mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 20:16:42 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1238 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1238 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AMR wideband decoder
 | |
|  * Copyright (c) 2010 Marcelo Galvao Povoa
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A particular PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * AMR wideband decoder
 | |
|  */
 | |
| 
 | |
| #include "libavutil/lfg.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "lsp.h"
 | |
| #include "celp_math.h"
 | |
| #include "celp_filters.h"
 | |
| #include "acelp_filters.h"
 | |
| #include "acelp_vectors.h"
 | |
| #include "acelp_pitch_delay.h"
 | |
| 
 | |
| #define AMR_USE_16BIT_TABLES
 | |
| #include "amr.h"
 | |
| 
 | |
| #include "amrwbdata.h"
 | |
| 
 | |
| typedef struct {
 | |
|     AMRWBFrame                             frame; ///< AMRWB parameters decoded from bitstream
 | |
|     enum Mode                        fr_cur_mode; ///< mode index of current frame
 | |
|     uint8_t                           fr_quality; ///< frame quality index (FQI)
 | |
|     float                      isf_cur[LP_ORDER]; ///< working ISF vector from current frame
 | |
|     float                   isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
 | |
|     float               isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
 | |
|     double                      isp[4][LP_ORDER]; ///< ISP vectors from current frame
 | |
|     double               isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
 | |
| 
 | |
|     float                   lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
 | |
| 
 | |
|     uint8_t                       base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
 | |
|     uint8_t                        pitch_lag_int; ///< integer part of pitch lag of the previous subframe
 | |
| 
 | |
|     float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
 | |
|     float                            *excitation; ///< points to current excitation in excitation_buf[]
 | |
| 
 | |
|     float           pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
 | |
|     float           fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
 | |
| 
 | |
|     float                    prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
 | |
|     float                          pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
 | |
|     float                          fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
 | |
| 
 | |
|     float                              tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
 | |
| 
 | |
|     float                 prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
 | |
|     uint8_t                    prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
 | |
|     float                           prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
 | |
| 
 | |
|     float samples_az[LP_ORDER + AMRWB_SFR_SIZE];         ///< low-band samples and memory from synthesis at 12.8kHz
 | |
|     float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE];     ///< low-band samples and memory processed for upsampling
 | |
|     float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
 | |
| 
 | |
|     float          hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
 | |
|     float                           demph_mem[1]; ///< previous value in the de-emphasis filter
 | |
|     float               bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
 | |
|     float                 lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
 | |
| 
 | |
|     AVLFG                                   prng; ///< random number generator for white noise excitation
 | |
|     uint8_t                          first_frame; ///< flag active during decoding of the first frame
 | |
| } AMRWBContext;
 | |
| 
 | |
| static av_cold int amrwb_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AMRWBContext *ctx = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
 | |
| 
 | |
|     av_lfg_init(&ctx->prng, 1);
 | |
| 
 | |
|     ctx->excitation  = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
 | |
|     ctx->first_frame = 1;
 | |
| 
 | |
|     for (i = 0; i < LP_ORDER; i++)
 | |
|         ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         ctx->prediction_error[i] = MIN_ENERGY;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the frame header in the "MIME/storage" format. This format
 | |
|  * is simpler and does not carry the auxiliary information of the frame
 | |
|  *
 | |
|  * @param[in] ctx                  The Context
 | |
|  * @param[in] buf                  Pointer to the input buffer
 | |
|  *
 | |
|  * @return The decoded header length in bytes
 | |
|  */
 | |
| static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
 | |
| {
 | |
|     GetBitContext gb;
 | |
|     init_get_bits(&gb, buf, 8);
 | |
| 
 | |
|     /* Decode frame header (1st octet) */
 | |
|     skip_bits(&gb, 1);  // padding bit
 | |
|     ctx->fr_cur_mode  = get_bits(&gb, 4);
 | |
|     ctx->fr_quality   = get_bits1(&gb);
 | |
|     skip_bits(&gb, 2);  // padding bits
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decodes quantized ISF vectors using 36-bit indexes (6K60 mode only)
 | |
|  *
 | |
|  * @param[in]  ind                 Array of 5 indexes
 | |
|  * @param[out] isf_q               Buffer for isf_q[LP_ORDER]
 | |
|  *
 | |
|  */
 | |
| static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 9; i++)
 | |
|         isf_q[i]      = dico1_isf[ind[0]][i]      * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 7; i++)
 | |
|         isf_q[i + 9]  = dico2_isf[ind[1]][i]      * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 5; i++)
 | |
|         isf_q[i]     += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 7; i++)
 | |
|         isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decodes quantized ISF vectors using 46-bit indexes (except 6K60 mode)
 | |
|  *
 | |
|  * @param[in]  ind                 Array of 7 indexes
 | |
|  * @param[out] isf_q               Buffer for isf_q[LP_ORDER]
 | |
|  *
 | |
|  */
 | |
| static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 9; i++)
 | |
|         isf_q[i]       = dico1_isf[ind[0]][i]  * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 7; i++)
 | |
|         isf_q[i + 9]   = dico2_isf[ind[1]][i]  * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 3; i++)
 | |
|         isf_q[i]      += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 3; i++)
 | |
|         isf_q[i + 3]  += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 3; i++)
 | |
|         isf_q[i + 6]  += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 3; i++)
 | |
|         isf_q[i + 9]  += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply mean and past ISF values using the prediction factor
 | |
|  * Updates past ISF vector
 | |
|  *
 | |
|  * @param[in,out] isf_q            Current quantized ISF
 | |
|  * @param[in,out] isf_past         Past quantized ISF
 | |
|  *
 | |
|  */
 | |
| static void isf_add_mean_and_past(float *isf_q, float *isf_past)
 | |
| {
 | |
|     int i;
 | |
|     float tmp;
 | |
| 
 | |
|     for (i = 0; i < LP_ORDER; i++) {
 | |
|         tmp = isf_q[i];
 | |
|         isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
 | |
|         isf_q[i] += PRED_FACTOR * isf_past[i];
 | |
|         isf_past[i] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Interpolate the fourth ISP vector from current and past frames
 | |
|  * to obtain a ISP vector for each subframe
 | |
|  *
 | |
|  * @param[in,out] isp_q            ISPs for each subframe
 | |
|  * @param[in]     isp4_past        Past ISP for subframe 4
 | |
|  */
 | |
| static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
 | |
| {
 | |
|     int i, k;
 | |
| 
 | |
|     for (k = 0; k < 3; k++) {
 | |
|         float c = isfp_inter[k];
 | |
|         for (i = 0; i < LP_ORDER; i++)
 | |
|             isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes)
 | |
|  * Calculate integer lag and fractional lag always using 1/4 resolution
 | |
|  * In 1st and 3rd subframes the index is relative to last subframe integer lag
 | |
|  *
 | |
|  * @param[out]    lag_int          Decoded integer pitch lag
 | |
|  * @param[out]    lag_frac         Decoded fractional pitch lag
 | |
|  * @param[in]     pitch_index      Adaptive codebook pitch index
 | |
|  * @param[in,out] base_lag_int     Base integer lag used in relative subframes
 | |
|  * @param[in]     subframe         Current subframe index (0 to 3)
 | |
|  */
 | |
| static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
 | |
|                                   uint8_t *base_lag_int, int subframe)
 | |
| {
 | |
|     if (subframe == 0 || subframe == 2) {
 | |
|         if (pitch_index < 376) {
 | |
|             *lag_int  = (pitch_index + 137) >> 2;
 | |
|             *lag_frac = pitch_index - (*lag_int << 2) + 136;
 | |
|         } else if (pitch_index < 440) {
 | |
|             *lag_int  = (pitch_index + 257 - 376) >> 1;
 | |
|             *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
 | |
|             /* the actual resolution is 1/2 but expressed as 1/4 */
 | |
|         } else {
 | |
|             *lag_int  = pitch_index - 280;
 | |
|             *lag_frac = 0;
 | |
|         }
 | |
|         /* minimum lag for next subframe */
 | |
|         *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
 | |
|                                 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
 | |
|         // XXX: the spec states clearly that *base_lag_int should be
 | |
|         // the nearest integer to *lag_int (minus 8), but the ref code
 | |
|         // actually always uses its floor, I'm following the latter
 | |
|     } else {
 | |
|         *lag_int  = (pitch_index + 1) >> 2;
 | |
|         *lag_frac = pitch_index - (*lag_int << 2);
 | |
|         *lag_int += *base_lag_int;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a adaptive codebook index into pitch lag for 8k85 and 6k60 modes
 | |
|  * Description is analogous to decode_pitch_lag_high, but in 6k60 relative
 | |
|  * index is used for all subframes except the first
 | |
|  */
 | |
| static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
 | |
|                                  uint8_t *base_lag_int, int subframe, enum Mode mode)
 | |
| {
 | |
|     if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
 | |
|         if (pitch_index < 116) {
 | |
|             *lag_int  = (pitch_index + 69) >> 1;
 | |
|             *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
 | |
|         } else {
 | |
|             *lag_int  = pitch_index - 24;
 | |
|             *lag_frac = 0;
 | |
|         }
 | |
|         // XXX: same problem as before
 | |
|         *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
 | |
|                                 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
 | |
|     } else {
 | |
|         *lag_int  = (pitch_index + 1) >> 1;
 | |
|         *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
 | |
|         *lag_int += *base_lag_int;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Find the pitch vector by interpolating the past excitation at the
 | |
|  * pitch delay, which is obtained in this function
 | |
|  *
 | |
|  * @param[in,out] ctx              The context
 | |
|  * @param[in]     amr_subframe     Current subframe data
 | |
|  * @param[in]     subframe         Current subframe index (0 to 3)
 | |
|  */
 | |
| static void decode_pitch_vector(AMRWBContext *ctx,
 | |
|                                 const AMRWBSubFrame *amr_subframe,
 | |
|                                 const int subframe)
 | |
| {
 | |
|     int pitch_lag_int, pitch_lag_frac;
 | |
|     int i;
 | |
|     float *exc     = ctx->excitation;
 | |
|     enum Mode mode = ctx->fr_cur_mode;
 | |
| 
 | |
|     if (mode <= MODE_8k85) {
 | |
|         decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
 | |
|                               &ctx->base_pitch_lag, subframe, mode);
 | |
|     } else
 | |
|         decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
 | |
|                               &ctx->base_pitch_lag, subframe);
 | |
| 
 | |
|     ctx->pitch_lag_int = pitch_lag_int;
 | |
|     pitch_lag_int += pitch_lag_frac > 0;
 | |
| 
 | |
|     /* Calculate the pitch vector by interpolating the past excitation at the
 | |
|        pitch lag using a hamming windowed sinc function */
 | |
|     ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
 | |
|                           ac_inter, 4,
 | |
|                           pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
 | |
|                           LP_ORDER, AMRWB_SFR_SIZE + 1);
 | |
| 
 | |
|     /* Check which pitch signal path should be used
 | |
|      * 6k60 and 8k85 modes have the ltp flag set to 0 */
 | |
|     if (amr_subframe->ltp) {
 | |
|         memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
 | |
|     } else {
 | |
|         for (i = 0; i < AMRWB_SFR_SIZE; i++)
 | |
|             ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
 | |
|                                    0.18 * exc[i + 1];
 | |
|         memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
 | |
| #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
 | |
| 
 | |
| /** Get the bit at specified position */
 | |
| #define BIT_POS(x, p) (((x) >> (p)) & 1)
 | |
| 
 | |
| /**
 | |
|  * The next six functions decode_[i]p_track decode exactly i pulses
 | |
|  * positions and amplitudes (-1 or 1) in a subframe track using
 | |
|  * an encoded pulse indexing (TS 26.190 section 5.8.2)
 | |
|  *
 | |
|  * The results are given in out[], in which a negative number means
 | |
|  * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) )
 | |
|  *
 | |
|  * @param[out] out                 Output buffer (writes i elements)
 | |
|  * @param[in]  code                Pulse index (no. of bits varies, see below)
 | |
|  * @param[in]  m                   (log2) Number of potential positions
 | |
|  * @param[in]  off                 Offset for decoded positions
 | |
|  */
 | |
| static inline void decode_1p_track(int *out, int code, int m, int off)
 | |
| {
 | |
|     int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
 | |
| 
 | |
|     out[0] = BIT_POS(code, m) ? -pos : pos;
 | |
| }
 | |
| 
 | |
| static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
 | |
| {
 | |
|     int pos0 = BIT_STR(code, m, m) + off;
 | |
|     int pos1 = BIT_STR(code, 0, m) + off;
 | |
| 
 | |
|     out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
 | |
|     out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
 | |
|     out[1] = pos0 > pos1 ? -out[1] : out[1];
 | |
| }
 | |
| 
 | |
| static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
 | |
| {
 | |
|     int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
 | |
| 
 | |
|     decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
 | |
|                     m - 1, off + half_2p);
 | |
|     decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
 | |
| }
 | |
| 
 | |
| static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
 | |
| {
 | |
|     int half_4p, subhalf_2p;
 | |
|     int b_offset = 1 << (m - 1);
 | |
| 
 | |
|     switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
 | |
|     case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
 | |
|         half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
 | |
|         subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
 | |
| 
 | |
|         decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
 | |
|                         m - 2, off + half_4p + subhalf_2p);
 | |
|         decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
 | |
|                         m - 1, off + half_4p);
 | |
|         break;
 | |
|     case 1: /* 1 pulse in A, 3 pulses in B */
 | |
|         decode_1p_track(out, BIT_STR(code,  3*m - 2, m),
 | |
|                         m - 1, off);
 | |
|         decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
 | |
|                         m - 1, off + b_offset);
 | |
|         break;
 | |
|     case 2: /* 2 pulses in each half */
 | |
|         decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
 | |
|                         m - 1, off);
 | |
|         decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
 | |
|                         m - 1, off + b_offset);
 | |
|         break;
 | |
|     case 3: /* 3 pulses in A, 1 pulse in B */
 | |
|         decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
 | |
|                         m - 1, off);
 | |
|         decode_1p_track(out + 3, BIT_STR(code, 0, m),
 | |
|                         m - 1, off + b_offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
 | |
| {
 | |
|     int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
 | |
| 
 | |
|     decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
 | |
|                     m - 1, off + half_3p);
 | |
| 
 | |
|     decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
 | |
| }
 | |
| 
 | |
| static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
 | |
| {
 | |
|     int b_offset = 1 << (m - 1);
 | |
|     /* which half has more pulses in cases 0 to 2 */
 | |
|     int half_more  = BIT_POS(code, 6*m - 5) << (m - 1);
 | |
|     int half_other = b_offset - half_more;
 | |
| 
 | |
|     switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
 | |
|     case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
 | |
|         decode_1p_track(out, BIT_STR(code, 0, m),
 | |
|                         m - 1, off + half_more);
 | |
|         decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
 | |
|                         m - 1, off + half_more);
 | |
|         break;
 | |
|     case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
 | |
|         decode_1p_track(out, BIT_STR(code, 0, m),
 | |
|                         m - 1, off + half_other);
 | |
|         decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
 | |
|                         m - 1, off + half_more);
 | |
|         break;
 | |
|     case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
 | |
|         decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
 | |
|                         m - 1, off + half_other);
 | |
|         decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
 | |
|                         m - 1, off + half_more);
 | |
|         break;
 | |
|     case 3: /* 3 pulses in A, 3 pulses in B */
 | |
|         decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
 | |
|                         m - 1, off);
 | |
|         decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
 | |
|                         m - 1, off + b_offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the algebraic codebook index to pulse positions and signs,
 | |
|  * then construct the algebraic codebook vector
 | |
|  *
 | |
|  * @param[out] fixed_vector        Buffer for the fixed codebook excitation
 | |
|  * @param[in]  pulse_hi            MSBs part of the pulse index array (higher modes only)
 | |
|  * @param[in]  pulse_lo            LSBs part of the pulse index array
 | |
|  * @param[in]  mode                Mode of the current frame
 | |
|  */
 | |
| static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
 | |
|                                 const uint16_t *pulse_lo, const enum Mode mode)
 | |
| {
 | |
|     /* sig_pos stores for each track the decoded pulse position indexes
 | |
|      * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
 | |
|     int sig_pos[4][6];
 | |
|     int spacing = (mode == MODE_6k60) ? 2 : 4;
 | |
|     int i, j;
 | |
| 
 | |
|     switch (mode) {
 | |
|     case MODE_6k60:
 | |
|         for (i = 0; i < 2; i++)
 | |
|             decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
 | |
|         break;
 | |
|     case MODE_8k85:
 | |
|         for (i = 0; i < 4; i++)
 | |
|             decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
 | |
|         break;
 | |
|     case MODE_12k65:
 | |
|         for (i = 0; i < 4; i++)
 | |
|             decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
 | |
|         break;
 | |
|     case MODE_14k25:
 | |
|         for (i = 0; i < 2; i++)
 | |
|             decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
 | |
|         for (i = 2; i < 4; i++)
 | |
|             decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
 | |
|         break;
 | |
|     case MODE_15k85:
 | |
|         for (i = 0; i < 4; i++)
 | |
|             decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
 | |
|         break;
 | |
|     case MODE_18k25:
 | |
|         for (i = 0; i < 4; i++)
 | |
|             decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
 | |
|                            ((int) pulse_hi[i] << 14), 4, 1);
 | |
|         break;
 | |
|     case MODE_19k85:
 | |
|         for (i = 0; i < 2; i++)
 | |
|             decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
 | |
|                            ((int) pulse_hi[i] << 10), 4, 1);
 | |
|         for (i = 2; i < 4; i++)
 | |
|             decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
 | |
|                            ((int) pulse_hi[i] << 14), 4, 1);
 | |
|         break;
 | |
|     case MODE_23k05:
 | |
|     case MODE_23k85:
 | |
|         for (i = 0; i < 4; i++)
 | |
|             decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
 | |
|                            ((int) pulse_hi[i] << 11), 4, 1);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
 | |
|             int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
 | |
| 
 | |
|             fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
 | |
|         }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode pitch gain and fixed gain correction factor
 | |
|  *
 | |
|  * @param[in]  vq_gain             Vector-quantized index for gains
 | |
|  * @param[in]  mode                Mode of the current frame
 | |
|  * @param[out] fixed_gain_factor   Decoded fixed gain correction factor
 | |
|  * @param[out] pitch_gain          Decoded pitch gain
 | |
|  */
 | |
| static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
 | |
|                          float *fixed_gain_factor, float *pitch_gain)
 | |
| {
 | |
|     const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
 | |
|                                                 qua_gain_7b[vq_gain]);
 | |
| 
 | |
|     *pitch_gain        = gains[0] * (1.0f / (1 << 14));
 | |
|     *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply pitch sharpening filters to the fixed codebook vector
 | |
|  *
 | |
|  * @param[in]     ctx              The context
 | |
|  * @param[in,out] fixed_vector     Fixed codebook excitation
 | |
|  */
 | |
| // XXX: Spec states this procedure should be applied when the pitch
 | |
| // lag is less than 64, but this checking seems absent in reference and AMR-NB
 | |
| static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* Tilt part */
 | |
|     for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
 | |
|         fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
 | |
| 
 | |
|     /* Periodicity enhancement part */
 | |
|     for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
 | |
|         fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced)
 | |
|  *
 | |
|  * @param[in] p_vector, f_vector   Pitch and fixed excitation vectors
 | |
|  * @param[in] p_gain, f_gain       Pitch and fixed gains
 | |
|  */
 | |
| // XXX: There is something wrong with the precision here! The magnitudes
 | |
| // of the energies are not correct. Please check the reference code carefully
 | |
| static float voice_factor(float *p_vector, float p_gain,
 | |
|                           float *f_vector, float f_gain)
 | |
| {
 | |
|     double p_ener = (double) ff_dot_productf(p_vector, p_vector,
 | |
|                                              AMRWB_SFR_SIZE) * p_gain * p_gain;
 | |
|     double f_ener = (double) ff_dot_productf(f_vector, f_vector,
 | |
|                                              AMRWB_SFR_SIZE) * f_gain * f_gain;
 | |
| 
 | |
|     return (p_ener - f_ener) / (p_ener + f_ener);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Reduce fixed vector sparseness by smoothing with one of three IR filters
 | |
|  * Also known as "adaptive phase dispersion"
 | |
|  *
 | |
|  * @param[in]     ctx              The context
 | |
|  * @param[in,out] fixed_vector     Unfiltered fixed vector
 | |
|  * @param[out]    buf              Space for modified vector if necessary
 | |
|  *
 | |
|  * @return The potentially overwritten filtered fixed vector address
 | |
|  */
 | |
| static float *anti_sparseness(AMRWBContext *ctx,
 | |
|                               float *fixed_vector, float *buf)
 | |
| {
 | |
|     int ir_filter_nr;
 | |
| 
 | |
|     if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
 | |
|         return fixed_vector;
 | |
| 
 | |
|     if (ctx->pitch_gain[0] < 0.6) {
 | |
|         ir_filter_nr = 0;      // strong filtering
 | |
|     } else if (ctx->pitch_gain[0] < 0.9) {
 | |
|         ir_filter_nr = 1;      // medium filtering
 | |
|     } else
 | |
|         ir_filter_nr = 2;      // no filtering
 | |
| 
 | |
|     /* detect 'onset' */
 | |
|     if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
 | |
|         if (ir_filter_nr < 2)
 | |
|             ir_filter_nr++;
 | |
|     } else {
 | |
|         int i, count = 0;
 | |
| 
 | |
|         for (i = 0; i < 6; i++)
 | |
|             if (ctx->pitch_gain[i] < 0.6)
 | |
|                 count++;
 | |
| 
 | |
|         if (count > 2)
 | |
|             ir_filter_nr = 0;
 | |
| 
 | |
|         if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
 | |
|             ir_filter_nr--;
 | |
|     }
 | |
| 
 | |
|     /* update ir filter strength history */
 | |
|     ctx->prev_ir_filter_nr = ir_filter_nr;
 | |
| 
 | |
|     ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
 | |
| 
 | |
|     if (ir_filter_nr < 2) {
 | |
|         int i;
 | |
|         const float *coef = ir_filters_lookup[ir_filter_nr];
 | |
| 
 | |
|         /* Circular convolution code in the reference
 | |
|          * decoder was modified to avoid using one
 | |
|          * extra array. The filtered vector is given by:
 | |
|          *
 | |
|          * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
 | |
|          */
 | |
| 
 | |
|         memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
 | |
|         for (i = 0; i < AMRWB_SFR_SIZE; i++)
 | |
|             if (fixed_vector[i])
 | |
|                 ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
 | |
|                                   AMRWB_SFR_SIZE);
 | |
|         fixed_vector = buf;
 | |
|     }
 | |
| 
 | |
|     return fixed_vector;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate a stability factor {teta} based on distance between
 | |
|  * current and past isf. A value of 1 shows maximum signal stability
 | |
|  */
 | |
| static float stability_factor(const float *isf, const float *isf_past)
 | |
| {
 | |
|     int i;
 | |
|     float acc = 0.0;
 | |
| 
 | |
|     for (i = 0; i < LP_ORDER - 1; i++)
 | |
|         acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
 | |
| 
 | |
|     // XXX: This part is not so clear from the reference code
 | |
|     // the result is more accurate changing the "/ 256" to "* 512"
 | |
|     return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply a non-linear fixed gain smoothing in order to reduce
 | |
|  * fluctuation in the energy of excitation
 | |
|  *
 | |
|  * @param[in]     fixed_gain       Unsmoothed fixed gain
 | |
|  * @param[in,out] prev_tr_gain     Previous threshold gain (updated)
 | |
|  * @param[in]     voice_fac        Frame voicing factor
 | |
|  * @param[in]     stab_fac         Frame stability factor
 | |
|  *
 | |
|  * @return The smoothed gain
 | |
|  */
 | |
| static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
 | |
|                             float voice_fac,  float stab_fac)
 | |
| {
 | |
|     float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
 | |
|     float g0;
 | |
| 
 | |
|     // XXX: the following fixed-point constants used to in(de)crement
 | |
|     // gain by 1.5dB were taken from the reference code, maybe it could
 | |
|     // be simpler
 | |
|     if (fixed_gain < *prev_tr_gain) {
 | |
|         g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
 | |
|                      (6226 * (1.0f / (1 << 15)))); // +1.5 dB
 | |
|     } else
 | |
|         g0 = FFMAX(*prev_tr_gain, fixed_gain *
 | |
|                     (27536 * (1.0f / (1 << 15)))); // -1.5 dB
 | |
| 
 | |
|     *prev_tr_gain = g0; // update next frame threshold
 | |
| 
 | |
|     return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Filter the fixed_vector to emphasize the higher frequencies
 | |
|  *
 | |
|  * @param[in,out] fixed_vector     Fixed codebook vector
 | |
|  * @param[in]     voice_fac        Frame voicing factor
 | |
|  */
 | |
| static void pitch_enhancer(float *fixed_vector, float voice_fac)
 | |
| {
 | |
|     int i;
 | |
|     float cpe  = 0.125 * (1 + voice_fac);
 | |
|     float last = fixed_vector[0]; // holds c(i - 1)
 | |
| 
 | |
|     fixed_vector[0] -= cpe * fixed_vector[1];
 | |
| 
 | |
|     for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
 | |
|         float cur = fixed_vector[i];
 | |
| 
 | |
|         fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
 | |
|         last = cur;
 | |
|     }
 | |
| 
 | |
|     fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Conduct 16th order linear predictive coding synthesis from excitation
 | |
|  *
 | |
|  * @param[in]     ctx              Pointer to the AMRWBContext
 | |
|  * @param[in]     lpc              Pointer to the LPC coefficients
 | |
|  * @param[out]    excitation       Buffer for synthesis final excitation
 | |
|  * @param[in]     fixed_gain       Fixed codebook gain for synthesis
 | |
|  * @param[in]     fixed_vector     Algebraic codebook vector
 | |
|  * @param[in,out] samples          Pointer to the output samples and memory
 | |
|  */
 | |
| static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
 | |
|                       float fixed_gain, const float *fixed_vector,
 | |
|                       float *samples)
 | |
| {
 | |
|     ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
 | |
|                             ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
 | |
| 
 | |
|     /* emphasize pitch vector contribution in low bitrate modes */
 | |
|     if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
 | |
|         int i;
 | |
|         float energy = ff_dot_productf(excitation, excitation,
 | |
|                                        AMRWB_SFR_SIZE);
 | |
| 
 | |
|         // XXX: Weird part in both ref code and spec. A unknown parameter
 | |
|         // {beta} seems to be identical to the current pitch gain
 | |
|         float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
 | |
| 
 | |
|         for (i = 0; i < AMRWB_SFR_SIZE; i++)
 | |
|             excitation[i] += pitch_factor * ctx->pitch_vector[i];
 | |
| 
 | |
|         ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
 | |
|                                                 energy, AMRWB_SFR_SIZE);
 | |
|     }
 | |
| 
 | |
|     ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
 | |
|                                  AMRWB_SFR_SIZE, LP_ORDER);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply to synthesis a de-emphasis filter of the form:
 | |
|  * H(z) = 1 / (1 - m * z^-1)
 | |
|  *
 | |
|  * @param[out]    out              Output buffer
 | |
|  * @param[in]     in               Input samples array with in[-1]
 | |
|  * @param[in]     m                Filter coefficient
 | |
|  * @param[in,out] mem              State from last filtering
 | |
|  */
 | |
| static void de_emphasis(float *out, float *in, float m, float mem[1])
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     out[0] = in[0] + m * mem[0];
 | |
| 
 | |
|     for (i = 1; i < AMRWB_SFR_SIZE; i++)
 | |
|          out[i] = in[i] + out[i - 1] * m;
 | |
| 
 | |
|     mem[0] = out[AMRWB_SFR_SIZE - 1];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
 | |
|  * a FIR interpolation filter. Uses past data from before *in address
 | |
|  *
 | |
|  * @param[out] out                 Buffer for interpolated signal
 | |
|  * @param[in]  in                  Current signal data (length 0.8*o_size)
 | |
|  * @param[in]  o_size              Output signal length
 | |
|  */
 | |
| static void upsample_5_4(float *out, const float *in, int o_size)
 | |
| {
 | |
|     const float *in0 = in - UPS_FIR_SIZE + 1;
 | |
|     int i, j, k;
 | |
|     int int_part = 0, frac_part;
 | |
| 
 | |
|     i = 0;
 | |
|     for (j = 0; j < o_size / 5; j++) {
 | |
|         out[i] = in[int_part];
 | |
|         frac_part = 4;
 | |
|         i++;
 | |
| 
 | |
|         for (k = 1; k < 5; k++) {
 | |
|             out[i] = ff_dot_productf(in0 + int_part, upsample_fir[4 - frac_part],
 | |
|                                      UPS_MEM_SIZE);
 | |
|             int_part++;
 | |
|             frac_part--;
 | |
|             i++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate the high-band gain based on encoded index (23k85 mode) or
 | |
|  * on the low-band speech signal and the Voice Activity Detection flag
 | |
|  *
 | |
|  * @param[in] ctx                  The context
 | |
|  * @param[in] synth                LB speech synthesis at 12.8k
 | |
|  * @param[in] hb_idx               Gain index for mode 23k85 only
 | |
|  * @param[in] vad                  VAD flag for the frame
 | |
|  */
 | |
| static float find_hb_gain(AMRWBContext *ctx, const float *synth,
 | |
|                           uint16_t hb_idx, uint8_t vad)
 | |
| {
 | |
|     int wsp = (vad > 0);
 | |
|     float tilt;
 | |
| 
 | |
|     if (ctx->fr_cur_mode == MODE_23k85)
 | |
|         return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
 | |
| 
 | |
|     tilt = ff_dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
 | |
|            ff_dot_productf(synth, synth, AMRWB_SFR_SIZE);
 | |
| 
 | |
|     /* return gain bounded by [0.1, 1.0] */
 | |
|     return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate the high-band excitation with the same energy from the lower
 | |
|  * one and scaled by the given gain
 | |
|  *
 | |
|  * @param[in]  ctx                 The context
 | |
|  * @param[out] hb_exc              Buffer for the excitation
 | |
|  * @param[in]  synth_exc           Low-band excitation used for synthesis
 | |
|  * @param[in]  hb_gain             Wanted excitation gain
 | |
|  */
 | |
| static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
 | |
|                                  const float *synth_exc, float hb_gain)
 | |
| {
 | |
|     int i;
 | |
|     float energy = ff_dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
 | |
| 
 | |
|     /* Generate a white-noise excitation */
 | |
|     for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
 | |
|         hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
 | |
| 
 | |
|     ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
 | |
|                                             energy * hb_gain * hb_gain,
 | |
|                                             AMRWB_SFR_SIZE_16k);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate the auto-correlation for the ISF difference vector
 | |
|  */
 | |
| static float auto_correlation(float *diff_isf, float mean, int lag)
 | |
| {
 | |
|     int i;
 | |
|     float sum = 0.0;
 | |
| 
 | |
|     for (i = 7; i < LP_ORDER - 2; i++) {
 | |
|         float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
 | |
|         sum += prod * prod;
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Extrapolate a ISF vector to the 16kHz range (20th order LP)
 | |
|  * used at mode 6k60 LP filter for the high frequency band
 | |
|  *
 | |
|  * @param[out] out                 Buffer for extrapolated isf
 | |
|  * @param[in]  isf                 Input isf vector
 | |
|  */
 | |
| static void extrapolate_isf(float out[LP_ORDER_16k], float isf[LP_ORDER])
 | |
| {
 | |
|     float diff_isf[LP_ORDER - 2], diff_mean;
 | |
|     float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
 | |
|     float corr_lag[3];
 | |
|     float est, scale;
 | |
|     int i, i_max_corr;
 | |
| 
 | |
|     memcpy(out, isf, (LP_ORDER - 1) * sizeof(float));
 | |
|     out[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
 | |
| 
 | |
|     /* Calculate the difference vector */
 | |
|     for (i = 0; i < LP_ORDER - 2; i++)
 | |
|         diff_isf[i] = isf[i + 1] - isf[i];
 | |
| 
 | |
|     diff_mean = 0.0;
 | |
|     for (i = 2; i < LP_ORDER - 2; i++)
 | |
|         diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
 | |
| 
 | |
|     /* Find which is the maximum autocorrelation */
 | |
|     i_max_corr = 0;
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
 | |
| 
 | |
|         if (corr_lag[i] > corr_lag[i_max_corr])
 | |
|             i_max_corr = i;
 | |
|     }
 | |
|     i_max_corr++;
 | |
| 
 | |
|     for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
 | |
|         out[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
 | |
|                             - isf[i - 2 - i_max_corr];
 | |
| 
 | |
|     /* Calculate an estimate for ISF(18) and scale ISF based on the error */
 | |
|     est   = 7965 + (out[2] - out[3] - out[4]) / 6.0;
 | |
|     scale = 0.5 * (FFMIN(est, 7600) - out[LP_ORDER - 2]) /
 | |
|             (out[LP_ORDER_16k - 2] - out[LP_ORDER - 2]);
 | |
| 
 | |
|     for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
 | |
|         diff_hi[i] = scale * (out[i] - out[i - 1]);
 | |
| 
 | |
|     /* Stability insurance */
 | |
|     for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
 | |
|         if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
 | |
|             if (diff_hi[i] > diff_hi[i - 1]) {
 | |
|                 diff_hi[i - 1] = 5.0 - diff_hi[i];
 | |
|             } else
 | |
|                 diff_hi[i] = 5.0 - diff_hi[i - 1];
 | |
|         }
 | |
| 
 | |
|     for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
 | |
|         out[i] = out[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
 | |
| 
 | |
|     /* Scale the ISF vector for 16000 Hz */
 | |
|     for (i = 0; i < LP_ORDER_16k - 1; i++)
 | |
|         out[i] *= 0.8;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Spectral expand the LP coefficients using the equation:
 | |
|  *   y[i] = x[i] * (gamma ** i)
 | |
|  *
 | |
|  * @param[out] out                 Output buffer (may use input array)
 | |
|  * @param[in]  lpc                 LP coefficients array
 | |
|  * @param[in]  gamma               Weighting factor
 | |
|  * @param[in]  size                LP array size
 | |
|  */
 | |
| static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
 | |
| {
 | |
|     int i;
 | |
|     float fac = gamma;
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         out[i] = lpc[i] * fac;
 | |
|         fac   *= gamma;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Conduct 20th order linear predictive coding synthesis for the high
 | |
|  * frequency band excitation at 16kHz
 | |
|  *
 | |
|  * @param[in]     ctx              The context
 | |
|  * @param[in]     subframe         Current subframe index (0 to 3)
 | |
|  * @param[in,out] samples          Pointer to the output speech samples
 | |
|  * @param[in]     exc              Generated white-noise scaled excitation
 | |
|  * @param[in]     isf              Current frame isf vector
 | |
|  * @param[in]     isf_past         Past frame final isf vector
 | |
|  */
 | |
| static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
 | |
|                          const float *exc, const float *isf, const float *isf_past)
 | |
| {
 | |
|     float hb_lpc[LP_ORDER_16k];
 | |
|     enum Mode mode = ctx->fr_cur_mode;
 | |
| 
 | |
|     if (mode == MODE_6k60) {
 | |
|         float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
 | |
|         double e_isp[LP_ORDER_16k];
 | |
| 
 | |
|         ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
 | |
|                                 1.0 - isfp_inter[subframe], LP_ORDER);
 | |
| 
 | |
|         extrapolate_isf(e_isf, e_isf);
 | |
| 
 | |
|         e_isf[LP_ORDER_16k - 1] *= 2.0;
 | |
|         ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
 | |
|         ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
 | |
| 
 | |
|         lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
 | |
|     } else {
 | |
|         lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
 | |
|     }
 | |
| 
 | |
|     ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
 | |
|                                  (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply to high-band samples a 15th order filter
 | |
|  * The filter characteristic depends on the given coefficients
 | |
|  *
 | |
|  * @param[out]    out              Buffer for filtered output
 | |
|  * @param[in]     fir_coef         Filter coefficients
 | |
|  * @param[in,out] mem              State from last filtering (updated)
 | |
|  * @param[in]     in               Input speech data (high-band)
 | |
|  *
 | |
|  * @remark It is safe to pass the same array in in and out parameters
 | |
|  */
 | |
| static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
 | |
|                           float mem[HB_FIR_SIZE], const float *in)
 | |
| {
 | |
|     int i, j;
 | |
|     float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
 | |
| 
 | |
|     memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
 | |
|     memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
 | |
| 
 | |
|     for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
 | |
|         out[i] = 0.0;
 | |
|         for (j = 0; j <= HB_FIR_SIZE; j++)
 | |
|             out[i] += data[i + j] * fir_coef[j];
 | |
|     }
 | |
| 
 | |
|     memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Update context state before the next subframe
 | |
|  */
 | |
| static void update_sub_state(AMRWBContext *ctx)
 | |
| {
 | |
|     memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
 | |
|             (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
 | |
| 
 | |
|     memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
 | |
|     memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
 | |
| 
 | |
|     memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
 | |
|             LP_ORDER * sizeof(float));
 | |
|     memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
 | |
|             UPS_MEM_SIZE * sizeof(float));
 | |
|     memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
 | |
|             LP_ORDER_16k * sizeof(float));
 | |
| }
 | |
| 
 | |
| static int amrwb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
 | |
|                               AVPacket *avpkt)
 | |
| {
 | |
|     AMRWBContext *ctx  = avctx->priv_data;
 | |
|     AMRWBFrame   *cf   = &ctx->frame;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     int expected_fr_size, header_size;
 | |
|     float *buf_out = data;
 | |
|     float spare_vector[AMRWB_SFR_SIZE];      // extra stack space to hold result from anti-sparseness processing
 | |
|     float fixed_gain_factor;                 // fixed gain correction factor (gamma)
 | |
|     float *synth_fixed_vector;               // pointer to the fixed vector that synthesis should use
 | |
|     float synth_fixed_gain;                  // the fixed gain that synthesis should use
 | |
|     float voice_fac, stab_fac;               // parameters used for gain smoothing
 | |
|     float synth_exc[AMRWB_SFR_SIZE];         // post-processed excitation for synthesis
 | |
|     float hb_exc[AMRWB_SFR_SIZE_16k];        // excitation for the high frequency band
 | |
|     float hb_samples[AMRWB_SFR_SIZE_16k];    // filtered high-band samples from synthesis
 | |
|     float hb_gain;
 | |
|     int sub, i;
 | |
| 
 | |
|     header_size      = decode_mime_header(ctx, buf);
 | |
|     expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
 | |
| 
 | |
|     if (buf_size < expected_fr_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|             "Frame too small (%d bytes). Truncated file?\n", buf_size);
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
 | |
|         av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
 | |
| 
 | |
|     if (ctx->fr_cur_mode == MODE_SID) /* Comfort noise frame */
 | |
|         av_log_missing_feature(avctx, "SID mode", 1);
 | |
| 
 | |
|     if (ctx->fr_cur_mode >= MODE_SID)
 | |
|         return -1;
 | |
| 
 | |
|     ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
 | |
|         buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
 | |
| 
 | |
|     /* Decode the quantized ISF vector */
 | |
|     if (ctx->fr_cur_mode == MODE_6k60) {
 | |
|         decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
 | |
|     } else {
 | |
|         decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
 | |
|     }
 | |
| 
 | |
|     isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
 | |
|     ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
 | |
| 
 | |
|     stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
 | |
| 
 | |
|     ctx->isf_cur[LP_ORDER - 1] *= 2.0;
 | |
|     ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
 | |
| 
 | |
|     /* Generate a ISP vector for each subframe */
 | |
|     if (ctx->first_frame) {
 | |
|         ctx->first_frame = 0;
 | |
|         memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
 | |
|     }
 | |
|     interpolate_isp(ctx->isp, ctx->isp_sub4_past);
 | |
| 
 | |
|     for (sub = 0; sub < 4; sub++)
 | |
|         ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
 | |
| 
 | |
|     for (sub = 0; sub < 4; sub++) {
 | |
|         const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
 | |
|         float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
 | |
| 
 | |
|         /* Decode adaptive codebook (pitch vector) */
 | |
|         decode_pitch_vector(ctx, cur_subframe, sub);
 | |
|         /* Decode innovative codebook (fixed vector) */
 | |
|         decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
 | |
|                             cur_subframe->pul_il, ctx->fr_cur_mode);
 | |
| 
 | |
|         pitch_sharpening(ctx, ctx->fixed_vector);
 | |
| 
 | |
|         decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
 | |
|                      &fixed_gain_factor, &ctx->pitch_gain[0]);
 | |
| 
 | |
|         ctx->fixed_gain[0] =
 | |
|             ff_amr_set_fixed_gain(fixed_gain_factor,
 | |
|                        ff_dot_productf(ctx->fixed_vector, ctx->fixed_vector,
 | |
|                                        AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
 | |
|                        ctx->prediction_error,
 | |
|                        ENERGY_MEAN, energy_pred_fac);
 | |
| 
 | |
|         /* Calculate voice factor and store tilt for next subframe */
 | |
|         voice_fac      = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
 | |
|                                       ctx->fixed_vector, ctx->fixed_gain[0]);
 | |
|         ctx->tilt_coef = voice_fac * 0.25 + 0.25;
 | |
| 
 | |
|         /* Construct current excitation */
 | |
|         for (i = 0; i < AMRWB_SFR_SIZE; i++) {
 | |
|             ctx->excitation[i] *= ctx->pitch_gain[0];
 | |
|             ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
 | |
|             ctx->excitation[i] = truncf(ctx->excitation[i]);
 | |
|         }
 | |
| 
 | |
|         /* Post-processing of excitation elements */
 | |
|         synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
 | |
|                                           voice_fac, stab_fac);
 | |
| 
 | |
|         synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
 | |
|                                              spare_vector);
 | |
| 
 | |
|         pitch_enhancer(synth_fixed_vector, voice_fac);
 | |
| 
 | |
|         synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
 | |
|                   synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
 | |
| 
 | |
|         /* Synthesis speech post-processing */
 | |
|         de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
 | |
|                     &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
 | |
| 
 | |
|         ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
 | |
|             &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
 | |
|             hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
 | |
| 
 | |
|         upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
 | |
|                      AMRWB_SFR_SIZE_16k);
 | |
| 
 | |
|         /* High frequency band (6.4 - 7.0 kHz) generation part */
 | |
|         ff_acelp_apply_order_2_transfer_function(hb_samples,
 | |
|             &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
 | |
|             hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
 | |
| 
 | |
|         hb_gain = find_hb_gain(ctx, hb_samples,
 | |
|                                cur_subframe->hb_gain, cf->vad);
 | |
| 
 | |
|         scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
 | |
| 
 | |
|         hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
 | |
|                      hb_exc, ctx->isf_cur, ctx->isf_past_final);
 | |
| 
 | |
|         /* High-band post-processing filters */
 | |
|         hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
 | |
|                       &ctx->samples_hb[LP_ORDER_16k]);
 | |
| 
 | |
|         if (ctx->fr_cur_mode == MODE_23k85)
 | |
|             hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
 | |
|                           hb_samples);
 | |
| 
 | |
|         /* Add the low and high frequency bands */
 | |
|         for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
 | |
|             sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
 | |
| 
 | |
|         /* Update buffers and history */
 | |
|         update_sub_state(ctx);
 | |
|     }
 | |
| 
 | |
|     /* update state for next frame */
 | |
|     memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
 | |
|     memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
 | |
| 
 | |
|     /* report how many samples we got */
 | |
|     *data_size = 4 * AMRWB_SFR_SIZE_16k * sizeof(float);
 | |
| 
 | |
|     return expected_fr_size;
 | |
| }
 | |
| 
 | |
| AVCodec ff_amrwb_decoder = {
 | |
|     .name           = "amrwb",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = CODEC_ID_AMR_WB,
 | |
|     .priv_data_size = sizeof(AMRWBContext),
 | |
|     .init           = amrwb_decode_init,
 | |
|     .decode         = amrwb_decode_frame,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
 | |
| };
 | 
