps->vui.vui_num_units_in_tick;
 | |
|         den = sps->vui.vui_time_scale;
 | |
|     }
 | |
| 
 | |
|     if (num != 0 && den != 0)
 | |
|         av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
 | |
|                   num, den, 1 << 30);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     pic_arrays_free(s);
 | |
|     s->sps = NULL;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int is_sps_exist(HEVCContext *s, const HEVCSPS* last_sps)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for( i = 0; i < MAX_SPS_COUNT; i++)
 | |
|         if(s->sps_list[i])
 | |
|             if (last_sps == (HEVCSPS*)s->sps_list[i]->data)
 | |
|                 return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hls_slice_header(HEVCContext *s)
 | |
| {
 | |
|     GetBitContext *gb = &s->HEVClc->gb;
 | |
|     SliceHeader *sh   = &s->sh;
 | |
|     int i, j, ret;
 | |
| 
 | |
|     // Coded parameters
 | |
|     sh->first_slice_in_pic_flag = get_bits1(gb);
 | |
|     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra     = INT_MAX;
 | |
|         if (IS_IDR(s))
 | |
|             ff_hevc_clear_refs(s);
 | |
|     }
 | |
|     sh->no_output_of_prior_pics_flag = 0;
 | |
|     if (IS_IRAP(s))
 | |
|         sh->no_output_of_prior_pics_flag = get_bits1(gb);
 | |
|     if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1)
 | |
|         sh->no_output_of_prior_pics_flag = 1;
 | |
| 
 | |
|     sh->pps_id = get_ue_golomb_long(gb);
 | |
|     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     if (!sh->first_slice_in_pic_flag &&
 | |
|         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
 | |
| 
 | |
|     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
 | |
|         const HEVCSPS* last_sps = s->sps;
 | |
|         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
 | |
|         if (last_sps) {
 | |
|             if (is_sps_exist(s, last_sps)) {
 | |
|                 if (s->sps->width !=  last_sps->width || s->sps->height != last_sps->height ||
 | |
|                         s->sps->temporal_layer[s->sps->max_sub_layers - 1].max_dec_pic_buffering != last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
 | |
|                     sh->no_output_of_prior_pics_flag = 0;
 | |
|             } else
 | |
|                 sh->no_output_of_prior_pics_flag = 0;
 | |
|         }
 | |
|         ff_hevc_clear_refs(s);
 | |
|         ret = set_sps(s, s->sps);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra     = INT_MAX;
 | |
|     }
 | |
| 
 | |
|     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
 | |
|     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
 | |
| 
 | |
|     sh->dependent_slice_segment_flag = 0;
 | |
|     if (!sh->first_slice_in_pic_flag) {
 | |
|         int slice_address_length;
 | |
| 
 | |
|         if (s->pps->dependent_slice_segments_enabled_flag)
 | |
|             sh->dependent_slice_segment_flag = get_bits1(gb);
 | |
| 
 | |
|         slice_address_length = av_ceil_log2(s->sps->ctb_width *
 | |
|                                             s->sps->ctb_height);
 | |
|         sh->slice_segment_addr = get_bits(gb, slice_address_length);
 | |
|         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                    "Invalid slice segment address: %u.\n",
 | |
|                    sh->slice_segment_addr);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (!sh->dependent_slice_segment_flag) {
 | |
|             sh->slice_addr = sh->slice_segment_addr;
 | |
|             s->slice_idx++;
 | |
|         }
 | |
|     } else {
 | |
|         sh->slice_segment_addr = sh->slice_addr = 0;
 | |
|         s->slice_idx           = 0;
 | |
|         s->slice_initialized   = 0;
 | |
|     }
 | |
| 
 | |
|     if (!sh->dependent_slice_segment_flag) {
 | |
|         s->slice_initialized = 0;
 | |
| 
 | |
|         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
 | |
|             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
 | |
| 
 | |
|         sh->slice_type = get_ue_golomb_long(gb);
 | |
|         if (!(sh->slice_type == I_SLICE ||
 | |
|               sh->slice_type == P_SLICE ||
 | |
|               sh->slice_type == B_SLICE)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
 | |
|                    sh->slice_type);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         sh->pic_output_flag = 1;
 | |
|         if (s->pps->output_flag_present_flag)
 | |
|             sh->pic_output_flag = get_bits1(gb);
 | |
| 
 | |
|         if (s->sps->separate_colour_plane_flag)
 | |
|             sh->colour_plane_id = get_bits(gb, 2);
 | |
| 
 | |
|         if (!IS_IDR(s)) {
 | |
|             int short_term_ref_pic_set_sps_flag, poc;
 | |
| 
 | |
|             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
 | |
|             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
 | |
|             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
 | |
|                 av_log(s->avctx, AV_LOG_WARNING,
 | |
|                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 poc = s->poc;
 | |
|             }
 | |
|             s->poc = poc;
 | |
| 
 | |
|             short_term_ref_pic_set_sps_flag = get_bits1(gb);
 | |
|             if (!short_term_ref_pic_set_sps_flag) {
 | |
|                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
| 
 | |
|                 sh->short_term_rps = &sh->slice_rps;
 | |
|             } else {
 | |
|                 int numbits, rps_idx;
 | |
| 
 | |
|                 if (!s->sps->nb_st_rps) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
| 
 | |
|                 numbits = av_ceil_log2(s->sps->nb_st_rps);
 | |
|                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
 | |
|                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
 | |
|             }
 | |
| 
 | |
|             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
 | |
|             if (ret < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             if (s->sps->sps_temporal_mvp_enabled_flag)
 | |
|                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
 | |
|             else
 | |
|                 sh->slice_temporal_mvp_enabled_flag = 0;
 | |
|         } else {
 | |
|             s->sh.short_term_rps = NULL;
 | |
|             s->poc               = 0;
 | |
|         }
 | |
| 
 | |
|         /* 8.3.1 */
 | |
|         if (s->temporal_id == 0 &&
 | |
|             s->nal_unit_type != NAL_TRAIL_N &&
 | |
|             s->nal_unit_type != NAL_TSA_N   &&
 | |
|             s->nal_unit_type != NAL_STSA_N  &&
 | |
|             s->nal_unit_type != NAL_RADL_N  &&
 | |
|             s->nal_unit_type != NAL_RADL_R  &&
 | |
|             s->nal_unit_type != NAL_RASL_N  &&
 | |
|             s->nal_unit_type != NAL_RASL_R)
 | |
|             s->pocTid0 = s->poc;
 | |
| 
 | |
|         if (s->sps->sao_enabled) {
 | |
|             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
 | |
|             sh->slice_sample_adaptive_offset_flag[1] =
 | |
|             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
 | |
|         } else {
 | |
|             sh->slice_sample_adaptive_offset_flag[0] = 0;
 | |
|             sh->slice_sample_adaptive_offset_flag[1] = 0;
 | |
|             sh->slice_sample_adaptive_offset_flag[2] = 0;
 | |
|         }
 | |
| 
 | |
|         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
 | |
|         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
 | |
|             int nb_refs;
 | |
| 
 | |
|             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
 | |
|             if (sh->slice_type == B_SLICE)
 | |
|                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
 | |
| 
 | |
|             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
 | |
|                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
 | |
|                 if (sh->slice_type == B_SLICE)
 | |
|                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
 | |
|             }
 | |
|             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
 | |
|                        sh->nb_refs[L0], sh->nb_refs[L1]);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             sh->rpl_modification_flag[0] = 0;
 | |
|             sh->rpl_modification_flag[1] = 0;
 | |
|             nb_refs = ff_hevc_frame_nb_refs(s);
 | |
|             if (!nb_refs) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
 | |
|                 sh->rpl_modification_flag[0] = get_bits1(gb);
 | |
|                 if (sh->rpl_modification_flag[0]) {
 | |
|                     for (i = 0; i < sh->nb_refs[L0]; i++)
 | |
|                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
 | |
|                 }
 | |
| 
 | |
|                 if (sh->slice_type == B_SLICE) {
 | |
|                     sh->rpl_modification_flag[1] = get_bits1(gb);
 | |
|                     if (sh->rpl_modification_flag[1] == 1)
 | |
|                         for (i = 0; i < sh->nb_refs[L1]; i++)
 | |
|                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (sh->slice_type == B_SLICE)
 | |
|                 sh->mvd_l1_zero_flag = get_bits1(gb);
 | |
| 
 | |
|             if (s->pps->cabac_init_present_flag)
 | |
|                 sh->cabac_init_flag = get_bits1(gb);
 | |
|             else
 | |
|                 sh->cabac_init_flag = 0;
 | |
| 
 | |
|             sh->collocated_ref_idx = 0;
 | |
|             if (sh->slice_temporal_mvp_enabled_flag) {
 | |
|                 sh->collocated_list = L0;
 | |
|                 if (sh->slice_type == B_SLICE)
 | |
|                     sh->collocated_list = !get_bits1(gb);
 | |
| 
 | |
|                 if (sh->nb_refs[sh->collocated_list] > 1) {
 | |
|                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
 | |
|                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                "Invalid collocated_ref_idx: %d.\n",
 | |
|                                sh->collocated_ref_idx);
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
 | |
|                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
 | |
|                 pred_weight_table(s, gb);
 | |
|             }
 | |
| 
 | |
|             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
 | |
|             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid number of merging MVP candidates: %d.\n",
 | |
|                        sh->max_num_merge_cand);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         sh->slice_qp_delta = get_se_golomb(gb);
 | |
| 
 | |
|         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
 | |
|             sh->slice_cb_qp_offset = get_se_golomb(gb);
 | |
|             sh->slice_cr_qp_offset = get_se_golomb(gb);
 | |
|         } else {
 | |
|             sh->slice_cb_qp_offset = 0;
 | |
|             sh->slice_cr_qp_offset = 0;
 | |
|         }
 | |
| 
 | |
|         if (s->pps->deblocking_filter_control_present_flag) {
 | |
|             int deblocking_filter_override_flag = 0;
 | |
| 
 | |
|             if (s->pps->deblocking_filter_override_enabled_flag)
 | |
|                 deblocking_filter_override_flag = get_bits1(gb);
 | |
| 
 | |
|             if (deblocking_filter_override_flag) {
 | |
|                 sh->disable_deblocking_filter_flag = get_bits1(gb);
 | |
|                 if (!sh->disable_deblocking_filter_flag) {
 | |
|                     sh->beta_offset = get_se_golomb(gb) * 2;
 | |
|                     sh->tc_offset   = get_se_golomb(gb) * 2;
 | |
|                 }
 | |
|             } else {
 | |
|                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
 | |
|                 sh->beta_offset                    = s->pps->beta_offset;
 | |
|                 sh->tc_offset                      = s->pps->tc_offset;
 | |
|             }
 | |
|         } else {
 | |
|             sh->disable_deblocking_filter_flag = 0;
 | |
|             sh->beta_offset                    = 0;
 | |
|             sh->tc_offset                      = 0;
 | |
|         }
 | |
| 
 | |
|         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
 | |
|             (sh->slice_sample_adaptive_offset_flag[0] ||
 | |
|              sh->slice_sample_adaptive_offset_flag[1] ||
 | |
|              !sh->disable_deblocking_filter_flag)) {
 | |
|             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
 | |
|         } else {
 | |
|             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
 | |
|         }
 | |
|     } else if (!s->slice_initialized) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     sh->num_entry_point_offsets = 0;
 | |
|     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
 | |
|         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
 | |
|         if (sh->num_entry_point_offsets > 0) {
 | |
|             int offset_len = get_ue_golomb_long(gb) + 1;
 | |
|             int segments = offset_len >> 4;
 | |
|             int rest = (offset_len & 15);
 | |
|             av_freep(&sh->entry_point_offset);
 | |
|             av_freep(&sh->offset);
 | |
|             av_freep(&sh->size);
 | |
|             sh->entry_point_offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
 | |
|             sh->offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
 | |
|             sh->size = av_malloc(sh->num_entry_point_offsets * sizeof(int));
 | |
|             if (!sh->entry_point_offset || !sh->offset || !sh->size) {
 | |
|                 sh->num_entry_point_offsets = 0;
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
 | |
|                 return AVERROR(ENOMEM);
 | |
|             }
 | |
|             for (i = 0; i < sh->num_entry_point_offsets; i++) {
 | |
|                 int val = 0;
 | |
|                 for (j = 0; j < segments; j++) {
 | |
|                     val <<= 16;
 | |
|                     val += get_bits(gb, 16);
 | |
|                 }
 | |
|                 if (rest) {
 | |
|                     val <<= rest;
 | |
|                     val += get_bits(gb, rest);
 | |
|                 }
 | |
|                 sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
 | |
|             }
 | |
|             if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) {
 | |
|                 s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
 | |
|                 s->threads_number = 1;
 | |
|             } else
 | |
|                 s->enable_parallel_tiles = 0;
 | |
|         } else
 | |
|             s->enable_parallel_tiles = 0;
 | |
|     }
 | |
| 
 | |
|     if (s->pps->slice_header_extension_present_flag) {
 | |
|         unsigned int length = get_ue_golomb_long(gb);
 | |
|         for (i = 0; i < length; i++)
 | |
|             skip_bits(gb, 8);  // slice_header_extension_data_byte
 | |
|     }
 | |
| 
 | |
|     // Inferred parameters
 | |
|     sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
 | |
|     if (sh->slice_qp > 51 ||
 | |
|         sh->slice_qp < -s->sps->qp_bd_offset) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                "The slice_qp %d is outside the valid range "
 | |
|                "[%d, 51].\n",
 | |
|                sh->slice_qp,
 | |
|                -s->sps->qp_bd_offset);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
 | |
| 
 | |
|     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
 | |
| 
 | |
|     if (!s->pps->cu_qp_delta_enabled_flag)
 | |
|         s->HEVClc->qp_y = s->sh.slice_qp;
 | |
| 
 | |
|     s->slice_initialized = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
 | |
| 
 | |
| #define SET_SAO(elem, value)                            \
 | |
| do {                                                    \
 | |
|     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
 | |
|         sao->elem = value;                              \
 | |
|     else if (sao_merge_left_flag)                       \
 | |
|         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
 | |
|     else if (sao_merge_up_flag)                         \
 | |
|         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
 | |
|     else                                                \
 | |
|         sao->elem = 0;                                  \
 | |
| } while (0)
 | |
| 
 | |
| static void hls_sao_param(HEVCContext *s, int rx, int ry)
 | |
| {
 | |
|     HEVCLocalContext *lc    = s->HEVClc;
 | |
|     int sao_merge_left_flag = 0;
 | |
|     int sao_merge_up_flag   = 0;
 | |
|     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
 | |
|     SAOParams *sao          = &CTB(s->sao, rx, ry);
 | |
|     int c_idx, i;
 | |
| 
 | |
|     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
 | |
|         s->sh.slice_sample_adaptive_offset_flag[1]) {
 | |
|         if (rx > 0) {
 | |
|             if (lc->ctb_left_flag)
 | |
|                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
 | |
|         }
 | |
|         if (ry > 0 && !sao_merge_left_flag) {
 | |
|             if (lc->ctb_up_flag)
 | |
|                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (c_idx = 0; c_idx < 3; c_idx++) {
 | |
|         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
 | |
|             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (c_idx == 2) {
 | |
|             sao->type_idx[2] = sao->type_idx[1];
 | |
|             sao->eo_class[2] = sao->eo_class[1];
 | |
|         } else {
 | |
|             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
 | |
|         }
 | |
| 
 | |
|         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
 | |
|             continue;
 | |
| 
 | |
|         for (i = 0; i < 4; i++)
 | |
|             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
 | |
| 
 | |
|         if (sao->type_idx[c_idx] == SAO_BAND) {
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 if (sao->offset_abs[c_idx][i]) {
 | |
|                     SET_SAO(offset_sign[c_idx][i],
 | |
|                             ff_hevc_sao_offset_sign_decode(s));
 | |
|                 } else {
 | |
|                     sao->offset_sign[c_idx][i] = 0;
 | |
|                 }
 | |
|             }
 | |
|             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
 | |
|         } else if (c_idx != 2) {
 | |
|             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
 | |
|         }
 | |
| 
 | |
|         // Inferred parameters
 | |
|         sao->offset_val[c_idx][0] = 0;
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
 | |
|             if (sao->type_idx[c_idx] == SAO_EDGE) {
 | |
|                 if (i > 1)
 | |
|                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
 | |
|             } else if (sao->offset_sign[c_idx][i]) {
 | |
|                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #undef SET_SAO
 | |
| #undef CTB
 | |
| 
 | |
| static int hls_transform_unit(HEVCContext *s, int x0, int y0,
 | |
|                               int xBase, int yBase, int cb_xBase, int cb_yBase,
 | |
|                               int log2_cb_size, int log2_trafo_size,
 | |
|                               int trafo_depth, int blk_idx)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
| 
 | |
|     if (lc->cu.pred_mode == MODE_INTRA) {
 | |
|         int trafo_size = 1 << log2_trafo_size;
 | |
|         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
 | |
| 
 | |
|         s->hpc.intra_pred(s, x0, y0, log2_trafo_size, 0);
 | |
|         if (log2_trafo_size > 2) {
 | |
|             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
 | |
|             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
 | |
|             s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 1);
 | |
|             s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 2);
 | |
|         } else if (blk_idx == 3) {
 | |
|             trafo_size = trafo_size << s->sps->hshift[1];
 | |
|             ff_hevc_set_neighbour_available(s, xBase, yBase,
 | |
|                                             trafo_size, trafo_size);
 | |
|             s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 1);
 | |
|             s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 2);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (lc->tt.cbf_luma ||
 | |
|         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
 | |
|         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
 | |
|         int scan_idx   = SCAN_DIAG;
 | |
|         int scan_idx_c = SCAN_DIAG;
 | |
| 
 | |
|         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
 | |
|             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
 | |
|             if (lc->tu.cu_qp_delta != 0)
 | |
|                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
 | |
|                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
 | |
|             lc->tu.is_cu_qp_delta_coded = 1;
 | |
| 
 | |
|             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
 | |
|                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "The cu_qp_delta %d is outside the valid range "
 | |
|                        "[%d, %d].\n",
 | |
|                        lc->tu.cu_qp_delta,
 | |
|                        -(26 + s->sps->qp_bd_offset / 2),
 | |
|                         (25 + s->sps->qp_bd_offset / 2));
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
 | |
|         }
 | |
| 
 | |
|         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
 | |
|             if (lc->tu.cur_intra_pred_mode >= 6 &&
 | |
|                 lc->tu.cur_intra_pred_mode <= 14) {
 | |
|                 scan_idx = SCAN_VERT;
 | |
|             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
 | |
|                        lc->tu.cur_intra_pred_mode <= 30) {
 | |
|                 scan_idx = SCAN_HORIZ;
 | |
|             }
 | |
| 
 | |
|             if (lc->pu.intra_pred_mode_c >=  6 &&
 | |
|                 lc->pu.intra_pred_mode_c <= 14) {
 | |
|                 scan_idx_c = SCAN_VERT;
 | |
|             } else if (lc->pu.intra_pred_mode_c >= 22 &&
 | |
|                        lc->pu.intra_pred_mode_c <= 30) {
 | |
|                 scan_idx_c = SCAN_HORIZ;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (lc->tt.cbf_luma)
 | |
|             ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
 | |
|         if (log2_trafo_size > 2) {
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0))
 | |
|                 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0))
 | |
|                 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
 | |
|         } else if (blk_idx == 3) {
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase))
 | |
|                 ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase))
 | |
|                 ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     int cb_size          = 1 << log2_cb_size;
 | |
|     int log2_min_pu_size = s->sps->log2_min_pu_size;
 | |
| 
 | |
|     int min_pu_width     = s->sps->min_pu_width;
 | |
|     int x_end = FFMIN(x0 + cb_size, s->sps->width);
 | |
|     int y_end = FFMIN(y0 + cb_size, s->sps->height);
 | |
|     int i, j;
 | |
| 
 | |
|     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
 | |
|         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
 | |
|             s->is_pcm[i + j * min_pu_width] = 2;
 | |
| }
 | |
| 
 | |
| static int hls_transform_tree(HEVCContext *s, int x0, int y0,
 | |
|                               int xBase, int yBase, int cb_xBase, int cb_yBase,
 | |
|                               int log2_cb_size, int log2_trafo_size,
 | |
|                               int trafo_depth, int blk_idx)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     uint8_t split_transform_flag;
 | |
|     int ret;
 | |
| 
 | |
|     if (trafo_depth > 0 && log2_trafo_size == 2) {
 | |
|         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase);
 | |
|         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase);
 | |
|     } else {
 | |
|         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
 | |
|         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0;
 | |
|     }
 | |
| 
 | |
|     if (lc->cu.intra_split_flag) {
 | |
|         if (trafo_depth == 1)
 | |
|             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
 | |
|     } else {
 | |
|         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
 | |
|     }
 | |
| 
 | |
|     lc->tt.cbf_luma = 1;
 | |
| 
 | |
|     lc->tt.inter_split_flag = s->sps->max_transform_hierarchy_depth_inter == 0 &&
 | |
|                               lc->cu.pred_mode == MODE_INTER &&
 | |
|                               lc->cu.part_mode != PART_2Nx2N &&
 | |
|                               trafo_depth == 0;
 | |
| 
 | |
|     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
 | |
|         log2_trafo_size >  s->sps->log2_min_tb_size    &&
 | |
|         trafo_depth     < lc->cu.max_trafo_depth       &&
 | |
|         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
 | |
|         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
 | |
|     } else {
 | |
|         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
 | |
|                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
 | |
|                                lc->tt.inter_split_flag;
 | |
|     }
 | |
| 
 | |
|     if (log2_trafo_size > 2) {
 | |
|         if (trafo_depth == 0 ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) {
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
 | |
|                 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | |
|         }
 | |
| 
 | |
|         if (trafo_depth == 0 ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) {
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
 | |
|                 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (split_transform_flag) {
 | |
|         int x1 = x0 + ((1 << log2_trafo_size) >> 1);
 | |
|         int y1 = y0 + ((1 << log2_trafo_size) >> 1);
 | |
| 
 | |
|         ret = hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase,
 | |
|                                  log2_cb_size, log2_trafo_size - 1,
 | |
|                                  trafo_depth + 1, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         ret = hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase,
 | |
|                                  log2_cb_size, log2_trafo_size - 1,
 | |
|                                  trafo_depth + 1, 1);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         ret = hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase,
 | |
|                                  log2_cb_size, log2_trafo_size - 1,
 | |
|                                  trafo_depth + 1, 2);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         ret = hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase,
 | |
|                                  log2_cb_size, log2_trafo_size - 1,
 | |
|                                  trafo_depth + 1, 3);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     } else {
 | |
|         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
 | |
|         int log2_min_tu_size = s->sps->log2_min_tb_size;
 | |
|         int min_tu_width     = s->sps->min_tb_width;
 | |
| 
 | |
|         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
 | |
|             lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
 | |
|         }
 | |
| 
 | |
|         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
 | |
|                                  log2_cb_size, log2_trafo_size, trafo_depth,
 | |
|                                  blk_idx);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         // TODO: store cbf_luma somewhere else
 | |
|         if (lc->tt.cbf_luma) {
 | |
|             int i, j;
 | |
|             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
 | |
|                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
 | |
|                     int x_tu = (x0 + j) >> log2_min_tu_size;
 | |
|                     int y_tu = (y0 + i) >> log2_min_tu_size;
 | |
|                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
 | |
|                 }
 | |
|         }
 | |
|         if (!s->sh.disable_deblocking_filter_flag) {
 | |
|             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
 | |
|             if (s->pps->transquant_bypass_enable_flag &&
 | |
|                 lc->cu.cu_transquant_bypass_flag)
 | |
|                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     //TODO: non-4:2:0 support
 | |
|     GetBitContext gb;
 | |
|     int cb_size   = 1 << log2_cb_size;
 | |
|     int stride0   = s->frame->linesize[0];
 | |
|     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
 | |
|     int   stride1 = s->frame->linesize[1];
 | |
|     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
 | |
|     int   stride2 = s->frame->linesize[2];
 | |
|     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
 | |
| 
 | |
|     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
 | |
|     const uint8_t *pcm = skip_bytes(&s->HEVClc->cc, (length + 7) >> 3);
 | |
|     int ret;
 | |
| 
 | |
|     if (!s->sh.disable_deblocking_filter_flag)
 | |
|         ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
 | |
| 
 | |
|     ret = init_get_bits(&gb, pcm, length);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
 | |
|     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
 | |
|     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
 | |
|  *
 | |
|  * @param s HEVC decoding context
 | |
|  * @param dst target buffer for block data at block position
 | |
|  * @param dststride stride of the dst buffer
 | |
|  * @param ref reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block
 | |
|  * @param block_h height of block
 | |
|  * @param luma_weight weighting factor applied to the luma prediction
 | |
|  * @param luma_offset additive offset applied to the luma prediction value
 | |
|  */
 | |
| 
 | |
| static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
 | |
|                         AVFrame *ref, const Mv *mv, int x_off, int y_off,
 | |
|                         int block_w, int block_h, int luma_weight, int luma_offset)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     uint8_t *src         = ref->data[0];
 | |
|     ptrdiff_t srcstride  = ref->linesize[0];
 | |
|     int pic_width        = s->sps->width;
 | |
|     int pic_height       = s->sps->height;
 | |
|     int mx               = mv->x & 3;
 | |
|     int my               = mv->y & 3;
 | |
|     int weight_flag      = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|                            (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
 | |
|     int idx              = ff_hevc_pel_weight[block_w];
 | |
| 
 | |
|     x_off += mv->x >> 2;
 | |
|     y_off += mv->y >> 2;
 | |
|     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
 | |
| 
 | |
|     if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
 | |
|         x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
 | |
|         y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
 | |
|         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
 | |
|         int offset     = QPEL_EXTRA_BEFORE * srcstride       + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
 | |
|         int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
 | |
|                                  edge_emu_stride, srcstride,
 | |
|                                  block_w + QPEL_EXTRA,
 | |
|                                  block_h + QPEL_EXTRA,
 | |
|                                  x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
|         src = lc->edge_emu_buffer + buf_offset;
 | |
|         srcstride = edge_emu_stride;
 | |
|     }
 | |
| 
 | |
|     if (!weight_flag)
 | |
|         s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
 | |
|                                                       block_h, mx, my, block_w);
 | |
|     else
 | |
|         s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
 | |
|                                                         block_h, s->sh.luma_log2_weight_denom,
 | |
|                                                         luma_weight, luma_offset, mx, my, block_w);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
 | |
|  *
 | |
|  * @param s HEVC decoding context
 | |
|  * @param dst target buffer for block data at block position
 | |
|  * @param dststride stride of the dst buffer
 | |
|  * @param ref0 reference picture0 buffer at origin (0, 0)
 | |
|  * @param mv0 motion vector0 (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block
 | |
|  * @param block_h height of block
 | |
|  * @param ref1 reference picture1 buffer at origin (0, 0)
 | |
|  * @param mv1 motion vector1 (relative to block position) to get pixel data from
 | |
|  * @param current_mv current motion vector structure
 | |
|  */
 | |
|  static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
 | |
|                        AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
 | |
|                        int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|     ptrdiff_t src0stride  = ref0->linesize[0];
 | |
|     ptrdiff_t src1stride  = ref1->linesize[0];
 | |
|     int pic_width        = s->sps->width;
 | |
|     int pic_height       = s->sps->height;
 | |
|     int mx0              = mv0->x & 3;
 | |
|     int my0              = mv0->y & 3;
 | |
|     int mx1              = mv1->x & 3;
 | |
|     int my1              = mv1->y & 3;
 | |
|     int weight_flag      = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|                            (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
 | |
|     int x_off0           = x_off + (mv0->x >> 2);
 | |
|     int y_off0           = y_off + (mv0->y >> 2);
 | |
|     int x_off1           = x_off + (mv1->x >> 2);
 | |
|     int y_off1           = y_off + (mv1->y >> 2);
 | |
|     int idx              = ff_hevc_pel_weight[block_w];
 | |
| 
 | |
|     uint8_t *src0  = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
 | |
|     uint8_t *src1  = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
 | |
| 
 | |
|     if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
 | |
|         x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
 | |
|         y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
 | |
|         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
 | |
|         int offset     = QPEL_EXTRA_BEFORE * src0stride       + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
 | |
|         int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
 | |
|                                  edge_emu_stride, src0stride,
 | |
|                                  block_w + QPEL_EXTRA,
 | |
|                                  block_h + QPEL_EXTRA,
 | |
|                                  x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
|         src0 = lc->edge_emu_buffer + buf_offset;
 | |
|         src0stride = edge_emu_stride;
 | |
|     }
 | |
| 
 | |
|     if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
 | |
|         x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
 | |
|         y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
 | |
|         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
 | |
|         int offset     = QPEL_EXTRA_BEFORE * src1stride       + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
 | |
|         int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
 | |
|                                  edge_emu_stride, src1stride,
 | |
|                                  block_w + QPEL_EXTRA,
 | |
|                                  block_h + QPEL_EXTRA,
 | |
|                                  x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
|         src1 = lc->edge_emu_buffer2 + buf_offset;
 | |
|         src1stride = edge_emu_stride;
 | |
|     }
 | |
| 
 | |
|     s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](tmp, MAX_PB_SIZE, src0, src0stride,
 | |
|                                                 block_h, mx0, my0, block_w);
 | |
|     if (!weight_flag)
 | |
|         s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE,
 | |
|                                                        block_h, mx1, my1, block_w);
 | |
|     else
 | |
|         s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE,
 | |
|                                                          block_h, s->sh.luma_log2_weight_denom,
 | |
|                                                          s->sh.luma_weight_l0[current_mv->ref_idx[0]],
 | |
|                                                          s->sh.luma_weight_l1[current_mv->ref_idx[1]],
 | |
|                                                          s->sh.luma_offset_l0[current_mv->ref_idx[0]],
 | |
|                                                          s->sh.luma_offset_l1[current_mv->ref_idx[1]],
 | |
|                                                          mx1, my1, block_w);
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
 | |
|  *
 | |
|  * @param s HEVC decoding context
 | |
|  * @param dst1 target buffer for block data at block position (U plane)
 | |
|  * @param dst2 target buffer for block data at block position (V plane)
 | |
|  * @param dststride stride of the dst1 and dst2 buffers
 | |
|  * @param ref reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block
 | |
|  * @param block_h height of block
 | |
|  * @param chroma_weight weighting factor applied to the chroma prediction
 | |
|  * @param chroma_offset additive offset applied to the chroma prediction value
 | |
|  */
 | |
| 
 | |
| static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
 | |
|                           ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
 | |
|                           int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int pic_width        = s->sps->width >> s->sps->hshift[1];
 | |
|     int pic_height       = s->sps->height >> s->sps->vshift[1];
 | |
|     const Mv *mv         = ¤t_mv->mv[reflist];
 | |
|     int weight_flag      = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|                            (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
 | |
|     int idx              = ff_hevc_pel_weight[block_w];
 | |
|     int hshift           = s->sps->hshift[1];
 | |
|     int vshift           = s->sps->vshift[1];
 | |
|     intptr_t mx          = mv->x & ((1 << (2 + hshift)) - 1);
 | |
|     intptr_t my          = mv->y & ((1 << (2 + vshift)) - 1);
 | |
|     intptr_t _mx         = mx << (1 - hshift);
 | |
|     intptr_t _my         = my << (1 - vshift);
 | |
| 
 | |
|     x_off += mv->x >> (2 + hshift);
 | |
|     y_off += mv->y >> (2 + vshift);
 | |
|     src0  += y_off * srcstride + (x_off << s->sps->pixel_shift);
 | |
| 
 | |
|     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
 | |
|         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | |
|         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | |
|         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
 | |
|         int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->sps->pixel_shift));
 | |
|         int buf_offset0 = EPEL_EXTRA_BEFORE *
 | |
|                           (edge_emu_stride + (1 << s->sps->pixel_shift));
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
 | |
|                                  edge_emu_stride, srcstride,
 | |
|                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | |
|                                  x_off - EPEL_EXTRA_BEFORE,
 | |
|                                  y_off - EPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
| 
 | |
|         src0 = lc->edge_emu_buffer + buf_offset0;
 | |
|         srcstride = edge_emu_stride;
 | |
|     }
 | |
|     if (!weight_flag)
 | |
|         s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
 | |
|                                                   block_h, _mx, _my, block_w);
 | |
|     else
 | |
|         s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
 | |
|                                                         block_h, s->sh.chroma_log2_weight_denom,
 | |
|                                                         chroma_weight, chroma_offset, _mx, _my, block_w);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
 | |
|  *
 | |
|  * @param s HEVC decoding context
 | |
|  * @param dst target buffer for block data at block position
 | |
|  * @param dststride stride of the dst buffer
 | |
|  * @param ref0 reference picture0 buffer at origin (0, 0)
 | |
|  * @param mv0 motion vector0 (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block
 | |
|  * @param block_h height of block
 | |
|  * @param ref1 reference picture1 buffer at origin (0, 0)
 | |
|  * @param mv1 motion vector1 (relative to block position) to get pixel data from
 | |
|  * @param current_mv current motion vector structure
 | |
|  * @param cidx chroma component(cb, cr)
 | |
|  */
 | |
| static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
 | |
|                          int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
 | |
| {
 | |
|     DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|     int tmpstride = MAX_PB_SIZE;
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     uint8_t *src1        = ref0->data[cidx+1];
 | |
|     uint8_t *src2        = ref1->data[cidx+1];
 | |
|     ptrdiff_t src1stride = ref0->linesize[cidx+1];
 | |
|     ptrdiff_t src2stride = ref1->linesize[cidx+1];
 | |
|     int weight_flag      = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|                            (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
 | |
|     int pic_width        = s->sps->width >> s->sps->hshift[1];
 | |
|     int pic_height       = s->sps->height >> s->sps->vshift[1];
 | |
|     Mv *mv0              = ¤t_mv->mv[0];
 | |
|     Mv *mv1              = ¤t_mv->mv[1];
 | |
|     int hshift = s->sps->hshift[1];
 | |
|     int vshift = s->sps->vshift[1];
 | |
| 
 | |
|     intptr_t mx0 = mv0->x & ((1 << (2 + hshift)) - 1);
 | |
|     intptr_t my0 = mv0->y & ((1 << (2 + vshift)) - 1);
 | |
|     intptr_t mx1 = mv1->x & ((1 << (2 + hshift)) - 1);
 | |
|     intptr_t my1 = mv1->y & ((1 << (2 + vshift)) - 1);
 | |
|     intptr_t _mx0 = mx0 << (1 - hshift);
 | |
|     intptr_t _my0 = my0 << (1 - vshift);
 | |
|     intptr_t _mx1 = mx1 << (1 - hshift);
 | |
|     intptr_t _my1 = my1 << (1 - vshift);
 | |
| 
 | |
|     int x_off0 = x_off + (mv0->x >> (2 + hshift));
 | |
|     int y_off0 = y_off + (mv0->y >> (2 + vshift));
 | |
|     int x_off1 = x_off + (mv1->x >> (2 + hshift));
 | |
|     int y_off1 = y_off + (mv1->y >> (2 + vshift));
 | |
|     int idx = ff_hevc_pel_weight[block_w];
 | |
|     src1  += y_off0 * src1stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
 | |
|     src2  += y_off1 * src2stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
 | |
| 
 | |
|     if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
 | |
|         x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | |
|         y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | |
|         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
 | |
|         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
 | |
|         int buf_offset1 = EPEL_EXTRA_BEFORE *
 | |
|                           (edge_emu_stride + (1 << s->sps->pixel_shift));
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
 | |
|                                  edge_emu_stride, src1stride,
 | |
|                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | |
|                                  x_off0 - EPEL_EXTRA_BEFORE,
 | |
|                                  y_off0 - EPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
| 
 | |
|         src1 = lc->edge_emu_buffer + buf_offset1;
 | |
|         src1stride = edge_emu_stride;
 | |
|     }
 | |
| 
 | |
|     if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
 | |
|         x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | |
|         y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | |
|         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
 | |
|         int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
 | |
|         int buf_offset1 = EPEL_EXTRA_BEFORE *
 | |
|                           (edge_emu_stride + (1 << s->sps->pixel_shift));
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
 | |
|                                  edge_emu_stride, src2stride,
 | |
|                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | |
|                                  x_off1 - EPEL_EXTRA_BEFORE,
 | |
|                                  y_off1 - EPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
| 
 | |
|         src2 = lc->edge_emu_buffer2 + buf_offset1;
 | |
|         src2stride = edge_emu_stride;
 | |
|     }
 | |
| 
 | |
|     s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](tmp, tmpstride, src1, src1stride,
 | |
|                                                 block_h, _mx0, _my0, block_w);
 | |
|     if (!weight_flag)
 | |
|         s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
 | |
|                                                        src2, src2stride, tmp, tmpstride,
 | |
|                                                        block_h, _mx1, _my1, block_w);
 | |
|     else
 | |
|         s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
 | |
|                                                          src2, src2stride, tmp, tmpstride,
 | |
|                                                          block_h,
 | |
|                                                          s->sh.chroma_log2_weight_denom,
 | |
|                                                          s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
 | |
|                                                          s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
 | |
|                                                          s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
 | |
|                                                          s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
 | |
|                                                          _mx1, _my1, block_w);
 | |
| }
 | |
| 
 | |
| static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
 | |
|                                 const Mv *mv, int y0, int height)
 | |
| {
 | |
|     int y = (mv->y >> 2) + y0 + height + 9;
 | |
| 
 | |
|     if (s->threads_type == FF_THREAD_FRAME )
 | |
|         ff_thread_await_progress(&ref->tf, y, 0);
 | |
| }
 | |
| 
 | |
| static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
 | |
|                                 int nPbW, int nPbH,
 | |
|                                 int log2_cb_size, int partIdx)
 | |
| {
 | |
| #define POS(c_idx, x, y)                                                              \
 | |
|     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
 | |
|                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int merge_idx = 0;
 | |
|     struct MvField current_mv = {{{ 0 }}};
 | |
| 
 | |
|     int min_pu_width = s->sps->min_pu_width;
 | |
| 
 | |
|     MvField *tab_mvf = s->ref->tab_mvf;
 | |
|     RefPicList  *refPicList = s->ref->refPicList;
 | |
|     HEVCFrame *ref0, *ref1;
 | |
|     uint8_t *dst0 = POS(0, x0, y0);
 | |
|     uint8_t *dst1 = POS(1, x0, y0);
 | |
|     uint8_t *dst2 = POS(2, x0, y0);
 | |
|     int log2_min_cb_size = s->sps->log2_min_cb_size;
 | |
|     int min_cb_width     = s->sps->min_cb_width;
 | |
|     int x_cb             = x0 >> log2_min_cb_size;
 | |
|     int y_cb             = y0 >> log2_min_cb_size;
 | |
|     int ref_idx[2];
 | |
|     int mvp_flag[2];
 | |
|     int x_pu, y_pu;
 | |
|     int i, j;
 | |
| 
 | |
|     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
 | |
|         if (s->sh.max_num_merge_cand > 1)
 | |
|             merge_idx = ff_hevc_merge_idx_decode(s);
 | |
|         else
 | |
|             merge_idx = 0;
 | |
| 
 | |
|         ff_hevc_luma_mv_merge_mode(s, x0, y0,
 | |
|                                    1 << log2_cb_size,
 | |
|                                    1 << log2_cb_size,
 | |
|                                    log2_cb_size, partIdx,
 | |
|                                    merge_idx, ¤t_mv);
 | |
|         x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|         y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|         for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
 | |
|             for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
 | |
|                 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
 | |
|     } else { /* MODE_INTER */
 | |
|         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
 | |
|         if (lc->pu.merge_flag) {
 | |
|             if (s->sh.max_num_merge_cand > 1)
 | |
|                 merge_idx = ff_hevc_merge_idx_decode(s);
 | |
|             else
 | |
|                 merge_idx = 0;
 | |
| 
 | |
|             ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | |
|                                        partIdx, merge_idx, ¤t_mv);
 | |
|             x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|             y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
 | |
|                 for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
 | |
|                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
 | |
|         } else {
 | |
|             enum InterPredIdc inter_pred_idc = PRED_L0;
 | |
|             ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
 | |
|             current_mv.pred_flag = 0;
 | |
|             if (s->sh.slice_type == B_SLICE)
 | |
|                 inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
 | |
| 
 | |
|             if (inter_pred_idc != PRED_L1) {
 | |
|                 if (s->sh.nb_refs[L0]) {
 | |
|                     ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
 | |
|                     current_mv.ref_idx[0] = ref_idx[0];
 | |
|                 }
 | |
|                 current_mv.pred_flag = PF_L0;
 | |
|                 ff_hevc_hls_mvd_coding(s, x0, y0, 0);
 | |
|                 mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
 | |
|                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | |
|                                          partIdx, merge_idx, ¤t_mv,
 | |
|                                          mvp_flag[0], 0);
 | |
|                 current_mv.mv[0].x += lc->pu.mvd.x;
 | |
|                 current_mv.mv[0].y += lc->pu.mvd.y;
 | |
|             }
 | |
| 
 | |
|             if (inter_pred_idc != PRED_L0) {
 | |
|                 if (s->sh.nb_refs[L1]) {
 | |
|                     ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
 | |
|                     current_mv.ref_idx[1] = ref_idx[1];
 | |
|                 }
 | |
| 
 | |
|                 if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
 | |
|                     lc->pu.mvd.x = 0;
 | |
|                     lc->pu.mvd.y = 0;
 | |
|                 } else {
 | |
|                     ff_hevc_hls_mvd_coding(s, x0, y0, 1);
 | |
|                 }
 | |
| 
 | |
|                 current_mv.pred_flag += PF_L1;
 | |
|                 mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
 | |
|                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | |
|                                          partIdx, merge_idx, ¤t_mv,
 | |
|                                          mvp_flag[1], 1);
 | |
|                 current_mv.mv[1].x += lc->pu.mvd.x;
 | |
|                 current_mv.mv[1].y += lc->pu.mvd.y;
 | |
|             }
 | |
| 
 | |
|             x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|             y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
 | |
|                 for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
 | |
|                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (current_mv.pred_flag & PF_L0) {
 | |
|         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
 | |
|         if (!ref0)
 | |
|             return;
 | |
|         hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH);
 | |
|     }
 | |
|     if (current_mv.pred_flag & PF_L1) {
 | |
|         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
 | |
|         if (!ref1)
 | |
|             return;
 | |
|         hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH);
 | |
|     }
 | |
| 
 | |
|     if (current_mv.pred_flag == PF_L0) {
 | |
|         int x0_c = x0 >> s->sps->hshift[1];
 | |
|         int y0_c = y0 >> s->sps->vshift[1];
 | |
|         int nPbW_c = nPbW >> s->sps->hshift[1];
 | |
|         int nPbH_c = nPbH >> s->sps->vshift[1];
 | |
| 
 | |
|         luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
 | |
|                     ¤t_mv.mv[0], x0, y0, nPbW, nPbH,
 | |
|                     s->sh.luma_weight_l0[current_mv.ref_idx[0]],
 | |
|                     s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
 | |
| 
 | |
|         chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
 | |
|                       0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | |
|                       s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
 | |
|         chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
 | |
|                       0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | |
|                       s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
 | |
|     } else if (current_mv.pred_flag == PF_L1) {
 | |
|         int x0_c = x0 >> s->sps->hshift[1];
 | |
|         int y0_c = y0 >> s->sps->vshift[1];
 | |
|         int nPbW_c = nPbW >> s->sps->hshift[1];
 | |
|         int nPbH_c = nPbH >> s->sps->vshift[1];
 | |
| 
 | |
|         luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
 | |
|                     ¤t_mv.mv[1], x0, y0, nPbW, nPbH,
 | |
|                     s->sh.luma_weight_l1[current_mv.ref_idx[1]],
 | |
|                     s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
 | |
| 
 | |
|         chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
 | |
|                       1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | |
|                       s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
 | |
| 
 | |
|         chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
 | |
|                       1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | |
|                       s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
 | |
|     } else if (current_mv.pred_flag == PF_BI) {
 | |
|         int x0_c = x0 >> s->sps->hshift[1];
 | |
|         int y0_c = y0 >> s->sps->vshift[1];
 | |
|         int nPbW_c = nPbW >> s->sps->hshift[1];
 | |
|         int nPbH_c = nPbH >> s->sps->vshift[1];
 | |
| 
 | |
|         luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
 | |
|                    ¤t_mv.mv[0], x0, y0, nPbW, nPbH,
 | |
|                    ref1->frame, ¤t_mv.mv[1], ¤t_mv);
 | |
| 
 | |
|         chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
 | |
|                      x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0);
 | |
| 
 | |
|         chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
 | |
|                      x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.4.1
 | |
|  */
 | |
| static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
 | |
|                                 int prev_intra_luma_pred_flag)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int x_pu             = x0 >> s->sps->log2_min_pu_size;
 | |
|     int y_pu             = y0 >> s->sps->log2_min_pu_size;
 | |
|     int min_pu_width     = s->sps->min_pu_width;
 | |
|     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
 | |
|     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
 | |
|     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
 | |
| 
 | |
|     int cand_up   = (lc->ctb_up_flag || y0b) ?
 | |
|                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
 | |
|     int cand_left = (lc->ctb_left_flag || x0b) ?
 | |
|                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
 | |
| 
 | |
|     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
 | |
| 
 | |
|     MvField *tab_mvf = s->ref->tab_mvf;
 | |
|     int intra_pred_mode;
 | |
|     int candidate[3];
 | |
|     int i, j;
 | |
| 
 | |
|     // intra_pred_mode prediction does not cross vertical CTB boundaries
 | |
|     if ((y0 - 1) < y_ctb)
 | |
|         cand_up = INTRA_DC;
 | |
| 
 | |
|     if (cand_left == cand_up) {
 | |
|         if (cand_left < 2) {
 | |
|             candidate[0] = INTRA_PLANAR;
 | |
|             candidate[1] = INTRA_DC;
 | |
|             candidate[2] = INTRA_ANGULAR_26;
 | |
|         } else {
 | |
|             candidate[0] = cand_left;
 | |
|             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
 | |
|             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
 | |
|         }
 | |
|     } else {
 | |
|         candidate[0] = cand_left;
 | |
|         candidate[1] = cand_up;
 | |
|         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
 | |
|             candidate[2] = INTRA_PLANAR;
 | |
|         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
 | |
|             candidate[2] = INTRA_DC;
 | |
|         } else {
 | |
|             candidate[2] = INTRA_ANGULAR_26;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (prev_intra_luma_pred_flag) {
 | |
|         intra_pred_mode = candidate[lc->pu.mpm_idx];
 | |
|     } else {
 | |
|         if (candidate[0] > candidate[1])
 | |
|             FFSWAP(uint8_t, candidate[0], candidate[1]);
 | |
|         if (candidate[0] > candidate[2])
 | |
|             FFSWAP(uint8_t, candidate[0], candidate[2]);
 | |
|         if (candidate[1] > candidate[2])
 | |
|             FFSWAP(uint8_t, candidate[1], candidate[2]);
 | |
| 
 | |
|         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
 | |
|         for (i = 0; i < 3; i++)
 | |
|             if (intra_pred_mode >= candidate[i])
 | |
|                 intra_pred_mode++;
 | |
|     }
 | |
| 
 | |
|     /* write the intra prediction units into the mv array */
 | |
|     if (!size_in_pus)
 | |
|         size_in_pus = 1;
 | |
|     for (i = 0; i < size_in_pus; i++) {
 | |
|         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
 | |
|                intra_pred_mode, size_in_pus);
 | |
| 
 | |
|         for (j = 0; j < size_in_pus; j++) {
 | |
|             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return intra_pred_mode;
 | |
| }
 | |
| 
 | |
| static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
 | |
|                                           int log2_cb_size, int ct_depth)
 | |
| {
 | |
|     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
 | |
|     int x_cb   = x0 >> s->sps->log2_min_cb_size;
 | |
|     int y_cb   = y0 >> s->sps->log2_min_cb_size;
 | |
|     int y;
 | |
| 
 | |
|     for (y = 0; y < length; y++)
 | |
|         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
 | |
|                ct_depth, length);
 | |
| }
 | |
| 
 | |
| static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
 | |
|                                   int log2_cb_size)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
 | |
|     uint8_t prev_intra_luma_pred_flag[4];
 | |
|     int split   = lc->cu.part_mode == PART_NxN;
 | |
|     int pb_size = (1 << log2_cb_size) >> split;
 | |
|     int side    = split + 1;
 | |
|     int chroma_mode;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < side; i++)
 | |
|         for (j = 0; j < side; j++)
 | |
|             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
 | |
| 
 | |
|     for (i = 0; i < side; i++) {
 | |
|         for (j = 0; j < side; j++) {
 | |
|             if (prev_intra_luma_pred_flag[2 * i + j])
 | |
|                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
 | |
|             else
 | |
|                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
 | |
| 
 | |
|             lc->pu.intra_pred_mode[2 * i + j] =
 | |
|                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
 | |
|                                      prev_intra_luma_pred_flag[2 * i + j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
 | |
|     if (chroma_mode != 4) {
 | |
|         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
 | |
|             lc->pu.intra_pred_mode_c = 34;
 | |
|         else
 | |
|             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
 | |
|     } else {
 | |
|         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void intra_prediction_unit_default_value(HEVCContext *s,
 | |
|                                                 int x0, int y0,
 | |
|                                                 int log2_cb_size)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int pb_size          = 1 << log2_cb_size;
 | |
|     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
 | |
|     int min_pu_width     = s->sps->min_pu_width;
 | |
|     MvField *tab_mvf     = s->ref->tab_mvf;
 | |
|     int x_pu             = x0 >> s->sps->log2_min_pu_size;
 | |
|     int y_pu             = y0 >> s->sps->log2_min_pu_size;
 | |
|     int j, k;
 | |
| 
 | |
|     if (size_in_pus == 0)
 | |
|         size_in_pus = 1;
 | |
|     for (j = 0; j < size_in_pus; j++)
 | |
|         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
 | |
|     if (lc->cu.pred_mode == MODE_INTRA)
 | |
|         for (j = 0; j < size_in_pus; j++)
 | |
|             for (k = 0; k < size_in_pus; k++)
 | |
|                 tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
 | |
| }
 | |
| 
 | |
| static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     int cb_size          = 1 << log2_cb_size;
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int log2_min_cb_size = s->sps->log2_min_cb_size;
 | |
|     int length           = cb_size >> log2_min_cb_size;
 | |
|     int min_cb_width     = s->sps->min_cb_width;
 | |
|     int x_cb             = x0 >> log2_min_cb_size;
 | |
|     int y_cb             = y0 >> log2_min_cb_size;
 | |
|     int x, y, ret;
 | |
|     int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
 | |
| 
 | |
|     lc->cu.x                = x0;
 | |
|     lc->cu.y                = y0;
 | |
|     lc->cu.rqt_root_cbf     = 1;
 | |
|     lc->cu.pred_mode        = MODE_INTRA;
 | |
|     lc->cu.part_mode        = PART_2Nx2N;
 | |
|     lc->cu.intra_split_flag = 0;
 | |
|     lc->cu.pcm_flag         = 0;
 | |
| 
 | |
|     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
 | |
|     for (x = 0; x < 4; x++)
 | |
|         lc->pu.intra_pred_mode[x] = 1;
 | |
|     if (s->pps->transquant_bypass_enable_flag) {
 | |
|         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
 | |
|         if (lc->cu.cu_transquant_bypass_flag)
 | |
|             set_deblocking_bypass(s, x0, y0, log2_cb_size);
 | |
|     } else
 | |
|         lc->cu.cu_transquant_bypass_flag = 0;
 | |
| 
 | |
|     if (s->sh.slice_type != I_SLICE) {
 | |
|         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
 | |
| 
 | |
|         x = y_cb * min_cb_width + x_cb;
 | |
|         for (y = 0; y < length; y++) {
 | |
|             memset(&s->skip_flag[x], skip_flag, length);
 | |
|             x += min_cb_width;
 | |
|         }
 | |
|         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
 | |
|     }
 | |
| 
 | |
|     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
 | |
|         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
 | |
|         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | |
| 
 | |
|         if (!s->sh.disable_deblocking_filter_flag)
 | |
|             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
 | |
|     } else {
 | |
|         if (s->sh.slice_type != I_SLICE)
 | |
|             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
 | |
|         if (lc->cu.pred_mode != MODE_INTRA ||
 | |
|             log2_cb_size == s->sps->log2_min_cb_size) {
 | |
|             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
 | |
|             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
 | |
|                                       lc->cu.pred_mode == MODE_INTRA;
 | |
|         }
 | |
| 
 | |
|         if (lc->cu.pred_mode == MODE_INTRA) {
 | |
|             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
 | |
|                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
 | |
|                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
 | |
|                 lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s);
 | |
|             }
 | |
|             if (lc->cu.pcm_flag) {
 | |
|                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | |
|                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
 | |
|                 if (s->sps->pcm.loop_filter_disable_flag)
 | |
|                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
 | |
| 
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
|             } else {
 | |
|                 intra_prediction_unit(s, x0, y0, log2_cb_size);
 | |
|             }
 | |
|         } else {
 | |
|             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | |
|             switch (lc->cu.part_mode) {
 | |
|             case PART_2Nx2N:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
 | |
|                 break;
 | |
|             case PART_2NxN:
 | |
|                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_Nx2N:
 | |
|                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_2NxnU:
 | |
|                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_2NxnD:
 | |
|                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_nLx2N:
 | |
|                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_nRx2N:
 | |
|                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_NxN:
 | |
|                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
 | |
|                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!lc->cu.pcm_flag) {
 | |
|             if (lc->cu.pred_mode != MODE_INTRA &&
 | |
|                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
 | |
|                 lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
 | |
|             }
 | |
|             if (lc->cu.rqt_root_cbf) {
 | |
|                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
 | |
|                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
 | |
|                                          s->sps->max_transform_hierarchy_depth_inter;
 | |
|                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
 | |
|                                          log2_cb_size,
 | |
|                                          log2_cb_size, 0, 0);
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
|             } else {
 | |
|                 if (!s->sh.disable_deblocking_filter_flag)
 | |
|                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
 | |
|         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
 | |
| 
 | |
|     x = y_cb * min_cb_width + x_cb;
 | |
|     for (y = 0; y < length; y++) {
 | |
|         memset(&s->qp_y_tab[x], lc->qp_y, length);
 | |
|         x += min_cb_width;
 | |
|     }
 | |
| 
 | |
|     if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
 | |
|        ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
 | |
|         lc->qPy_pred = lc->qp_y;
 | |
|     }
 | |
| 
 | |
|     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
 | |
|                                int log2_cb_size, int cb_depth)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     const int cb_size    = 1 << log2_cb_size;
 | |
|     int ret;
 | |
|     int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
 | |
| 
 | |
|     lc->ct.depth = cb_depth;
 | |
|     if (x0 + cb_size <= s->sps->width  &&
 | |
|         y0 + cb_size <= s->sps->height &&
 | |
|         log2_cb_size > s->sps->log2_min_cb_size) {
 | |
|         SAMPLE(s->split_cu_flag, x0, y0) =
 | |
|             ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
 | |
|     } else {
 | |
|         SAMPLE(s->split_cu_flag, x0, y0) =
 | |
|             (log2_cb_size > s->sps->log2_min_cb_size);
 | |
|     }
 | |
|     if (s->pps->cu_qp_delta_enabled_flag &&
 | |
|         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
 | |
|         lc->tu.is_cu_qp_delta_coded = 0;
 | |
|         lc->tu.cu_qp_delta          = 0;
 | |
|     }
 | |
| 
 | |
|     if (SAMPLE(s->split_cu_flag, x0, y0)) {
 | |
|         const int cb_size_split = cb_size >> 1;
 | |
|         const int x1 = x0 + cb_size_split;
 | |
|         const int y1 = y0 + cb_size_split;
 | |
| 
 | |
|         int more_data = 0;
 | |
| 
 | |
|         more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
 | |
|         if (more_data < 0)
 | |
|             return more_data;
 | |
| 
 | |
|         if (more_data && x1 < s->sps->width) {
 | |
|             more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
 | |
|             if (more_data < 0)
 | |
|                 return more_data;
 | |
|         }
 | |
|         if (more_data && y1 < s->sps->height) {
 | |
|             more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
 | |
|             if (more_data < 0)
 | |
|                 return more_data;
 | |
|         }
 | |
|         if (more_data && x1 < s->sps->width &&
 | |
|             y1 < s->sps->height) {
 | |
|             more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
 | |
|             if (more_data < 0)
 | |
|                 return more_data;
 | |
|         }
 | |
| 
 | |
|         if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
 | |
|             ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
 | |
|             lc->qPy_pred = lc->qp_y;
 | |
| 
 | |
|         if (more_data)
 | |
|             return ((x1 + cb_size_split) < s->sps->width ||
 | |
|                     (y1 + cb_size_split) < s->sps->height);
 | |
|         else
 | |
|             return 0;
 | |
|     } else {
 | |
|         ret = hls_coding_unit(s, x0, y0, log2_cb_size);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         if ((!((x0 + cb_size) %
 | |
|                (1 << (s->sps->log2_ctb_size))) ||
 | |
|              (x0 + cb_size >= s->sps->width)) &&
 | |
|             (!((y0 + cb_size) %
 | |
|                (1 << (s->sps->log2_ctb_size))) ||
 | |
|              (y0 + cb_size >= s->sps->height))) {
 | |
|             int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
 | |
|             return !end_of_slice_flag;
 | |
|         } else {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
 | |
|                                  int ctb_addr_ts)
 | |
| {
 | |
|     HEVCLocalContext *lc  = s->HEVClc;
 | |
|     int ctb_size          = 1 << s->sps->log2_ctb_size;
 | |
|     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | |
|     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
 | |
| 
 | |
|     int tile_left_boundary, tile_up_boundary;
 | |
|     int slice_left_boundary, slice_up_boundary;
 | |
| 
 | |
|     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
 | |
| 
 | |
|     if (s->pps->entropy_coding_sync_enabled_flag) {
 | |
|         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
 | |
|             lc->first_qp_group = 1;
 | |
|         lc->end_of_tiles_x = s->sps->width;
 | |
|     } else if (s->pps->tiles_enabled_flag) {
 | |
|         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
 | |
|             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
 | |
|             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
 | |
|             lc->first_qp_group   = 1;
 | |
|         }
 | |
|     } else {
 | |
|         lc->end_of_tiles_x = s->sps->width;
 | |
|     }
 | |
| 
 | |
|     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
 | |
| 
 | |
|     if (s->pps->tiles_enabled_flag) {
 | |
|         tile_left_boundary = x_ctb > 0 &&
 | |
|                              s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
 | |
|         slice_left_boundary = x_ctb > 0 &&
 | |
|                               s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1];
 | |
|         tile_up_boundary  = y_ctb > 0 &&
 | |
|                             s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
 | |
|         slice_up_boundary = y_ctb > 0 &&
 | |
|                             s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width];
 | |
|     } else {
 | |
|         tile_left_boundary =
 | |
|         tile_up_boundary   = 0;
 | |
|         slice_left_boundary = ctb_addr_in_slice <= 0;
 | |
|         slice_up_boundary   = ctb_addr_in_slice < s->sps->ctb_width;
 | |
|     }
 | |
|     lc->slice_or_tiles_left_boundary = slice_left_boundary + (tile_left_boundary << 1);
 | |
|     lc->slice_or_tiles_up_boundary   = slice_up_boundary   + (tile_up_boundary   << 1);
 | |
|     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0)                  && !tile_left_boundary);
 | |
|     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !tile_up_boundary);
 | |
|     lc->ctb_up_right_flag = ((y_ctb > 0)                 && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
 | |
|     lc->ctb_up_left_flag  = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
 | |
| }
 | |
| 
 | |
| static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
 | |
| {
 | |
|     HEVCContext *s  = avctxt->priv_data;
 | |
|     int ctb_size    = 1 << s->sps->log2_ctb_size;
 | |
|     int more_data   = 1;
 | |
|     int x_ctb       = 0;
 | |
|     int y_ctb       = 0;
 | |
|     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
 | |
| 
 | |
|     if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (s->sh.dependent_slice_segment_flag) {
 | |
|         int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
 | |
|         if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
 | |
|         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | |
| 
 | |
|         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
 | |
|         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
 | |
|         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
 | |
| 
 | |
|         ff_hevc_cabac_init(s, ctb_addr_ts);
 | |
| 
 | |
|         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
 | |
| 
 | |
|         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
 | |
|         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
 | |
|         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
 | |
| 
 | |
|         more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
 | |
|         if (more_data < 0) {
 | |
|             s->tab_slice_address[ctb_addr_rs] = -1;
 | |
|             return more_data;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         ctb_addr_ts++;
 | |
|         ff_hevc_save_states(s, ctb_addr_ts);
 | |
|         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
 | |
|     }
 | |
| 
 | |
|     if (x_ctb + ctb_size >= s->sps->width &&
 | |
|         y_ctb + ctb_size >= s->sps->height)
 | |
|         ff_hevc_hls_filter(s, x_ctb, y_ctb);
 | |
| 
 | |
|     return ctb_addr_ts;
 | |
| }
 | |
| 
 | |
| static int hls_slice_data(HEVCContext *s)
 | |
| {
 | |
|     int arg[2];
 | |
|     int ret[2];
 | |
| 
 | |
|     arg[0] = 0;
 | |
|     arg[1] = 1;
 | |
| 
 | |
|     s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
 | |
|     return ret[0];
 | |
| }
 | |
| static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
 | |
| {
 | |
|     HEVCContext *s1  = avctxt->priv_data, *s;
 | |
|     HEVCLocalContext *lc;
 | |
|     int ctb_size    = 1<< s1->sps->log2_ctb_size;
 | |
|     int more_data   = 1;
 | |
|     int *ctb_row_p    = input_ctb_row;
 | |
|     int ctb_row = ctb_row_p[job];
 | |
|     int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size);
 | |
|     int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
 | |
|     int thread = ctb_row % s1->threads_number;
 | |
|     int ret;
 | |
| 
 | |
|     s = s1->sList[self_id];
 | |
|     lc = s->HEVClc;
 | |
| 
 | |
|     if(ctb_row) {
 | |
|         ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
 | |
| 
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
 | |
|     }
 | |
| 
 | |
|     while(more_data && ctb_addr_ts < s->sps->ctb_size) {
 | |
|         int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size;
 | |
|         int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size;
 | |
| 
 | |
|         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
 | |
| 
 | |
|         ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
 | |
| 
 | |
|         if (avpriv_atomic_int_get(&s1->wpp_err)){
 | |
|             ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         ff_hevc_cabac_init(s, ctb_addr_ts);
 | |
|         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
 | |
|         more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
 | |
| 
 | |
|         if (more_data < 0) {
 | |
|             s->tab_slice_address[ctb_addr_rs] = -1;
 | |
|             return more_data;
 | |
|         }
 | |
| 
 | |
|         ctb_addr_ts++;
 | |
| 
 | |
|         ff_hevc_save_states(s, ctb_addr_ts);
 | |
|         ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
 | |
|         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
 | |
| 
 | |
|         if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) {
 | |
|             avpriv_atomic_int_set(&s1->wpp_err,  1);
 | |
|             ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) {
 | |
|             ff_hevc_hls_filter(s, x_ctb, y_ctb);
 | |
|             ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
 | |
|             return ctb_addr_ts;
 | |
|         }
 | |
|         ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | |
|         x_ctb+=ctb_size;
 | |
| 
 | |
|         if(x_ctb >= s->sps->width) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int *ret = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
 | |
|     int *arg = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
 | |
|     int offset;
 | |
|     int startheader, cmpt = 0;
 | |
|     int i, j, res = 0;
 | |
| 
 | |
| 
 | |
|     if (!s->sList[1]) {
 | |
|         ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
 | |
| 
 | |
| 
 | |
|         for (i = 1; i < s->threads_number; i++) {
 | |
|             s->sList[i] = av_malloc(sizeof(HEVCContext));
 | |
|             memcpy(s->sList[i], s, sizeof(HEVCContext));
 | |
|             s->HEVClcList[i] = av_malloc(sizeof(HEVCLocalContext));
 | |
|             s->sList[i]->HEVClc = s->HEVClcList[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     offset = (lc->gb.index >> 3);
 | |
| 
 | |
|     for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) {
 | |
|         if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
 | |
|             startheader--;
 | |
|             cmpt++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
 | |
|         offset += (s->sh.entry_point_offset[i - 1] - cmpt);
 | |
|         for (j = 0, cmpt = 0, startheader = offset
 | |
|              + s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) {
 | |
|             if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
 | |
|                 startheader--;
 | |
|                 cmpt++;
 | |
|             }
 | |
|         }
 | |
|         s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
 | |
|         s->sh.offset[i - 1] = offset;
 | |
| 
 | |
|     }
 | |
|     if (s->sh.num_entry_point_offsets != 0) {
 | |
|         offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
 | |
|         s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
 | |
|         s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
 | |
| 
 | |
|     }
 | |
|     s->data = nal;
 | |
| 
 | |
|     for (i = 1; i < s->threads_number; i++) {
 | |
|         s->sList[i]->HEVClc->first_qp_group = 1;
 | |
|         s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
 | |
|         memcpy(s->sList[i], s, sizeof(HEVCContext));
 | |
|         s->sList[i]->HEVClc = s->HEVClcList[i];
 | |
|     }
 | |
| 
 | |
|     avpriv_atomic_int_set(&s->wpp_err, 0);
 | |
|     ff_reset_entries(s->avctx);
 | |
| 
 | |
|     for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
 | |
|         arg[i] = i;
 | |
|         ret[i] = 0;
 | |
|     }
 | |
| 
 | |
|     if (s->pps->entropy_coding_sync_enabled_flag)
 | |
|         s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
 | |
| 
 | |
|     for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
 | |
|         res += ret[i];
 | |
|     av_free(ret);
 | |
|     av_free(arg);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
 | |
|  * 0 if the unit should be skipped, 1 otherwise
 | |
|  */
 | |
| static int hls_nal_unit(HEVCContext *s)
 | |
| {
 | |
|     GetBitContext *gb = &s->HEVClc->gb;
 | |
|     int nuh_layer_id;
 | |
| 
 | |
|     if (get_bits1(gb) != 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     s->nal_unit_type = get_bits(gb, 6);
 | |
| 
 | |
|     nuh_layer_id   = get_bits(gb, 6);
 | |
|     s->temporal_id = get_bits(gb, 3) - 1;
 | |
|     if (s->temporal_id < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
 | |
|            s->nal_unit_type, nuh_layer_id, s->temporal_id);
 | |
| 
 | |
|     return nuh_layer_id == 0;
 | |
| }
 | |
| 
 | |
| static void restore_tqb_pixels(HEVCContext *s)
 | |
| {
 | |
|     int min_pu_size = 1 << s->sps->log2_min_pu_size;
 | |
|     int x, y, c_idx;
 | |
| 
 | |
|     for (c_idx = 0; c_idx < 3; c_idx++) {
 | |
|         ptrdiff_t stride = s->frame->linesize[c_idx];
 | |
|         int hshift       = s->sps->hshift[c_idx];
 | |
|         int vshift       = s->sps->vshift[c_idx];
 | |
|         for (y = 0; y < s->sps->min_pu_height; y++) {
 | |
|             for (x = 0; x < s->sps->min_pu_width; x++) {
 | |
|                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
 | |
|                     int n;
 | |
|                     int len      = min_pu_size >> hshift;
 | |
|                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
 | |
|                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
 | |
|                     for (n = 0; n < (min_pu_size >> vshift); n++) {
 | |
|                         memcpy(dst, src, len);
 | |
|                         src += stride;
 | |
|                         dst += stride;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int set_side_data(HEVCContext *s)
 | |
| {
 | |
|     AVFrame *out = s->ref->frame;
 | |
| 
 | |
|     if (s->sei_frame_packing_present &&
 | |
|         s->frame_packing_arrangement_type >= 3 &&
 | |
|         s->frame_packing_arrangement_type <= 5 &&
 | |
|         s->content_interpretation_type > 0 &&
 | |
|         s->content_interpretation_type < 3) {
 | |
|         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
 | |
|         if (!stereo)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         switch (s->frame_packing_arrangement_type) {
 | |
|         case 3:
 | |
|             if (s->quincunx_subsampling)
 | |
|                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
 | |
|             else
 | |
|                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
 | |
|             break;
 | |
|         case 4:
 | |
|             stereo->type = AV_STEREO3D_TOPBOTTOM;
 | |
|             break;
 | |
|         case 5:
 | |
|             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (s->content_interpretation_type == 2)
 | |
|             stereo->flags = AV_STEREO3D_FLAG_INVERT;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hevc_frame_start(HEVCContext *s)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int pic_size_in_ctb  = ((s->sps->width  >> s->sps->log2_min_cb_size) + 1) *
 | |
|                            ((s->sps->height >> s->sps->log2_min_cb_size) + 1);
 | |
|     int ret;
 | |
|     AVFrame *cur_frame;
 | |
| 
 | |
|     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
 | |
|     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
 | |
|     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
 | |
|     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
 | |
|     memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
 | |
| 
 | |
|     s->is_decoded        = 0;
 | |
|     s->first_nal_type    = s->nal_unit_type;
 | |
| 
 | |
|     if (s->pps->tiles_enabled_flag)
 | |
|         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
 | |
| 
 | |
|     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
 | |
|                               s->poc);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     ret = ff_hevc_frame_rps(s);
 | |
|     if (ret < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     ret = set_side_data(s);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     cur_frame = s->sps->sao_enabled ? s->sao_frame : s->frame;
 | |
|     cur_frame->pict_type = 3 - s->sh.slice_type;
 | |
| 
 | |
|     av_frame_unref(s->output_frame);
 | |
|     ret = ff_hevc_output_frame(s, s->output_frame, 0);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     ff_thread_finish_setup(s->avctx);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     if (s->ref && s->threads_type == FF_THREAD_FRAME)
 | |
|         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
 | |
|     s->ref = NULL;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
 | |
| {
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     GetBitContext *gb    = &lc->gb;
 | |
|     int ctb_addr_ts, ret;
 | |
| 
 | |
|     ret = init_get_bits8(gb, nal, length);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = hls_nal_unit(s);
 | |
|     if (ret < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
 | |
|                s->nal_unit_type);
 | |
|         goto fail;
 | |
|     } else if (!ret)
 | |
|         return 0;
 | |
| 
 | |
|     switch (s->nal_unit_type) {
 | |
|     case NAL_VPS:
 | |
|         ret = ff_hevc_decode_nal_vps(s);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         break;
 | |
|     case NAL_SPS:
 | |
|         ret = ff_hevc_decode_nal_sps(s);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         break;
 | |
|     case NAL_PPS:
 | |
|         ret = ff_hevc_decode_nal_pps(s);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         break;
 | |
|     case NAL_SEI_PREFIX:
 | |
|     case NAL_SEI_SUFFIX:
 | |
|         ret = ff_hevc_decode_nal_sei(s);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         break;
 | |
|     case NAL_TRAIL_R:
 | |
|     case NAL_TRAIL_N:
 | |
|     case NAL_TSA_N:
 | |
|     case NAL_TSA_R:
 | |
|     case NAL_STSA_N:
 | |
|     case NAL_STSA_R:
 | |
|     case NAL_BLA_W_LP:
 | |
|     case NAL_BLA_W_RADL:
 | |
|     case NAL_BLA_N_LP:
 | |
|     case NAL_IDR_W_RADL:
 | |
|     case NAL_IDR_N_LP:
 | |
|     case NAL_CRA_NUT:
 | |
|     case NAL_RADL_N:
 | |
|     case NAL_RADL_R:
 | |
|     case NAL_RASL_N:
 | |
|     case NAL_RASL_R:
 | |
|         ret = hls_slice_header(s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         if (s->max_ra == INT_MAX) {
 | |
|             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
 | |
|                 s->max_ra = s->poc;
 | |
|             } else {
 | |
|                 if (IS_IDR(s))
 | |
|                     s->max_ra = INT_MIN;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
 | |
|             s->poc <= s->max_ra) {
 | |
|             s->is_decoded = 0;
 | |
|             break;
 | |
|         } else {
 | |
|             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
 | |
|                 s->max_ra = INT_MIN;
 | |
|         }
 | |
| 
 | |
|         if (s->sh.first_slice_in_pic_flag) {
 | |
|             ret = hevc_frame_start(s);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|         } else if (!s->ref) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         if (s->nal_unit_type != s->first_nal_type) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
 | |
|                    s->first_nal_type, s->nal_unit_type);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (!s->sh.dependent_slice_segment_flag &&
 | |
|             s->sh.slice_type != I_SLICE) {
 | |
|             ret = ff_hevc_slice_rpl(s);
 | |
|             if (ret < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_WARNING,
 | |
|                        "Error constructing the reference lists for the current slice.\n");
 | |
|                 goto fail;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
 | |
|             ctb_addr_ts = hls_slice_data_wpp(s, nal, length);
 | |
|         else
 | |
|             ctb_addr_ts = hls_slice_data(s);
 | |
|         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
 | |
|             s->is_decoded = 1;
 | |
|             if ((s->pps->transquant_bypass_enable_flag ||
 | |
|                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
 | |
|                 s->sps->sao_enabled)
 | |
|                 restore_tqb_pixels(s);
 | |
|         }
 | |
| 
 | |
|         if (ctb_addr_ts < 0) {
 | |
|             ret = ctb_addr_ts;
 | |
|             goto fail;
 | |
|         }
 | |
|         break;
 | |
|     case NAL_EOS_NUT:
 | |
|     case NAL_EOB_NUT:
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra     = INT_MAX;
 | |
|         break;
 | |
|     case NAL_AUD:
 | |
|     case NAL_FD_NUT:
 | |
|         break;
 | |
|     default:
 | |
|         av_log(s->avctx, AV_LOG_INFO,
 | |
|                "Skipping NAL unit %d\n", s->nal_unit_type);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|         return ret;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
 | |
|  * between these functions would be nice. */
 | |
| int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
 | |
|                          HEVCNAL *nal)
 | |
| {
 | |
|     int i, si, di;
 | |
|     uint8_t *dst;
 | |
| 
 | |
|     s->skipped_bytes = 0;
 | |
| #define STARTCODE_TEST                                                  \
 | |
|         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
 | |
|             if (src[i + 2] != 3) {                                      \
 | |
|                 /* startcode, so we must be past the end */             \
 | |
|                 length = i;                                             \
 | |
|             }                                                           \
 | |
|             break;                                                      \
 | |
|         }
 | |
| #if HAVE_FAST_UNALIGNED
 | |
| #define FIND_FIRST_ZERO                                                 \
 | |
|         if (i > 0 && !src[i])                                           \
 | |
|             i--;                                                        \
 | |
|         while (src[i])                                                  \
 | |
|             i++
 | |
| #if HAVE_FAST_64BIT
 | |
|     for (i = 0; i + 1 < length; i += 9) {
 | |
|         if (!((~AV_RN64A(src + i) &
 | |
|                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
 | |
|               0x8000800080008080ULL))
 | |
|             continue;
 | |
|         FIND_FIRST_ZERO;
 | |
|         STARTCODE_TEST;
 | |
|         i -= 7;
 | |
|     }
 | |
| #else
 | |
|     for (i = 0; i + 1 < length; i += 5) {
 | |
|         if (!((~AV_RN32A(src + i) &
 | |
|                (AV_RN32A(src + i) - 0x01000101U)) &
 | |
|               0x80008080U))
 | |
|             continue;
 | |
|         FIND_FIRST_ZERO;
 | |
|         STARTCODE_TEST;
 | |
|         i -= 3;
 | |
|     }
 | |
| #endif /* HAVE_FAST_64BIT */
 | |
| #else
 | |
|     for (i = 0; i + 1 < length; i += 2) {
 | |
|         if (src[i])
 | |
|             continue;
 | |
|         if (i > 0 && src[i - 1] == 0)
 | |
|             i--;
 | |
|         STARTCODE_TEST;
 | |
|     }
 | |
| #endif /* HAVE_FAST_UNALIGNED */
 | |
| 
 | |
|     if (i >= length - 1) { // no escaped 0
 | |
|         nal->data = src;
 | |
|         nal->size = length;
 | |
|         return length;
 | |
|     }
 | |
| 
 | |
|     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
 | |
|                    length + FF_INPUT_BUFFER_PADDING_SIZE);
 | |
|     if (!nal->rbsp_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     dst = nal->rbsp_buffer;
 | |
| 
 | |
|     memcpy(dst, src, i);
 | |
|     si = di = i;
 | |
|     while (si + 2 < length) {
 | |
|         // remove escapes (very rare 1:2^22)
 | |
|         if (src[si + 2] > 3) {
 | |
|             dst[di++] = src[si++];
 | |
|             dst[di++] = src[si++];
 | |
|         } else if (src[si] == 0 && src[si + 1] == 0) {
 | |
|             if (src[si + 2] == 3) { // escape
 | |
|                 dst[di++] = 0;
 | |
|                 dst[di++] = 0;
 | |
|                 si       += 3;
 | |
| 
 | |
|                 s->skipped_bytes++;
 | |
|                 if (s->skipped_bytes_pos_size < s->skipped_bytes) {
 | |
|                     s->skipped_bytes_pos_size *= 2;
 | |
|                     av_reallocp_array(&s->skipped_bytes_pos,
 | |
|                             s->skipped_bytes_pos_size,
 | |
|                             sizeof(*s->skipped_bytes_pos));
 | |
|                     if (!s->skipped_bytes_pos)
 | |
|                         return AVERROR(ENOMEM);
 | |
|                 }
 | |
|                 if (s->skipped_bytes_pos)
 | |
|                     s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1;
 | |
|                 continue;
 | |
|             } else // next start code
 | |
|                 goto nsc;
 | |
|         }
 | |
| 
 | |
|         dst[di++] = src[si++];
 | |
|     }
 | |
|     while (si < length)
 | |
|         dst[di++] = src[si++];
 | |
| 
 | |
| nsc:
 | |
|     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
 | |
| 
 | |
|     nal->data = dst;
 | |
|     nal->size = di;
 | |
|     return si;
 | |
| }
 | |
| 
 | |
| static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
 | |
| {
 | |
|     int i, consumed, ret = 0;
 | |
| 
 | |
|     s->ref = NULL;
 | |
|     s->last_eos = s->eos;
 | |
|     s->eos = 0;
 | |
| 
 | |
|     /* split the input packet into NAL units, so we know the upper bound on the
 | |
|      * number of slices in the frame */
 | |
|     s->nb_nals = 0;
 | |
|     while (length >= 4) {
 | |
|         HEVCNAL *nal;
 | |
|         int extract_length = 0;
 | |
| 
 | |
|         if (s->is_nalff) {
 | |
|             int i;
 | |
|             for (i = 0; i < s->nal_length_size; i++)
 | |
|                 extract_length = (extract_length << 8) | buf[i];
 | |
|             buf    += s->nal_length_size;
 | |
|             length -= s->nal_length_size;
 | |
| 
 | |
|             if (extract_length > length) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
 | |
|                 ret = AVERROR_INVALIDDATA;
 | |
|                 goto fail;
 | |
|             }
 | |
|         } else {
 | |
|             /* search start code */
 | |
|             while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
 | |
|                 ++buf;
 | |
|                 --length;
 | |
|                 if (length < 4) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");
 | |
|                     ret = AVERROR_INVALIDDATA;
 | |
|                     goto fail;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             buf           += 3;
 | |
|             length        -= 3;
 | |
|         }
 | |
| 
 | |
|         if (!s->is_nalff)
 | |
|             extract_length = length;
 | |
| 
 | |
|         if (s->nals_allocated < s->nb_nals + 1) {
 | |
|             int new_size = s->nals_allocated + 1;
 | |
|             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
 | |
|             if (!tmp) {
 | |
|                 ret = AVERROR(ENOMEM);
 | |
|                 goto fail;
 | |
|             }
 | |
|             s->nals = tmp;
 | |
|             memset(s->nals + s->nals_allocated, 0,
 | |
|                    (new_size - s->nals_allocated) * sizeof(*tmp));
 | |
|             av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));
 | |
|             av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));
 | |
|             av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));
 | |
|             s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size
 | |
|             s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));
 | |
|             s->nals_allocated = new_size;
 | |
|         }
 | |
|         s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];
 | |
|         s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];
 | |
|         nal = &s->nals[s->nb_nals];
 | |
| 
 | |
|         consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);
 | |
| 
 | |
|         s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;
 | |
|         s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;
 | |
|         s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;
 | |
| 
 | |
| 
 | |
|         if (consumed < 0) {
 | |
|             ret = consumed;
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         hls_nal_unit(s);
 | |
| 
 | |
|         if (s->nal_unit_type == NAL_EOB_NUT ||
 | |
|             s->nal_unit_type == NAL_EOS_NUT)
 | |
|             s->eos = 1;
 | |
| 
 | |
|         buf    += consumed;
 | |
|         length -= consumed;
 | |
|     }
 | |
| 
 | |
|     /* parse the NAL units */
 | |
|     for (i = 0; i < s->nb_nals; i++) {
 | |
|         int ret;
 | |
|         s->skipped_bytes = s->skipped_bytes_nal[i];
 | |
|         s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];
 | |
| 
 | |
|         ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
 | |
|         if (ret < 0) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING,
 | |
|                    "Error parsing NAL unit #%d.\n", i);
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| fail:
 | |
|     if (s->ref && s->threads_type == FF_THREAD_FRAME)
 | |
|         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void print_md5(void *log_ctx, int level, uint8_t md5[16])
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < 16; i++)
 | |
|         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
 | |
| }
 | |
| 
 | |
| static int verify_md5(HEVCContext *s, AVFrame *frame)
 | |
| {
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
 | |
|     int pixel_shift;
 | |
|     int i, j;
 | |
| 
 | |
|     if (!desc)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     pixel_shift = desc->comp[0].depth_minus1 > 7;
 | |
| 
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
 | |
|            s->poc);
 | |
| 
 | |
|     /* the checksums are LE, so we have to byteswap for >8bpp formats
 | |
|      * on BE arches */
 | |
| #if HAVE_BIGENDIAN
 | |
|     if (pixel_shift && !s->checksum_buf) {
 | |
|         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
 | |
|                        FFMAX3(frame->linesize[0], frame->linesize[1],
 | |
|                               frame->linesize[2]));
 | |
|         if (!s->checksum_buf)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for (i = 0; frame->data[i]; i++) {
 | |
|         int width  = s->avctx->coded_width;
 | |
|         int height = s->avctx->coded_height;
 | |
|         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
 | |
|         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
 | |
|         uint8_t md5[16];
 | |
| 
 | |
|         av_md5_init(s->md5_ctx);
 | |
|         for (j = 0; j < h; j++) {
 | |
|             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
 | |
| #if HAVE_BIGENDIAN
 | |
|             if (pixel_shift) {
 | |
|                 s->dsp.bswap16_buf((uint16_t*)s->checksum_buf,
 | |
|                                    (const uint16_t*)src, w);
 | |
|                 src = s->checksum_buf;
 | |
|             }
 | |
| #endif
 | |
|             av_md5_update(s->md5_ctx, src, w << pixel_shift);
 | |
|         }
 | |
|         av_md5_final(s->md5_ctx, md5);
 | |
| 
 | |
|         if (!memcmp(md5, s->md5[i], 16)) {
 | |
|             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
 | |
|             print_md5(s->avctx, AV_LOG_DEBUG, md5);
 | |
|             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
 | |
|         } else {
 | |
|             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
 | |
|             print_md5(s->avctx, AV_LOG_ERROR, md5);
 | |
|             av_log   (s->avctx, AV_LOG_ERROR, " != ");
 | |
|             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
 | |
|             av_log   (s->avctx, AV_LOG_ERROR, "\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
 | |
|                              AVPacket *avpkt)
 | |
| {
 | |
|     int ret;
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (!avpkt->size) {
 | |
|         ret = ff_hevc_output_frame(s, data, 1);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         *got_output = ret;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     s->ref = NULL;
 | |
|     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* verify the SEI checksum */
 | |
|     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
 | |
|         s->is_md5) {
 | |
|         ret = verify_md5(s, s->ref->frame);
 | |
|         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
 | |
|             ff_hevc_unref_frame(s, s->ref, ~0);
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
|     s->is_md5 = 0;
 | |
| 
 | |
|     if (s->is_decoded) {
 | |
|         s->ref->frame->key_frame = IS_IRAP(s);
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
 | |
|         s->is_decoded = 0;
 | |
|     }
 | |
| 
 | |
|     if (s->output_frame->buf[0]) {
 | |
|         av_frame_move_ref(data, s->output_frame);
 | |
|         *got_output = 1;
 | |
|     }
 | |
| 
 | |
|     return avpkt->size;
 | |
| }
 | |
| 
 | |
| static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_thread_ref_frame(&dst->tf, &src->tf);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
 | |
|     if (!dst->tab_mvf_buf)
 | |
|         goto fail;
 | |
|     dst->tab_mvf = src->tab_mvf;
 | |
| 
 | |
|     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
 | |
|     if (!dst->rpl_tab_buf)
 | |
|         goto fail;
 | |
|     dst->rpl_tab = src->rpl_tab;
 | |
| 
 | |
|     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
 | |
|     if (!dst->rpl_buf)
 | |
|         goto fail;
 | |
| 
 | |
|     dst->poc        = src->poc;
 | |
|     dst->ctb_count  = src->ctb_count;
 | |
|     dst->window     = src->window;
 | |
|     dst->flags      = src->flags;
 | |
|     dst->sequence   = src->sequence;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     ff_hevc_unref_frame(s, dst, ~0);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_decode_free(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext       *s = avctx->priv_data;
 | |
|     HEVCLocalContext *lc = s->HEVClc;
 | |
|     int i;
 | |
| 
 | |
|     pic_arrays_free(s);
 | |
| 
 | |
|     av_freep(&s->md5_ctx);
 | |
| 
 | |
|     for(i=0; i < s->nals_allocated; i++) {
 | |
|         av_freep(&s->skipped_bytes_pos_nal[i]);
 | |
|     }
 | |
|     av_freep(&s->skipped_bytes_pos_size_nal);
 | |
|     av_freep(&s->skipped_bytes_nal);
 | |
|     av_freep(&s->skipped_bytes_pos_nal);
 | |
| 
 | |
|     av_freep(&s->cabac_state);
 | |
| 
 | |
|     av_frame_free(&s->tmp_frame);
 | |
|     av_frame_free(&s->output_frame);
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | |
|         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
 | |
|         av_frame_free(&s->DPB[i].frame);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
 | |
|         av_buffer_unref(&s->vps_list[i]);
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
 | |
|         av_buffer_unref(&s->sps_list[i]);
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
 | |
|         av_buffer_unref(&s->pps_list[i]);
 | |
| 
 | |
|     av_freep(&s->sh.entry_point_offset);
 | |
|     av_freep(&s->sh.offset);
 | |
|     av_freep(&s->sh.size);
 | |
| 
 | |
|     for (i = 1; i < s->threads_number; i++) {
 | |
|         lc = s->HEVClcList[i];
 | |
|         if (lc) {
 | |
|             av_freep(&s->HEVClcList[i]);
 | |
|             av_freep(&s->sList[i]);
 | |
|         }
 | |
|     }
 | |
|     if (s->HEVClc == s->HEVClcList[0])
 | |
|         s->HEVClc = NULL;
 | |
|     av_freep(&s->HEVClcList[0]);
 | |
| 
 | |
|     for (i = 0; i < s->nals_allocated; i++)
 | |
|         av_freep(&s->nals[i].rbsp_buffer);
 | |
|     av_freep(&s->nals);
 | |
|     s->nals_allocated = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_init_context(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
 | |
|     if (!s->HEVClc)
 | |
|         goto fail;
 | |
|     s->HEVClcList[0] = s->HEVClc;
 | |
|     s->sList[0] = s;
 | |
| 
 | |
|     s->cabac_state = av_malloc(HEVC_CONTEXTS);
 | |
|     if (!s->cabac_state)
 | |
|         goto fail;
 | |
| 
 | |
|     s->tmp_frame = av_frame_alloc();
 | |
|     if (!s->tmp_frame)
 | |
|         goto fail;
 | |
| 
 | |
|     s->output_frame = av_frame_alloc();
 | |
|     if (!s->output_frame)
 | |
|         goto fail;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | |
|         s->DPB[i].frame = av_frame_alloc();
 | |
|         if (!s->DPB[i].frame)
 | |
|             goto fail;
 | |
|         s->DPB[i].tf.f = s->DPB[i].frame;
 | |
|     }
 | |
| 
 | |
|     s->max_ra = INT_MAX;
 | |
| 
 | |
|     s->md5_ctx = av_md5_alloc();
 | |
|     if (!s->md5_ctx)
 | |
|         goto fail;
 | |
| 
 | |
|     ff_dsputil_init(&s->dsp, avctx);
 | |
| 
 | |
|     s->context_initialized = 1;
 | |
|     s->eos = 0;
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     hevc_decode_free(avctx);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static int hevc_update_thread_context(AVCodecContext *dst,
 | |
|                                       const AVCodecContext *src)
 | |
| {
 | |
|     HEVCContext *s  = dst->priv_data;
 | |
|     HEVCContext *s0 = src->priv_data;
 | |
|     int i, ret;
 | |
| 
 | |
|     if (!s->context_initialized) {
 | |
|         ret = hevc_init_context(dst);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | |
|         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
 | |
|         if (s0->DPB[i].frame->buf[0]) {
 | |
|             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
 | |
|         av_buffer_unref(&s->vps_list[i]);
 | |
|         if (s0->vps_list[i]) {
 | |
|             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
 | |
|             if (!s->vps_list[i])
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
 | |
|         av_buffer_unref(&s->sps_list[i]);
 | |
|         if (s0->sps_list[i]) {
 | |
|             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
 | |
|             if (!s->sps_list[i])
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
 | |
|         av_buffer_unref(&s->pps_list[i]);
 | |
|         if (s0->pps_list[i]) {
 | |
|             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
 | |
|             if (!s->pps_list[i])
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->sps != s0->sps)
 | |
|         ret = set_sps(s, s0->sps);
 | |
| 
 | |
|     s->seq_decode = s0->seq_decode;
 | |
|     s->seq_output = s0->seq_output;
 | |
|     s->pocTid0    = s0->pocTid0;
 | |
|     s->max_ra     = s0->max_ra;
 | |
|     s->eos        = s0->eos;
 | |
| 
 | |
|     s->is_nalff        = s0->is_nalff;
 | |
|     s->nal_length_size = s0->nal_length_size;
 | |
| 
 | |
|     s->threads_number      = s0->threads_number;
 | |
|     s->threads_type        = s0->threads_type;
 | |
| 
 | |
|     if (s0->eos) {
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra = INT_MAX;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hevc_decode_extradata(HEVCContext *s)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     GetByteContext gb;
 | |
|     int ret;
 | |
| 
 | |
|     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
 | |
| 
 | |
|     if (avctx->extradata_size > 3 &&
 | |
|         (avctx->extradata[0] || avctx->extradata[1] ||
 | |
|          avctx->extradata[2] > 1)) {
 | |
|         /* It seems the extradata is encoded as hvcC format.
 | |
|          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
 | |
|          * is finalized. When finalized, configurationVersion will be 1 and we
 | |
|          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
 | |
|         int i, j, num_arrays, nal_len_size;
 | |
| 
 | |
|         s->is_nalff = 1;
 | |
| 
 | |
|         bytestream2_skip(&gb, 21);
 | |
|         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
 | |
|         num_arrays   = bytestream2_get_byte(&gb);
 | |
| 
 | |
|         /* nal units in the hvcC always have length coded with 2 bytes,
 | |
|          * so put a fake nal_length_size = 2 while parsing them */
 | |
|         s->nal_length_size = 2;
 | |
| 
 | |
|         /* Decode nal units from hvcC. */
 | |
|         for (i = 0; i < num_arrays; i++) {
 | |
|             int type = bytestream2_get_byte(&gb) & 0x3f;
 | |
|             int cnt  = bytestream2_get_be16(&gb);
 | |
| 
 | |
|             for (j = 0; j < cnt; j++) {
 | |
|                 // +2 for the nal size field
 | |
|                 int nalsize = bytestream2_peek_be16(&gb) + 2;
 | |
|                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR,
 | |
|                            "Invalid NAL unit size in extradata.\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
| 
 | |
|                 ret = decode_nal_units(s, gb.buffer, nalsize);
 | |
|                 if (ret < 0) {
 | |
|                     av_log(avctx, AV_LOG_ERROR,
 | |
|                            "Decoding nal unit %d %d from hvcC failed\n",
 | |
|                            type, i);
 | |
|                     return ret;
 | |
|                 }
 | |
|                 bytestream2_skip(&gb, nalsize);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Now store right nal length size, that will be used to parse
 | |
|          * all other nals */
 | |
|         s->nal_length_size = nal_len_size;
 | |
|     } else {
 | |
|         s->is_nalff = 0;
 | |
|         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     ff_init_cabac_states();
 | |
| 
 | |
|     avctx->internal->allocate_progress = 1;
 | |
| 
 | |
|     ret = hevc_init_context(avctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     s->enable_parallel_tiles = 0;
 | |
|     s->picture_struct = 0;
 | |
| 
 | |
|     if(avctx->active_thread_type & FF_THREAD_SLICE)
 | |
|         s->threads_number = avctx->thread_count;
 | |
|     else
 | |
|         s->threads_number = 1;
 | |
| 
 | |
|     if (avctx->extradata_size > 0 && avctx->extradata) {
 | |
|         ret = hevc_decode_extradata(s);
 | |
|         if (ret < 0) {
 | |
|             hevc_decode_free(avctx);
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
 | |
|             s->threads_type = FF_THREAD_FRAME;
 | |
|         else
 | |
|             s->threads_type = FF_THREAD_SLICE;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     memset(s, 0, sizeof(*s));
 | |
| 
 | |
|     ret = hevc_init_context(avctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hevc_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     ff_hevc_flush_dpb(s);
 | |
|     s->max_ra = INT_MAX;
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(HEVCContext, x)
 | |
| #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
 | |
| 
 | |
| static const AVProfile profiles[] = {
 | |
|     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
 | |
|     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
 | |
|     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
 | |
|     { FF_PROFILE_UNKNOWN },
 | |
| };
 | |
| 
 | |
| static const AVOption options[] = {
 | |
|     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
 | |
|         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
 | |
|     { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
 | |
|         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass hevc_decoder_class = {
 | |
|     .class_name = "HEVC decoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_hevc_decoder = {
 | |
|     .name                  = "hevc",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_HEVC,
 | |
|     .priv_data_size        = sizeof(HEVCContext),
 | |
|     .priv_class            = &hevc_decoder_class,
 | |
|     .init                  = hevc_decode_init,
 | |
|     .close                 = hevc_decode_free,
 | |
|     .decode                = hevc_decode_frame,
 | |
|     .flush                 = hevc_decode_flush,
 | |
|     .update_thread_context = hevc_update_thread_context,
 | |
|     .init_thread_copy      = hevc_init_thread_copy,
 | |
|     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
 | |
|                              CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
 | |
|     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
 | |
| };
 |