mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			661 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			661 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2014 - 2021 Jason Jang
 | |
|  * Copyright (c) 2021 Paul B Mahol
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public License
 | |
|  * as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public License
 | |
|  * along with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 | |
|  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/tx.h"
 | |
| #include "audio.h"
 | |
| #include "avfilter.h"
 | |
| #include "filters.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| typedef struct AudioPsyClipContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     double level_in;
 | |
|     double level_out;
 | |
|     double clip_level;
 | |
|     double adaptive;
 | |
|     int auto_level;
 | |
|     int diff_only;
 | |
|     int iterations;
 | |
|     char *protections_str;
 | |
|     double *protections;
 | |
| 
 | |
|     int num_psy_bins;
 | |
|     int fft_size;
 | |
|     int overlap;
 | |
|     int channels;
 | |
| 
 | |
|     int spread_table_rows;
 | |
|     int *spread_table_index;
 | |
|     int (*spread_table_range)[2];
 | |
|     float *window, *inv_window, *spread_table, *margin_curve;
 | |
| 
 | |
|     AVFrame *in;
 | |
|     AVFrame *in_buffer;
 | |
|     AVFrame *in_frame;
 | |
|     AVFrame *out_dist_frame;
 | |
|     AVFrame *windowed_frame;
 | |
|     AVFrame *clipping_delta;
 | |
|     AVFrame *spectrum_buf;
 | |
|     AVFrame *mask_curve;
 | |
| 
 | |
|     AVTXContext **tx_ctx;
 | |
|     av_tx_fn tx_fn;
 | |
|     AVTXContext **itx_ctx;
 | |
|     av_tx_fn itx_fn;
 | |
| } AudioPsyClipContext;
 | |
| 
 | |
| #define OFFSET(x) offsetof(AudioPsyClipContext, x)
 | |
| #define FLAGS AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM
 | |
| 
 | |
| static const AVOption apsyclip_options[] = {
 | |
|     { "level_in",   "set input level",         OFFSET(level_in),   AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625,   64, FLAGS },
 | |
|     { "level_out",  "set output level",        OFFSET(level_out),  AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625,   64, FLAGS },
 | |
|     { "clip",       "set clip level",          OFFSET(clip_level), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625,    1, FLAGS },
 | |
|     { "diff",       "enable difference",       OFFSET(diff_only),  AV_OPT_TYPE_BOOL,   {.i64=0},      0,    1, FLAGS },
 | |
|     { "adaptive",   "set adaptive distortion", OFFSET(adaptive),   AV_OPT_TYPE_DOUBLE, {.dbl=0.5},    0,    1, FLAGS },
 | |
|     { "iterations", "set iterations",          OFFSET(iterations), AV_OPT_TYPE_INT,    {.i64=10},     1,   20, FLAGS },
 | |
|     { "level",      "set auto level",          OFFSET(auto_level), AV_OPT_TYPE_BOOL,   {.i64=0},      0,    1, FLAGS },
 | |
|     {NULL}
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(apsyclip);
 | |
| 
 | |
| static void generate_hann_window(float *window, float *inv_window, int size)
 | |
| {
 | |
|     for (int i = 0; i < size; i++) {
 | |
|         float value = 0.5f * (1.f - cosf(2.f * M_PI * i / size));
 | |
| 
 | |
|         window[i] = value;
 | |
|         // 1/window to calculate unwindowed peak.
 | |
|         inv_window[i] = value > 0.01f ? 1.f / value : 0.f;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void set_margin_curve(AudioPsyClipContext *s,
 | |
|                              const int (*points)[2], int num_points, int sample_rate)
 | |
| {
 | |
|     int j = 0;
 | |
| 
 | |
|     s->margin_curve[0] = points[0][1];
 | |
| 
 | |
|     for (int i = 0; i < num_points - 1; i++) {
 | |
|         while (j < s->fft_size / 2 + 1 && j * sample_rate / s->fft_size < points[i + 1][0]) {
 | |
|             // linearly interpolate between points
 | |
|             int binHz = j * sample_rate / s->fft_size;
 | |
|             s->margin_curve[j] = points[i][1] + (binHz - points[i][0]) * (points[i + 1][1] - points[i][1]) / (points[i + 1][0] - points[i][0]);
 | |
|             j++;
 | |
|         }
 | |
|     }
 | |
|     // handle bins after the last point
 | |
|     while (j < s->fft_size / 2 + 1) {
 | |
|         s->margin_curve[j] = points[num_points - 1][1];
 | |
|         j++;
 | |
|     }
 | |
| 
 | |
|     // convert margin curve to linear amplitude scale
 | |
|     for (j = 0; j < s->fft_size / 2 + 1; j++)
 | |
|         s->margin_curve[j] = powf(10.f, s->margin_curve[j] / 20.f);
 | |
| }
 | |
| 
 | |
| static void generate_spread_table(AudioPsyClipContext *s)
 | |
| {
 | |
|     // Calculate tent-shape function in log-log scale.
 | |
| 
 | |
|     // As an optimization, only consider bins close to "bin"
 | |
|     // This reduces the number of multiplications needed in calculate_mask_curve
 | |
|     // The masking contribution at faraway bins is negligeable
 | |
| 
 | |
|     // Another optimization to save memory and speed up the calculation of the
 | |
|     // spread table is to calculate and store only 2 spread functions per
 | |
|     // octave, and reuse the same spread function for multiple bins.
 | |
|     int table_index = 0;
 | |
|     int bin = 0;
 | |
|     int increment = 1;
 | |
| 
 | |
|     while (bin < s->num_psy_bins) {
 | |
|         float sum = 0;
 | |
|         int base_idx = table_index * s->num_psy_bins;
 | |
|         int start_bin = bin * 3 / 4;
 | |
|         int end_bin = FFMIN(s->num_psy_bins, ((bin + 1) * 4 + 2) / 3);
 | |
|         int next_bin;
 | |
| 
 | |
|         for (int j = start_bin; j < end_bin; j++) {
 | |
|             // add 0.5 so i=0 doesn't get log(0)
 | |
|             float rel_idx_log = FFABS(logf((j + 0.5f) / (bin + 0.5f)));
 | |
|             float value;
 | |
|             if (j >= bin) {
 | |
|                 // mask up
 | |
|                 value = expf(-rel_idx_log * 40.f);
 | |
|             } else {
 | |
|                 // mask down
 | |
|                 value = expf(-rel_idx_log * 80.f);
 | |
|             }
 | |
|             // the spreading function is centred in the row
 | |
|             sum += value;
 | |
|             s->spread_table[base_idx + s->num_psy_bins / 2 + j - bin] = value;
 | |
|         }
 | |
|         // now normalize it
 | |
|         for (int j = start_bin; j < end_bin; j++) {
 | |
|             s->spread_table[base_idx + s->num_psy_bins / 2 + j - bin] /= sum;
 | |
|         }
 | |
| 
 | |
|         s->spread_table_range[table_index][0] = start_bin - bin;
 | |
|         s->spread_table_range[table_index][1] = end_bin - bin;
 | |
| 
 | |
|         if (bin <= 1) {
 | |
|             next_bin = bin + 1;
 | |
|         } else {
 | |
|             if ((bin & (bin - 1)) == 0) {
 | |
|                 // power of 2
 | |
|                 increment = bin / 2;
 | |
|             }
 | |
| 
 | |
|             next_bin = bin + increment;
 | |
|         }
 | |
| 
 | |
|         // set bins between "bin" and "next_bin" to use this table_index
 | |
|         for (int i = bin; i < next_bin; i++)
 | |
|             s->spread_table_index[i] = table_index;
 | |
| 
 | |
|         bin = next_bin;
 | |
|         table_index++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
|     static const int points[][2] = { {0,14}, {125,14}, {250,16}, {500,18}, {1000,20}, {2000,20}, {4000,20}, {8000,15}, {16000,5}, {20000,-10} };
 | |
|     static const int num_points = 10;
 | |
|     float scale;
 | |
|     int ret;
 | |
| 
 | |
|     s->fft_size = inlink->sample_rate > 100000 ? 1024 : inlink->sample_rate > 50000 ? 512 : 256;
 | |
|     s->overlap = s->fft_size / 4;
 | |
| 
 | |
|     // The psy masking calculation is O(n^2),
 | |
|     // so skip it for frequencies not covered by base sampling rantes (i.e. 44k)
 | |
|     if (inlink->sample_rate <= 50000) {
 | |
|         s->num_psy_bins = s->fft_size / 2;
 | |
|     } else if (inlink->sample_rate <= 100000) {
 | |
|         s->num_psy_bins = s->fft_size / 4;
 | |
|     } else {
 | |
|         s->num_psy_bins = s->fft_size / 8;
 | |
|     }
 | |
| 
 | |
|     s->window = av_calloc(s->fft_size, sizeof(*s->window));
 | |
|     s->inv_window = av_calloc(s->fft_size, sizeof(*s->inv_window));
 | |
|     if (!s->window || !s->inv_window)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->in_buffer      = ff_get_audio_buffer(inlink, s->fft_size * 2);
 | |
|     s->in_frame       = ff_get_audio_buffer(inlink, s->fft_size * 2);
 | |
|     s->out_dist_frame = ff_get_audio_buffer(inlink, s->fft_size * 2);
 | |
|     s->windowed_frame = ff_get_audio_buffer(inlink, s->fft_size * 2);
 | |
|     s->clipping_delta = ff_get_audio_buffer(inlink, s->fft_size * 2);
 | |
|     s->spectrum_buf   = ff_get_audio_buffer(inlink, s->fft_size * 2);
 | |
|     s->mask_curve     = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1);
 | |
|     if (!s->in_buffer || !s->in_frame ||
 | |
|         !s->out_dist_frame || !s->windowed_frame ||
 | |
|         !s->clipping_delta || !s->spectrum_buf || !s->mask_curve)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     generate_hann_window(s->window, s->inv_window, s->fft_size);
 | |
| 
 | |
|     s->margin_curve = av_calloc(s->fft_size / 2 + 1, sizeof(*s->margin_curve));
 | |
|     if (!s->margin_curve)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->spread_table_rows = av_log2(s->num_psy_bins) * 2;
 | |
|     s->spread_table = av_calloc(s->spread_table_rows * s->num_psy_bins, sizeof(*s->spread_table));
 | |
|     if (!s->spread_table)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->spread_table_range = av_calloc(s->spread_table_rows * 2, sizeof(*s->spread_table_range));
 | |
|     if (!s->spread_table_range)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->spread_table_index = av_calloc(s->num_psy_bins, sizeof(*s->spread_table_index));
 | |
|     if (!s->spread_table_index)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     set_margin_curve(s, points, num_points, inlink->sample_rate);
 | |
| 
 | |
|     generate_spread_table(s);
 | |
| 
 | |
|     s->channels = inlink->channels;
 | |
| 
 | |
|     s->tx_ctx = av_calloc(s->channels, sizeof(*s->tx_ctx));
 | |
|     s->itx_ctx = av_calloc(s->channels, sizeof(*s->itx_ctx));
 | |
|     if (!s->tx_ctx || !s->itx_ctx)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     for (int ch = 0; ch < s->channels; ch++) {
 | |
|         ret = av_tx_init(&s->tx_ctx[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         ret = av_tx_init(&s->itx_ctx[ch], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->fft_size, &scale, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void apply_window(AudioPsyClipContext *s,
 | |
|                          const float *in_frame, float *out_frame, const int add_to_out_frame)
 | |
| {
 | |
|     const float *window = s->window;
 | |
| 
 | |
|     for (int i = 0; i < s->fft_size; i++) {
 | |
|         if (add_to_out_frame) {
 | |
|             out_frame[i] += in_frame[i] * window[i];
 | |
|         } else {
 | |
|             out_frame[i] = in_frame[i] * window[i];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void calculate_mask_curve(AudioPsyClipContext *s,
 | |
|                                  const float *spectrum, float *mask_curve)
 | |
| {
 | |
|     for (int i = 0; i < s->fft_size / 2 + 1; i++)
 | |
|         mask_curve[i] = 0;
 | |
| 
 | |
|     for (int i = 0; i < s->num_psy_bins; i++) {
 | |
|         int base_idx, start_bin, end_bin, table_idx;
 | |
|         float magnitude;
 | |
|         int range[2];
 | |
| 
 | |
|         if (i == 0) {
 | |
|             magnitude = FFABS(spectrum[0]);
 | |
|         } else if (i == s->fft_size / 2) {
 | |
|             magnitude = FFABS(spectrum[1]);
 | |
|         } else {
 | |
|             // although the negative frequencies are omitted because they are redundant,
 | |
|             // the magnitude of the positive frequencies are not doubled.
 | |
|             // Multiply the magnitude by 2 to simulate adding up the + and - frequencies.
 | |
|             magnitude = hypotf(spectrum[2 * i], spectrum[2 * i + 1]) * 2;
 | |
|         }
 | |
| 
 | |
|         table_idx = s->spread_table_index[i];
 | |
|         range[0] = s->spread_table_range[table_idx][0];
 | |
|         range[1] = s->spread_table_range[table_idx][1];
 | |
|         base_idx = table_idx * s->num_psy_bins;
 | |
|         start_bin = FFMAX(0, i + range[0]);
 | |
|         end_bin = FFMIN(s->num_psy_bins, i + range[1]);
 | |
| 
 | |
|         for (int j = start_bin; j < end_bin; j++)
 | |
|             mask_curve[j] += s->spread_table[base_idx + s->num_psy_bins / 2 + j - i] * magnitude;
 | |
|     }
 | |
| 
 | |
|     // for ultrasonic frequencies, skip the O(n^2) spread calculation and just copy the magnitude
 | |
|     for (int i = s->num_psy_bins; i < s->fft_size / 2 + 1; i++) {
 | |
|         float magnitude;
 | |
|         if (i == s->fft_size / 2) {
 | |
|             magnitude = FFABS(spectrum[1]);
 | |
|         } else {
 | |
|             // although the negative frequencies are omitted because they are redundant,
 | |
|             // the magnitude of the positive frequencies are not doubled.
 | |
|             // Multiply the magnitude by 2 to simulate adding up the + and - frequencies.
 | |
|             magnitude = hypotf(spectrum[2 * i], spectrum[2 * i + 1]) * 2;
 | |
|         }
 | |
| 
 | |
|         mask_curve[i] = magnitude;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < s->fft_size / 2 + 1; i++)
 | |
|         mask_curve[i] = mask_curve[i] / s->margin_curve[i];
 | |
| }
 | |
| 
 | |
| static void clip_to_window(AudioPsyClipContext *s,
 | |
|                            const float *windowed_frame, float *clipping_delta, float delta_boost)
 | |
| {
 | |
|     const float *window = s->window;
 | |
| 
 | |
|     for (int i = 0; i < s->fft_size; i++) {
 | |
|         const float limit = s->clip_level * window[i];
 | |
|         const float effective_value = windowed_frame[i] + clipping_delta[i];
 | |
| 
 | |
|         if (effective_value > limit) {
 | |
|             clipping_delta[i] += (limit - effective_value) * delta_boost;
 | |
|         } else if (effective_value < -limit) {
 | |
|             clipping_delta[i] += (-limit - effective_value) * delta_boost;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void limit_clip_spectrum(AudioPsyClipContext *s,
 | |
|                                 float *clip_spectrum, const float *mask_curve)
 | |
| {
 | |
|     // bin 0
 | |
|     float relative_distortion_level = FFABS(clip_spectrum[0]) / mask_curve[0];
 | |
| 
 | |
|     if (relative_distortion_level > 1.f)
 | |
|         clip_spectrum[0] /= relative_distortion_level;
 | |
| 
 | |
|     // bin 1..N/2-1
 | |
|     for (int i = 1; i < s->fft_size / 2; i++) {
 | |
|         float real = clip_spectrum[i * 2];
 | |
|         float imag = clip_spectrum[i * 2 + 1];
 | |
|         // although the negative frequencies are omitted because they are redundant,
 | |
|         // the magnitude of the positive frequencies are not doubled.
 | |
|         // Multiply the magnitude by 2 to simulate adding up the + and - frequencies.
 | |
|         relative_distortion_level = hypotf(real, imag) * 2 / mask_curve[i];
 | |
|         if (relative_distortion_level > 1.0) {
 | |
|             clip_spectrum[i * 2] /= relative_distortion_level;
 | |
|             clip_spectrum[i * 2 + 1] /= relative_distortion_level;
 | |
|         }
 | |
|     }
 | |
|     // bin N/2
 | |
|     relative_distortion_level = FFABS(clip_spectrum[1]) / mask_curve[s->fft_size / 2];
 | |
|     if (relative_distortion_level > 1.f)
 | |
|         clip_spectrum[1] /= relative_distortion_level;
 | |
| }
 | |
| 
 | |
| static void r2c(float *buffer, int size)
 | |
| {
 | |
|     for (int i = size - 1; i >= 0; i--)
 | |
|         buffer[2 * i] = buffer[i];
 | |
| 
 | |
|     for (int i = size - 1; i >= 0; i--)
 | |
|         buffer[2 * i + 1] = 0.f;
 | |
| }
 | |
| 
 | |
| static void c2r(float *buffer, int size)
 | |
| {
 | |
|     for (int i = 0; i < size; i++)
 | |
|         buffer[i] = buffer[2 * i];
 | |
| 
 | |
|     for (int i = 0; i < size; i++)
 | |
|         buffer[i + size] = 0.f;
 | |
| }
 | |
| 
 | |
| static void feed(AVFilterContext *ctx, int ch,
 | |
|                  const float *in_samples, float *out_samples, int diff_only,
 | |
|                  float *in_frame, float *out_dist_frame,
 | |
|                  float *windowed_frame, float *clipping_delta,
 | |
|                  float *spectrum_buf, float *mask_curve)
 | |
| {
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
|     const float clip_level_inv = 1.f / s->clip_level;
 | |
|     const float level_out = s->level_out;
 | |
|     float orig_peak = 0;
 | |
|     float peak;
 | |
| 
 | |
|     // shift in/out buffers
 | |
|     for (int i = 0; i < s->fft_size - s->overlap; i++) {
 | |
|         in_frame[i] = in_frame[i + s->overlap];
 | |
|         out_dist_frame[i] = out_dist_frame[i + s->overlap];
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < s->overlap; i++) {
 | |
|         in_frame[i + s->fft_size - s->overlap] = in_samples[i];
 | |
|         out_dist_frame[i + s->fft_size - s->overlap] = 0.f;
 | |
|     }
 | |
| 
 | |
|     apply_window(s, in_frame, windowed_frame, 0);
 | |
|     r2c(windowed_frame, s->fft_size);
 | |
|     s->tx_fn(s->tx_ctx[ch], spectrum_buf, windowed_frame, sizeof(float));
 | |
|     c2r(windowed_frame, s->fft_size);
 | |
|     calculate_mask_curve(s, spectrum_buf, mask_curve);
 | |
| 
 | |
|     // It would be easier to calculate the peak from the unwindowed input.
 | |
|     // This is just for consistency with the clipped peak calculateion
 | |
|     // because the inv_window zeros out samples on the edge of the window.
 | |
|     for (int i = 0; i < s->fft_size; i++)
 | |
|         orig_peak = FFMAX(orig_peak, FFABS(windowed_frame[i] * s->inv_window[i]));
 | |
|     orig_peak *= clip_level_inv;
 | |
|     peak = orig_peak;
 | |
| 
 | |
|     // clear clipping_delta
 | |
|     for (int i = 0; i < s->fft_size * 2; i++)
 | |
|         clipping_delta[i] = 0.f;
 | |
| 
 | |
|     // repeat clipping-filtering process a few times to control both the peaks and the spectrum
 | |
|     for (int i = 0; i < s->iterations; i++) {
 | |
|         float mask_curve_shift = 1.122f; // 1.122 is 1dB
 | |
|         // The last 1/3 of rounds have boosted delta to help reach the peak target faster
 | |
|         float delta_boost = 1.f;
 | |
|         if (i >= s->iterations - s->iterations / 3) {
 | |
|             // boosting the delta when largs peaks are still present is dangerous
 | |
|             if (peak < 2.f)
 | |
|                 delta_boost = 2.f;
 | |
|         }
 | |
| 
 | |
|         clip_to_window(s, windowed_frame, clipping_delta, delta_boost);
 | |
| 
 | |
|         r2c(clipping_delta, s->fft_size);
 | |
|         s->tx_fn(s->tx_ctx[ch], spectrum_buf, clipping_delta, sizeof(float));
 | |
| 
 | |
|         limit_clip_spectrum(s, spectrum_buf, mask_curve);
 | |
| 
 | |
|         s->itx_fn(s->itx_ctx[ch], clipping_delta, spectrum_buf, sizeof(float));
 | |
|         c2r(clipping_delta, s->fft_size);
 | |
| 
 | |
|         for (int i = 0; i < s->fft_size; i++)
 | |
|             clipping_delta[i] /= s->fft_size;
 | |
| 
 | |
|         peak = 0;
 | |
|         for (int i = 0; i < s->fft_size; i++)
 | |
|             peak = FFMAX(peak, FFABS((windowed_frame[i] + clipping_delta[i]) * s->inv_window[i]));
 | |
|         peak *= clip_level_inv;
 | |
| 
 | |
|         // Automatically adjust mask_curve as necessary to reach peak target
 | |
|         if (orig_peak > 1.f && peak > 1.f) {
 | |
|             float diff_achieved = orig_peak - peak;
 | |
|             if (i + 1 < s->iterations - s->iterations / 3 && diff_achieved > 0) {
 | |
|                 float diff_needed = orig_peak - 1.f;
 | |
|                 float diff_ratio = diff_needed / diff_achieved;
 | |
|                 // If a good amount of peak reduction was already achieved,
 | |
|                 // don't shift the mask_curve by the full peak value
 | |
|                 // On the other hand, if only a little peak reduction was achieved,
 | |
|                 // don't shift the mask_curve by the enormous diff_ratio.
 | |
|                 diff_ratio = FFMIN(diff_ratio, peak);
 | |
|                 mask_curve_shift = FFMAX(mask_curve_shift, diff_ratio);
 | |
|             } else {
 | |
|                 // If the peak got higher than the input or we are in the last 1/3 rounds,
 | |
|                 // go back to the heavy-handed peak heuristic.
 | |
|                 mask_curve_shift = FFMAX(mask_curve_shift, peak);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         mask_curve_shift = 1.f + (mask_curve_shift - 1.f) * s->adaptive;
 | |
| 
 | |
|         // Be less strict in the next iteration.
 | |
|         // This helps with peak control.
 | |
|         for (int i = 0; i < s->fft_size / 2 + 1; i++)
 | |
|             mask_curve[i] *= mask_curve_shift;
 | |
|     }
 | |
| 
 | |
|     // do overlap & add
 | |
|     apply_window(s, clipping_delta, out_dist_frame, 1);
 | |
| 
 | |
|     for (int i = 0; i < s->overlap; i++) {
 | |
|         // 4 times overlap with squared hanning window results in 1.5 time increase in amplitude
 | |
|         if (!ctx->is_disabled) {
 | |
|             out_samples[i] = out_dist_frame[i] / 1.5f;
 | |
|             if (!diff_only)
 | |
|                 out_samples[i] += in_frame[i];
 | |
|             if (s->auto_level)
 | |
|                 out_samples[i] *= clip_level_inv;
 | |
|             out_samples[i] *= level_out;
 | |
|         } else {
 | |
|             out_samples[i] = in_frame[i];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int psy_channel(AVFilterContext *ctx, AVFrame *in, AVFrame *out, int ch)
 | |
| {
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
|     const float *src = (const float *)in->extended_data[ch];
 | |
|     float *in_buffer = (float *)s->in_buffer->extended_data[ch];
 | |
|     float *dst = (float *)out->extended_data[ch];
 | |
| 
 | |
|     for (int n = 0; n < s->overlap; n++)
 | |
|         in_buffer[n] = src[n] * s->level_in;
 | |
| 
 | |
|     feed(ctx, ch, in_buffer, dst, s->diff_only,
 | |
|          (float *)(s->in_frame->extended_data[ch]),
 | |
|          (float *)(s->out_dist_frame->extended_data[ch]),
 | |
|          (float *)(s->windowed_frame->extended_data[ch]),
 | |
|          (float *)(s->clipping_delta->extended_data[ch]),
 | |
|          (float *)(s->spectrum_buf->extended_data[ch]),
 | |
|          (float *)(s->mask_curve->extended_data[ch]));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int psy_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
|     AVFrame *out = arg;
 | |
|     const int start = (out->channels * jobnr) / nb_jobs;
 | |
|     const int end = (out->channels * (jobnr+1)) / nb_jobs;
 | |
| 
 | |
|     for (int ch = start; ch < end; ch++)
 | |
|         psy_channel(ctx, s->in, out, ch);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
|     AVFrame *out;
 | |
|     int ret;
 | |
| 
 | |
|     out = ff_get_audio_buffer(outlink, s->overlap);
 | |
|     if (!out) {
 | |
|         ret = AVERROR(ENOMEM);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     s->in = in;
 | |
|     ff_filter_execute(ctx, psy_channels, out, NULL,
 | |
|                       FFMIN(outlink->channels, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     out->pts = in->pts;
 | |
|     out->nb_samples = in->nb_samples;
 | |
|     ret = ff_filter_frame(outlink, out);
 | |
| fail:
 | |
|     av_frame_free(&in);
 | |
|     s->in = NULL;
 | |
|     return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static int activate(AVFilterContext *ctx)
 | |
| {
 | |
|     AVFilterLink *inlink = ctx->inputs[0];
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
|     AVFrame *in = NULL;
 | |
|     int ret = 0, status;
 | |
|     int64_t pts;
 | |
| 
 | |
|     FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
 | |
| 
 | |
|     ret = ff_inlink_consume_samples(inlink, s->overlap, s->overlap, &in);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (ret > 0) {
 | |
|         return filter_frame(inlink, in);
 | |
|     } else if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
 | |
|         ff_outlink_set_status(outlink, status, pts);
 | |
|         return 0;
 | |
|     } else {
 | |
|         if (ff_inlink_queued_samples(inlink) >= s->overlap) {
 | |
|             ff_filter_set_ready(ctx, 10);
 | |
|         } else if (ff_outlink_frame_wanted(outlink)) {
 | |
|             ff_inlink_request_frame(inlink);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     AudioPsyClipContext *s = ctx->priv;
 | |
| 
 | |
|     av_freep(&s->window);
 | |
|     av_freep(&s->inv_window);
 | |
|     av_freep(&s->spread_table);
 | |
|     av_freep(&s->spread_table_range);
 | |
|     av_freep(&s->spread_table_index);
 | |
|     av_freep(&s->margin_curve);
 | |
| 
 | |
|     av_frame_free(&s->in_buffer);
 | |
|     av_frame_free(&s->in_frame);
 | |
|     av_frame_free(&s->out_dist_frame);
 | |
|     av_frame_free(&s->windowed_frame);
 | |
|     av_frame_free(&s->clipping_delta);
 | |
|     av_frame_free(&s->spectrum_buf);
 | |
|     av_frame_free(&s->mask_curve);
 | |
| 
 | |
|     for (int ch = 0; ch < s->channels; ch++) {
 | |
|         if (s->tx_ctx)
 | |
|             av_tx_uninit(&s->tx_ctx[ch]);
 | |
|         if (s->itx_ctx)
 | |
|             av_tx_uninit(&s->itx_ctx[ch]);
 | |
|     }
 | |
| 
 | |
|     av_freep(&s->tx_ctx);
 | |
|     av_freep(&s->itx_ctx);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_AUDIO,
 | |
|         .config_props = config_input,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const AVFilterPad outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_AUDIO,
 | |
|     },
 | |
| };
 | |
| 
 | |
| const AVFilter ff_af_apsyclip = {
 | |
|     .name            = "apsyclip",
 | |
|     .description     = NULL_IF_CONFIG_SMALL("Audio Psychoacoustic Clipper."),
 | |
|     .priv_size       = sizeof(AudioPsyClipContext),
 | |
|     .priv_class      = &apsyclip_class,
 | |
|     .uninit          = uninit,
 | |
|     FILTER_INPUTS(inputs),
 | |
|     FILTER_OUTPUTS(outputs),
 | |
|     FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
 | |
|     .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
 | |
|                        AVFILTER_FLAG_SLICE_THREADS,
 | |
|     .activate        = activate,
 | |
|     .process_command = ff_filter_process_command,
 | |
| };
 | 
