mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			830 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			830 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion
 | |
|  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * H.264 / AVC / MPEG4 part10 motion vector predicion.
 | |
|  * @author Michael Niedermayer <michaelni@gmx.at>
 | |
|  */
 | |
| 
 | |
| #ifndef AVCODEC_H264_MVPRED_H
 | |
| #define AVCODEC_H264_MVPRED_H
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "avcodec.h"
 | |
| #include "h264.h"
 | |
| #include "libavutil/avassert.h"
 | |
| 
 | |
| 
 | |
| static av_always_inline int fetch_diagonal_mv(H264Context *h, const int16_t **C,
 | |
|                                               int i, int list, int part_width)
 | |
| {
 | |
|     const int topright_ref = h->ref_cache[list][i - 8 + part_width];
 | |
| 
 | |
|     /* there is no consistent mapping of mvs to neighboring locations that will
 | |
|      * make mbaff happy, so we can't move all this logic to fill_caches */
 | |
|     if (FRAME_MBAFF(h)) {
 | |
| #define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4)                              \
 | |
|         const int xy = XY, y4 = Y4;                                     \
 | |
|         const int mb_type = mb_types[xy + (y4 >> 2) * h->mb_stride];    \
 | |
|         if (!USES_LIST(mb_type, list))                                  \
 | |
|             return LIST_NOT_USED;                                       \
 | |
|         mv = h->cur_pic_ptr->motion_val[list][h->mb2b_xy[xy] + 3 + y4 * h->b_stride]; \
 | |
|         h->mv_cache[list][scan8[0] - 2][0] = mv[0];                     \
 | |
|         h->mv_cache[list][scan8[0] - 2][1] = mv[1] MV_OP;               \
 | |
|         return h->cur_pic_ptr->ref_index[list][4 * xy + 1 + (y4 & ~1)] REF_OP;
 | |
| 
 | |
|         if (topright_ref == PART_NOT_AVAILABLE
 | |
|             && i >= scan8[0] + 8 && (i & 7) == 4
 | |
|             && h->ref_cache[list][scan8[0] - 1] != PART_NOT_AVAILABLE) {
 | |
|             const uint32_t *mb_types = h->cur_pic_ptr->mb_type;
 | |
|             const int16_t *mv;
 | |
|             AV_ZERO32(h->mv_cache[list][scan8[0] - 2]);
 | |
|             *C = h->mv_cache[list][scan8[0] - 2];
 | |
| 
 | |
|             if (!MB_FIELD(h) && IS_INTERLACED(h->left_type[0])) {
 | |
|                 SET_DIAG_MV(* 2, >> 1, h->left_mb_xy[0] + h->mb_stride,
 | |
|                             (h->mb_y & 1) * 2 + (i >> 5));
 | |
|             }
 | |
|             if (MB_FIELD(h) && !IS_INTERLACED(h->left_type[0])) {
 | |
|                 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
 | |
|                 SET_DIAG_MV(/ 2, << 1, h->left_mb_xy[i >= 36], ((i >> 2)) & 3);
 | |
|             }
 | |
|         }
 | |
| #undef SET_DIAG_MV
 | |
|     }
 | |
| 
 | |
|     if (topright_ref != PART_NOT_AVAILABLE) {
 | |
|         *C = h->mv_cache[list][i - 8 + part_width];
 | |
|         return topright_ref;
 | |
|     } else {
 | |
|         tprintf(h->avctx, "topright MV not available\n");
 | |
| 
 | |
|         *C = h->mv_cache[list][i - 8 - 1];
 | |
|         return h->ref_cache[list][i - 8 - 1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the predicted MV.
 | |
|  * @param n the block index
 | |
|  * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
 | |
|  * @param mx the x component of the predicted motion vector
 | |
|  * @param my the y component of the predicted motion vector
 | |
|  */
 | |
| static av_always_inline void pred_motion(H264Context *const h, int n,
 | |
|                                          int part_width, int list, int ref,
 | |
|                                          int *const mx, int *const my)
 | |
| {
 | |
|     const int index8       = scan8[n];
 | |
|     const int top_ref      = h->ref_cache[list][index8 - 8];
 | |
|     const int left_ref     = h->ref_cache[list][index8 - 1];
 | |
|     const int16_t *const A = h->mv_cache[list][index8 - 1];
 | |
|     const int16_t *const B = h->mv_cache[list][index8 - 8];
 | |
|     const int16_t *C;
 | |
|     int diagonal_ref, match_count;
 | |
| 
 | |
|     av_assert2(part_width == 1 || part_width == 2 || part_width == 4);
 | |
| 
 | |
| /* mv_cache
 | |
|  * B . . A T T T T
 | |
|  * U . . L . . , .
 | |
|  * U . . L . . . .
 | |
|  * U . . L . . , .
 | |
|  * . . . L . . . .
 | |
|  */
 | |
| 
 | |
|     diagonal_ref = fetch_diagonal_mv(h, &C, index8, list, part_width);
 | |
|     match_count  = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
 | |
|     tprintf(h->avctx, "pred_motion match_count=%d\n", match_count);
 | |
|     if (match_count > 1) { //most common
 | |
|         *mx = mid_pred(A[0], B[0], C[0]);
 | |
|         *my = mid_pred(A[1], B[1], C[1]);
 | |
|     } else if (match_count == 1) {
 | |
|         if (left_ref == ref) {
 | |
|             *mx = A[0];
 | |
|             *my = A[1];
 | |
|         } else if (top_ref == ref) {
 | |
|             *mx = B[0];
 | |
|             *my = B[1];
 | |
|         } else {
 | |
|             *mx = C[0];
 | |
|             *my = C[1];
 | |
|         }
 | |
|     } else {
 | |
|         if (top_ref      == PART_NOT_AVAILABLE &&
 | |
|             diagonal_ref == PART_NOT_AVAILABLE &&
 | |
|             left_ref     != PART_NOT_AVAILABLE) {
 | |
|             *mx = A[0];
 | |
|             *my = A[1];
 | |
|         } else {
 | |
|             *mx = mid_pred(A[0], B[0], C[0]);
 | |
|             *my = mid_pred(A[1], B[1], C[1]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tprintf(h->avctx,
 | |
|             "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n",
 | |
|             top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref,
 | |
|             A[0], A[1], ref, *mx, *my, h->mb_x, h->mb_y, n, list);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the directionally predicted 16x8 MV.
 | |
|  * @param n the block index
 | |
|  * @param mx the x component of the predicted motion vector
 | |
|  * @param my the y component of the predicted motion vector
 | |
|  */
 | |
| static av_always_inline void pred_16x8_motion(H264Context *const h,
 | |
|                                               int n, int list, int ref,
 | |
|                                               int *const mx, int *const my)
 | |
| {
 | |
|     if (n == 0) {
 | |
|         const int top_ref      = h->ref_cache[list][scan8[0] - 8];
 | |
|         const int16_t *const B = h->mv_cache[list][scan8[0] - 8];
 | |
| 
 | |
|         tprintf(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
 | |
|                 top_ref, B[0], B[1], h->mb_x, h->mb_y, n, list);
 | |
| 
 | |
|         if (top_ref == ref) {
 | |
|             *mx = B[0];
 | |
|             *my = B[1];
 | |
|             return;
 | |
|         }
 | |
|     } else {
 | |
|         const int left_ref     = h->ref_cache[list][scan8[8] - 1];
 | |
|         const int16_t *const A = h->mv_cache[list][scan8[8] - 1];
 | |
| 
 | |
|         tprintf(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
 | |
|                 left_ref, A[0], A[1], h->mb_x, h->mb_y, n, list);
 | |
| 
 | |
|         if (left_ref == ref) {
 | |
|             *mx = A[0];
 | |
|             *my = A[1];
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //RARE
 | |
|     pred_motion(h, n, 4, list, ref, mx, my);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the directionally predicted 8x16 MV.
 | |
|  * @param n the block index
 | |
|  * @param mx the x component of the predicted motion vector
 | |
|  * @param my the y component of the predicted motion vector
 | |
|  */
 | |
| static av_always_inline void pred_8x16_motion(H264Context *const h,
 | |
|                                               int n, int list, int ref,
 | |
|                                               int *const mx, int *const my)
 | |
| {
 | |
|     if (n == 0) {
 | |
|         const int left_ref     = h->ref_cache[list][scan8[0] - 1];
 | |
|         const int16_t *const A = h->mv_cache[list][scan8[0] - 1];
 | |
| 
 | |
|         tprintf(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
 | |
|                 left_ref, A[0], A[1], h->mb_x, h->mb_y, n, list);
 | |
| 
 | |
|         if (left_ref == ref) {
 | |
|             *mx = A[0];
 | |
|             *my = A[1];
 | |
|             return;
 | |
|         }
 | |
|     } else {
 | |
|         const int16_t *C;
 | |
|         int diagonal_ref;
 | |
| 
 | |
|         diagonal_ref = fetch_diagonal_mv(h, &C, scan8[4], list, 2);
 | |
| 
 | |
|         tprintf(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
 | |
|                 diagonal_ref, C[0], C[1], h->mb_x, h->mb_y, n, list);
 | |
| 
 | |
|         if (diagonal_ref == ref) {
 | |
|             *mx = C[0];
 | |
|             *my = C[1];
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //RARE
 | |
|     pred_motion(h, n, 2, list, ref, mx, my);
 | |
| }
 | |
| 
 | |
| #define FIX_MV_MBAFF(type, refn, mvn, idx)      \
 | |
|     if (FRAME_MBAFF(h)) {                       \
 | |
|         if (MB_FIELD(h)) {                      \
 | |
|             if (!IS_INTERLACED(type)) {         \
 | |
|                 refn <<= 1;                     \
 | |
|                 AV_COPY32(mvbuf[idx], mvn);     \
 | |
|                 mvbuf[idx][1] /= 2;             \
 | |
|                 mvn = mvbuf[idx];               \
 | |
|             }                                   \
 | |
|         } else {                                \
 | |
|             if (IS_INTERLACED(type)) {          \
 | |
|                 refn >>= 1;                     \
 | |
|                 AV_COPY32(mvbuf[idx], mvn);     \
 | |
|                 mvbuf[idx][1] <<= 1;            \
 | |
|                 mvn = mvbuf[idx];               \
 | |
|             }                                   \
 | |
|         }                                       \
 | |
|     }
 | |
| 
 | |
| static av_always_inline void pred_pskip_motion(H264Context *const h)
 | |
| {
 | |
|     DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = { 0 };
 | |
|     DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2];
 | |
|     int8_t *ref     = h->cur_pic.ref_index[0];
 | |
|     int16_t(*mv)[2] = h->cur_pic.motion_val[0];
 | |
|     int top_ref, left_ref, diagonal_ref, match_count, mx, my;
 | |
|     const int16_t *A, *B, *C;
 | |
|     int b_stride = h->b_stride;
 | |
| 
 | |
|     fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
 | |
| 
 | |
|     /* To avoid doing an entire fill_decode_caches, we inline the relevant
 | |
|      * parts here.
 | |
|      * FIXME: this is a partial duplicate of the logic in fill_decode_caches,
 | |
|      * but it's faster this way.  Is there a way to avoid this duplication?
 | |
|      */
 | |
|     if (USES_LIST(h->left_type[LTOP], 0)) {
 | |
|         left_ref = ref[4 * h->left_mb_xy[LTOP] + 1 + (h->left_block[0] & ~1)];
 | |
|         A = mv[h->mb2b_xy[h->left_mb_xy[LTOP]] + 3 + b_stride * h->left_block[0]];
 | |
|         FIX_MV_MBAFF(h->left_type[LTOP], left_ref, A, 0);
 | |
|         if (!(left_ref | AV_RN32A(A)))
 | |
|             goto zeromv;
 | |
|     } else if (h->left_type[LTOP]) {
 | |
|         left_ref = LIST_NOT_USED;
 | |
|         A        = zeromv;
 | |
|     } else {
 | |
|         goto zeromv;
 | |
|     }
 | |
| 
 | |
|     if (USES_LIST(h->top_type, 0)) {
 | |
|         top_ref = ref[4 * h->top_mb_xy + 2];
 | |
|         B       = mv[h->mb2b_xy[h->top_mb_xy] + 3 * b_stride];
 | |
|         FIX_MV_MBAFF(h->top_type, top_ref, B, 1);
 | |
|         if (!(top_ref | AV_RN32A(B)))
 | |
|             goto zeromv;
 | |
|     } else if (h->top_type) {
 | |
|         top_ref = LIST_NOT_USED;
 | |
|         B       = zeromv;
 | |
|     } else {
 | |
|         goto zeromv;
 | |
|     }
 | |
| 
 | |
|     tprintf(h->avctx, "pred_pskip: (%d) (%d) at %2d %2d\n",
 | |
|             top_ref, left_ref, h->mb_x, h->mb_y);
 | |
| 
 | |
|     if (USES_LIST(h->topright_type, 0)) {
 | |
|         diagonal_ref = ref[4 * h->topright_mb_xy + 2];
 | |
|         C = mv[h->mb2b_xy[h->topright_mb_xy] + 3 * b_stride];
 | |
|         FIX_MV_MBAFF(h->topright_type, diagonal_ref, C, 2);
 | |
|     } else if (h->topright_type) {
 | |
|         diagonal_ref = LIST_NOT_USED;
 | |
|         C = zeromv;
 | |
|     } else {
 | |
|         if (USES_LIST(h->topleft_type, 0)) {
 | |
|             diagonal_ref = ref[4 * h->topleft_mb_xy + 1 +
 | |
|                                (h->topleft_partition & 2)];
 | |
|             C = mv[h->mb2b_xy[h->topleft_mb_xy] + 3 + b_stride +
 | |
|                    (h->topleft_partition & 2 * b_stride)];
 | |
|             FIX_MV_MBAFF(h->topleft_type, diagonal_ref, C, 2);
 | |
|         } else if (h->topleft_type) {
 | |
|             diagonal_ref = LIST_NOT_USED;
 | |
|             C            = zeromv;
 | |
|         } else {
 | |
|             diagonal_ref = PART_NOT_AVAILABLE;
 | |
|             C            = zeromv;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     match_count = !diagonal_ref + !top_ref + !left_ref;
 | |
|     tprintf(h->avctx, "pred_pskip_motion match_count=%d\n", match_count);
 | |
|     if (match_count > 1) {
 | |
|         mx = mid_pred(A[0], B[0], C[0]);
 | |
|         my = mid_pred(A[1], B[1], C[1]);
 | |
|     } else if (match_count == 1) {
 | |
|         if (!left_ref) {
 | |
|             mx = A[0];
 | |
|             my = A[1];
 | |
|         } else if (!top_ref) {
 | |
|             mx = B[0];
 | |
|             my = B[1];
 | |
|         } else {
 | |
|             mx = C[0];
 | |
|             my = C[1];
 | |
|         }
 | |
|     } else {
 | |
|         mx = mid_pred(A[0], B[0], C[0]);
 | |
|         my = mid_pred(A[1], B[1], C[1]);
 | |
|     }
 | |
| 
 | |
|     fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx, my), 4);
 | |
|     return;
 | |
| 
 | |
| zeromv:
 | |
|     fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void fill_decode_neighbors(H264Context *h, int mb_type)
 | |
| {
 | |
|     const int mb_xy = h->mb_xy;
 | |
|     int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
 | |
|     static const uint8_t left_block_options[4][32] = {
 | |
|         { 0, 1, 2, 3, 7, 10, 8, 11, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 5 * 4, 1 + 9 * 4 },
 | |
|         { 2, 2, 3, 3, 8, 11, 8, 11, 3 + 2 * 4, 3 + 2 * 4, 3 + 3 * 4, 3 + 3 * 4, 1 + 5 * 4, 1 + 9 * 4, 1 + 5 * 4, 1 + 9 * 4 },
 | |
|         { 0, 0, 1, 1, 7, 10, 7, 10, 3 + 0 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 1 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 },
 | |
|         { 0, 2, 0, 2, 7, 10, 7, 10, 3 + 0 * 4, 3 + 2 * 4, 3 + 0 * 4, 3 + 2 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 }
 | |
|     };
 | |
| 
 | |
|     h->topleft_partition = -1;
 | |
| 
 | |
|     top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
 | |
| 
 | |
|     /* Wow, what a mess, why didn't they simplify the interlacing & intra
 | |
|      * stuff, I can't imagine that these complex rules are worth it. */
 | |
| 
 | |
|     topleft_xy    = top_xy - 1;
 | |
|     topright_xy   = top_xy + 1;
 | |
|     left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
 | |
|     h->left_block = left_block_options[0];
 | |
|     if (FRAME_MBAFF(h)) {
 | |
|         const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
 | |
|         const int curr_mb_field_flag = IS_INTERLACED(mb_type);
 | |
|         if (h->mb_y & 1) {
 | |
|             if (left_mb_field_flag != curr_mb_field_flag) {
 | |
|                 left_xy[LBOT] = left_xy[LTOP] = mb_xy - h->mb_stride - 1;
 | |
|                 if (curr_mb_field_flag) {
 | |
|                     left_xy[LBOT] += h->mb_stride;
 | |
|                     h->left_block  = left_block_options[3];
 | |
|                 } else {
 | |
|                     topleft_xy += h->mb_stride;
 | |
|                     /* take top left mv from the middle of the mb, as opposed
 | |
|                      * to all other modes which use the bottom right partition */
 | |
|                     h->topleft_partition = 0;
 | |
|                     h->left_block        = left_block_options[1];
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if (curr_mb_field_flag) {
 | |
|                 topleft_xy  += h->mb_stride & (((h->cur_pic.mb_type[top_xy - 1] >> 7) & 1) - 1);
 | |
|                 topright_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy + 1] >> 7) & 1) - 1);
 | |
|                 top_xy      += h->mb_stride & (((h->cur_pic.mb_type[top_xy]     >> 7) & 1) - 1);
 | |
|             }
 | |
|             if (left_mb_field_flag != curr_mb_field_flag) {
 | |
|                 if (curr_mb_field_flag) {
 | |
|                     left_xy[LBOT] += h->mb_stride;
 | |
|                     h->left_block  = left_block_options[3];
 | |
|                 } else {
 | |
|                     h->left_block = left_block_options[2];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     h->topleft_mb_xy    = topleft_xy;
 | |
|     h->top_mb_xy        = top_xy;
 | |
|     h->topright_mb_xy   = topright_xy;
 | |
|     h->left_mb_xy[LTOP] = left_xy[LTOP];
 | |
|     h->left_mb_xy[LBOT] = left_xy[LBOT];
 | |
|     //FIXME do we need all in the context?
 | |
| 
 | |
|     h->topleft_type    = h->cur_pic.mb_type[topleft_xy];
 | |
|     h->top_type        = h->cur_pic.mb_type[top_xy];
 | |
|     h->topright_type   = h->cur_pic.mb_type[topright_xy];
 | |
|     h->left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
 | |
|     h->left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
 | |
| 
 | |
|     if (FMO) {
 | |
|         if (h->slice_table[topleft_xy] != h->slice_num)
 | |
|             h->topleft_type = 0;
 | |
|         if (h->slice_table[top_xy] != h->slice_num)
 | |
|             h->top_type = 0;
 | |
|         if (h->slice_table[left_xy[LTOP]] != h->slice_num)
 | |
|             h->left_type[LTOP] = h->left_type[LBOT] = 0;
 | |
|     } else {
 | |
|         if (h->slice_table[topleft_xy] != h->slice_num) {
 | |
|             h->topleft_type = 0;
 | |
|             if (h->slice_table[top_xy] != h->slice_num)
 | |
|                 h->top_type = 0;
 | |
|             if (h->slice_table[left_xy[LTOP]] != h->slice_num)
 | |
|                 h->left_type[LTOP] = h->left_type[LBOT] = 0;
 | |
|         }
 | |
|     }
 | |
|     if (h->slice_table[topright_xy] != h->slice_num)
 | |
|         h->topright_type = 0;
 | |
| }
 | |
| 
 | |
| static void fill_decode_caches(H264Context *h, int mb_type)
 | |
| {
 | |
|     int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
 | |
|     int topleft_type, top_type, topright_type, left_type[LEFT_MBS];
 | |
|     const uint8_t *left_block = h->left_block;
 | |
|     int i;
 | |
|     uint8_t *nnz;
 | |
|     uint8_t *nnz_cache;
 | |
| 
 | |
|     topleft_xy      = h->topleft_mb_xy;
 | |
|     top_xy          = h->top_mb_xy;
 | |
|     topright_xy     = h->topright_mb_xy;
 | |
|     left_xy[LTOP]   = h->left_mb_xy[LTOP];
 | |
|     left_xy[LBOT]   = h->left_mb_xy[LBOT];
 | |
|     topleft_type    = h->topleft_type;
 | |
|     top_type        = h->top_type;
 | |
|     topright_type   = h->topright_type;
 | |
|     left_type[LTOP] = h->left_type[LTOP];
 | |
|     left_type[LBOT] = h->left_type[LBOT];
 | |
| 
 | |
|     if (!IS_SKIP(mb_type)) {
 | |
|         if (IS_INTRA(mb_type)) {
 | |
|             int type_mask = h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
 | |
|             h->topleft_samples_available      =
 | |
|                 h->top_samples_available      =
 | |
|                     h->left_samples_available = 0xFFFF;
 | |
|             h->topright_samples_available     = 0xEEEA;
 | |
| 
 | |
|             if (!(top_type & type_mask)) {
 | |
|                 h->topleft_samples_available  = 0xB3FF;
 | |
|                 h->top_samples_available      = 0x33FF;
 | |
|                 h->topright_samples_available = 0x26EA;
 | |
|             }
 | |
|             if (IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])) {
 | |
|                 if (IS_INTERLACED(mb_type)) {
 | |
|                     if (!(left_type[LTOP] & type_mask)) {
 | |
|                         h->topleft_samples_available &= 0xDFFF;
 | |
|                         h->left_samples_available    &= 0x5FFF;
 | |
|                     }
 | |
|                     if (!(left_type[LBOT] & type_mask)) {
 | |
|                         h->topleft_samples_available &= 0xFF5F;
 | |
|                         h->left_samples_available    &= 0xFF5F;
 | |
|                     }
 | |
|                 } else {
 | |
|                     int left_typei = h->cur_pic.mb_type[left_xy[LTOP] + h->mb_stride];
 | |
| 
 | |
|                     av_assert2(left_xy[LTOP] == left_xy[LBOT]);
 | |
|                     if (!((left_typei & type_mask) && (left_type[LTOP] & type_mask))) {
 | |
|                         h->topleft_samples_available &= 0xDF5F;
 | |
|                         h->left_samples_available    &= 0x5F5F;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 if (!(left_type[LTOP] & type_mask)) {
 | |
|                     h->topleft_samples_available &= 0xDF5F;
 | |
|                     h->left_samples_available    &= 0x5F5F;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!(topleft_type & type_mask))
 | |
|                 h->topleft_samples_available &= 0x7FFF;
 | |
| 
 | |
|             if (!(topright_type & type_mask))
 | |
|                 h->topright_samples_available &= 0xFBFF;
 | |
| 
 | |
|             if (IS_INTRA4x4(mb_type)) {
 | |
|                 if (IS_INTRA4x4(top_type)) {
 | |
|                     AV_COPY32(h->intra4x4_pred_mode_cache + 4 + 8 * 0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
 | |
|                 } else {
 | |
|                     h->intra4x4_pred_mode_cache[4 + 8 * 0] =
 | |
|                     h->intra4x4_pred_mode_cache[5 + 8 * 0] =
 | |
|                     h->intra4x4_pred_mode_cache[6 + 8 * 0] =
 | |
|                     h->intra4x4_pred_mode_cache[7 + 8 * 0] = 2 - 3 * !(top_type & type_mask);
 | |
|                 }
 | |
|                 for (i = 0; i < 2; i++) {
 | |
|                     if (IS_INTRA4x4(left_type[LEFT(i)])) {
 | |
|                         int8_t *mode = h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]];
 | |
|                         h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = mode[6 - left_block[0 + 2 * i]];
 | |
|                         h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = mode[6 - left_block[1 + 2 * i]];
 | |
|                     } else {
 | |
|                         h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] =
 | |
|                         h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = 2 - 3 * !(left_type[LEFT(i)] & type_mask);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * 0 . T T. T T T T
 | |
|          * 1 L . .L . . . .
 | |
|          * 2 L . .L . . . .
 | |
|          * 3 . T TL . . . .
 | |
|          * 4 L . .L . . . .
 | |
|          * 5 L . .. . . . .
 | |
|          */
 | |
|         /* FIXME: constraint_intra_pred & partitioning & nnz
 | |
|          * (let us hope this is just a typo in the spec) */
 | |
|         nnz_cache = h->non_zero_count_cache;
 | |
|         if (top_type) {
 | |
|             nnz = h->non_zero_count[top_xy];
 | |
|             AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[4 * 3]);
 | |
|             if (!h->chroma_y_shift) {
 | |
|                 AV_COPY32(&nnz_cache[4 + 8 *  5], &nnz[4 *  7]);
 | |
|                 AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 11]);
 | |
|             } else {
 | |
|                 AV_COPY32(&nnz_cache[4 + 8 *  5], &nnz[4 * 5]);
 | |
|                 AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 9]);
 | |
|             }
 | |
|         } else {
 | |
|             uint32_t top_empty = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 0x40404040;
 | |
|             AV_WN32A(&nnz_cache[4 + 8 *  0], top_empty);
 | |
|             AV_WN32A(&nnz_cache[4 + 8 *  5], top_empty);
 | |
|             AV_WN32A(&nnz_cache[4 + 8 * 10], top_empty);
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 2; i++) {
 | |
|             if (left_type[LEFT(i)]) {
 | |
|                 nnz = h->non_zero_count[left_xy[LEFT(i)]];
 | |
|                 nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i]];
 | |
|                 nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i]];
 | |
|                 if (CHROMA444(h)) {
 | |
|                     nnz_cache[3 + 8 *  6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 4 * 4];
 | |
|                     nnz_cache[3 + 8 *  7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 4 * 4];
 | |
|                     nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 8 * 4];
 | |
|                     nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 8 * 4];
 | |
|                 } else if (CHROMA422(h)) {
 | |
|                     nnz_cache[3 + 8 *  6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 4 * 4];
 | |
|                     nnz_cache[3 + 8 *  7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 4 * 4];
 | |
|                     nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 8 * 4];
 | |
|                     nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 8 * 4];
 | |
|                 } else {
 | |
|                     nnz_cache[3 + 8 *  6 + 8 * i] = nnz[left_block[8 + 4 + 2 * i]];
 | |
|                     nnz_cache[3 + 8 * 11 + 8 * i] = nnz[left_block[8 + 5 + 2 * i]];
 | |
|                 }
 | |
|             } else {
 | |
|                 nnz_cache[3 + 8 *  1 + 2 * 8 * i] =
 | |
|                 nnz_cache[3 + 8 *  2 + 2 * 8 * i] =
 | |
|                 nnz_cache[3 + 8 *  6 + 2 * 8 * i] =
 | |
|                 nnz_cache[3 + 8 *  7 + 2 * 8 * i] =
 | |
|                 nnz_cache[3 + 8 * 11 + 2 * 8 * i] =
 | |
|                 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 64;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (CABAC(h)) {
 | |
|             // top_cbp
 | |
|             if (top_type)
 | |
|                 h->top_cbp = h->cbp_table[top_xy];
 | |
|             else
 | |
|                 h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
 | |
|             // left_cbp
 | |
|             if (left_type[LTOP]) {
 | |
|                 h->left_cbp =   (h->cbp_table[left_xy[LTOP]] & 0x7F0) |
 | |
|                                ((h->cbp_table[left_xy[LTOP]] >> (left_block[0] & (~1))) & 2) |
 | |
|                               (((h->cbp_table[left_xy[LBOT]] >> (left_block[2] & (~1))) & 2) << 2);
 | |
|             } else {
 | |
|                 h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)) {
 | |
|         int list;
 | |
|         int b_stride = h->b_stride;
 | |
|         for (list = 0; list < h->list_count; list++) {
 | |
|             int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
 | |
|             int8_t *ref       = h->cur_pic.ref_index[list];
 | |
|             int16_t(*mv_cache)[2] = &h->mv_cache[list][scan8[0]];
 | |
|             int16_t(*mv)[2]       = h->cur_pic.motion_val[list];
 | |
|             if (!USES_LIST(mb_type, list))
 | |
|                 continue;
 | |
|             av_assert2(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
 | |
| 
 | |
|             if (USES_LIST(top_type, list)) {
 | |
|                 const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
 | |
|                 AV_COPY128(mv_cache[0 - 1 * 8], mv[b_xy + 0]);
 | |
|                 ref_cache[0 - 1 * 8] =
 | |
|                 ref_cache[1 - 1 * 8] = ref[4 * top_xy + 2];
 | |
|                 ref_cache[2 - 1 * 8] =
 | |
|                 ref_cache[3 - 1 * 8] = ref[4 * top_xy + 3];
 | |
|             } else {
 | |
|                 AV_ZERO128(mv_cache[0 - 1 * 8]);
 | |
|                 AV_WN32A(&ref_cache[0 - 1 * 8],
 | |
|                          ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE) & 0xFF) * 0x01010101u);
 | |
|             }
 | |
| 
 | |
|             if (mb_type & (MB_TYPE_16x8 | MB_TYPE_8x8)) {
 | |
|                 for (i = 0; i < 2; i++) {
 | |
|                     int cache_idx = -1 + i * 2 * 8;
 | |
|                     if (USES_LIST(left_type[LEFT(i)], list)) {
 | |
|                         const int b_xy  = h->mb2b_xy[left_xy[LEFT(i)]] + 3;
 | |
|                         const int b8_xy = 4 * left_xy[LEFT(i)] + 1;
 | |
|                         AV_COPY32(mv_cache[cache_idx],
 | |
|                                   mv[b_xy + b_stride * left_block[0 + i * 2]]);
 | |
|                         AV_COPY32(mv_cache[cache_idx + 8],
 | |
|                                   mv[b_xy + b_stride * left_block[1 + i * 2]]);
 | |
|                         ref_cache[cache_idx]     = ref[b8_xy + (left_block[0 + i * 2] & ~1)];
 | |
|                         ref_cache[cache_idx + 8] = ref[b8_xy + (left_block[1 + i * 2] & ~1)];
 | |
|                     } else {
 | |
|                         AV_ZERO32(mv_cache[cache_idx]);
 | |
|                         AV_ZERO32(mv_cache[cache_idx + 8]);
 | |
|                         ref_cache[cache_idx]     =
 | |
|                         ref_cache[cache_idx + 8] = (left_type[LEFT(i)]) ? LIST_NOT_USED
 | |
|                                                                         : PART_NOT_AVAILABLE;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 if (USES_LIST(left_type[LTOP], list)) {
 | |
|                     const int b_xy  = h->mb2b_xy[left_xy[LTOP]] + 3;
 | |
|                     const int b8_xy = 4 * left_xy[LTOP] + 1;
 | |
|                     AV_COPY32(mv_cache[-1], mv[b_xy + b_stride * left_block[0]]);
 | |
|                     ref_cache[-1] = ref[b8_xy + (left_block[0] & ~1)];
 | |
|                 } else {
 | |
|                     AV_ZERO32(mv_cache[-1]);
 | |
|                     ref_cache[-1] = left_type[LTOP] ? LIST_NOT_USED
 | |
|                                                     : PART_NOT_AVAILABLE;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (USES_LIST(topright_type, list)) {
 | |
|                 const int b_xy = h->mb2b_xy[topright_xy] + 3 * b_stride;
 | |
|                 AV_COPY32(mv_cache[4 - 1 * 8], mv[b_xy]);
 | |
|                 ref_cache[4 - 1 * 8] = ref[4 * topright_xy + 2];
 | |
|             } else {
 | |
|                 AV_ZERO32(mv_cache[4 - 1 * 8]);
 | |
|                 ref_cache[4 - 1 * 8] = topright_type ? LIST_NOT_USED
 | |
|                                                      : PART_NOT_AVAILABLE;
 | |
|             }
 | |
|             if(ref_cache[2 - 1*8] < 0 || ref_cache[4 - 1 * 8] < 0) {
 | |
|                 if (USES_LIST(topleft_type, list)) {
 | |
|                     const int b_xy  = h->mb2b_xy[topleft_xy] + 3 + b_stride +
 | |
|                                       (h->topleft_partition & 2 * b_stride);
 | |
|                     const int b8_xy = 4 * topleft_xy + 1 + (h->topleft_partition & 2);
 | |
|                     AV_COPY32(mv_cache[-1 - 1 * 8], mv[b_xy]);
 | |
|                     ref_cache[-1 - 1 * 8] = ref[b8_xy];
 | |
|                 } else {
 | |
|                     AV_ZERO32(mv_cache[-1 - 1 * 8]);
 | |
|                     ref_cache[-1 - 1 * 8] = topleft_type ? LIST_NOT_USED
 | |
|                                                          : PART_NOT_AVAILABLE;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ((mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2)) && !FRAME_MBAFF(h))
 | |
|                 continue;
 | |
| 
 | |
|             if (!(mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2))) {
 | |
|                 uint8_t(*mvd_cache)[2]   = &h->mvd_cache[list][scan8[0]];
 | |
|                 uint8_t(*mvd)[2]         = h->mvd_table[list];
 | |
|                 ref_cache[2 + 8 * 0] =
 | |
|                 ref_cache[2 + 8 * 2] = PART_NOT_AVAILABLE;
 | |
|                 AV_ZERO32(mv_cache[2 + 8 * 0]);
 | |
|                 AV_ZERO32(mv_cache[2 + 8 * 2]);
 | |
| 
 | |
|                 if (CABAC(h)) {
 | |
|                     if (USES_LIST(top_type, list)) {
 | |
|                         const int b_xy = h->mb2br_xy[top_xy];
 | |
|                         AV_COPY64(mvd_cache[0 - 1 * 8], mvd[b_xy + 0]);
 | |
|                     } else {
 | |
|                         AV_ZERO64(mvd_cache[0 - 1 * 8]);
 | |
|                     }
 | |
|                     if (USES_LIST(left_type[LTOP], list)) {
 | |
|                         const int b_xy = h->mb2br_xy[left_xy[LTOP]] + 6;
 | |
|                         AV_COPY16(mvd_cache[-1 + 0 * 8], mvd[b_xy - left_block[0]]);
 | |
|                         AV_COPY16(mvd_cache[-1 + 1 * 8], mvd[b_xy - left_block[1]]);
 | |
|                     } else {
 | |
|                         AV_ZERO16(mvd_cache[-1 + 0 * 8]);
 | |
|                         AV_ZERO16(mvd_cache[-1 + 1 * 8]);
 | |
|                     }
 | |
|                     if (USES_LIST(left_type[LBOT], list)) {
 | |
|                         const int b_xy = h->mb2br_xy[left_xy[LBOT]] + 6;
 | |
|                         AV_COPY16(mvd_cache[-1 + 2 * 8], mvd[b_xy - left_block[2]]);
 | |
|                         AV_COPY16(mvd_cache[-1 + 3 * 8], mvd[b_xy - left_block[3]]);
 | |
|                     } else {
 | |
|                         AV_ZERO16(mvd_cache[-1 + 2 * 8]);
 | |
|                         AV_ZERO16(mvd_cache[-1 + 3 * 8]);
 | |
|                     }
 | |
|                     AV_ZERO16(mvd_cache[2 + 8 * 0]);
 | |
|                     AV_ZERO16(mvd_cache[2 + 8 * 2]);
 | |
|                     if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
 | |
|                         uint8_t *direct_cache = &h->direct_cache[scan8[0]];
 | |
|                         uint8_t *direct_table = h->direct_table;
 | |
|                         fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16 >> 1, 1);
 | |
| 
 | |
|                         if (IS_DIRECT(top_type)) {
 | |
|                             AV_WN32A(&direct_cache[-1 * 8],
 | |
|                                      0x01010101u * (MB_TYPE_DIRECT2 >> 1));
 | |
|                         } else if (IS_8X8(top_type)) {
 | |
|                             int b8_xy = 4 * top_xy;
 | |
|                             direct_cache[0 - 1 * 8] = direct_table[b8_xy + 2];
 | |
|                             direct_cache[2 - 1 * 8] = direct_table[b8_xy + 3];
 | |
|                         } else {
 | |
|                             AV_WN32A(&direct_cache[-1 * 8],
 | |
|                                      0x01010101 * (MB_TYPE_16x16 >> 1));
 | |
|                         }
 | |
| 
 | |
|                         if (IS_DIRECT(left_type[LTOP]))
 | |
|                             direct_cache[-1 + 0 * 8] = MB_TYPE_DIRECT2 >> 1;
 | |
|                         else if (IS_8X8(left_type[LTOP]))
 | |
|                             direct_cache[-1 + 0 * 8] = direct_table[4 * left_xy[LTOP] + 1 + (left_block[0] & ~1)];
 | |
|                         else
 | |
|                             direct_cache[-1 + 0 * 8] = MB_TYPE_16x16 >> 1;
 | |
| 
 | |
|                         if (IS_DIRECT(left_type[LBOT]))
 | |
|                             direct_cache[-1 + 2 * 8] = MB_TYPE_DIRECT2 >> 1;
 | |
|                         else if (IS_8X8(left_type[LBOT]))
 | |
|                             direct_cache[-1 + 2 * 8] = direct_table[4 * left_xy[LBOT] + 1 + (left_block[2] & ~1)];
 | |
|                         else
 | |
|                             direct_cache[-1 + 2 * 8] = MB_TYPE_16x16 >> 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
| #define MAP_MVS                                                         \
 | |
|     MAP_F2F(scan8[0] - 1 - 1 * 8, topleft_type)                         \
 | |
|     MAP_F2F(scan8[0] + 0 - 1 * 8, top_type)                             \
 | |
|     MAP_F2F(scan8[0] + 1 - 1 * 8, top_type)                             \
 | |
|     MAP_F2F(scan8[0] + 2 - 1 * 8, top_type)                             \
 | |
|     MAP_F2F(scan8[0] + 3 - 1 * 8, top_type)                             \
 | |
|     MAP_F2F(scan8[0] + 4 - 1 * 8, topright_type)                        \
 | |
|     MAP_F2F(scan8[0] - 1 + 0 * 8, left_type[LTOP])                      \
 | |
|     MAP_F2F(scan8[0] - 1 + 1 * 8, left_type[LTOP])                      \
 | |
|     MAP_F2F(scan8[0] - 1 + 2 * 8, left_type[LBOT])                      \
 | |
|     MAP_F2F(scan8[0] - 1 + 3 * 8, left_type[LBOT])
 | |
| 
 | |
|             if (FRAME_MBAFF(h)) {
 | |
|                 if (MB_FIELD(h)) {
 | |
| 
 | |
| #define MAP_F2F(idx, mb_type)                                           \
 | |
|     if (!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) {      \
 | |
|         h->ref_cache[list][idx]    <<= 1;                               \
 | |
|         h->mv_cache[list][idx][1]   /= 2;                               \
 | |
|         h->mvd_cache[list][idx][1] >>= 1;                               \
 | |
|     }
 | |
| 
 | |
|                     MAP_MVS
 | |
|                 } else {
 | |
| 
 | |
| #undef MAP_F2F
 | |
| #define MAP_F2F(idx, mb_type)                                           \
 | |
|     if (IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) {       \
 | |
|         h->ref_cache[list][idx]    >>= 1;                               \
 | |
|         h->mv_cache[list][idx][1]  <<= 1;                               \
 | |
|         h->mvd_cache[list][idx][1] <<= 1;                               \
 | |
|     }
 | |
| 
 | |
|                     MAP_MVS
 | |
| #undef MAP_F2F
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     h->neighbor_transform_size = !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * decodes a P_SKIP or B_SKIP macroblock
 | |
|  */
 | |
| static void av_unused decode_mb_skip(H264Context *h)
 | |
| {
 | |
|     const int mb_xy = h->mb_xy;
 | |
|     int mb_type     = 0;
 | |
| 
 | |
|     memset(h->non_zero_count[mb_xy], 0, 48);
 | |
| 
 | |
|     if (MB_FIELD(h))
 | |
|         mb_type |= MB_TYPE_INTERLACED;
 | |
| 
 | |
|     if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
 | |
|         // just for fill_caches. pred_direct_motion will set the real mb_type
 | |
|         mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | MB_TYPE_SKIP;
 | |
|         if (h->direct_spatial_mv_pred) {
 | |
|             fill_decode_neighbors(h, mb_type);
 | |
|             fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
 | |
|         }
 | |
|         ff_h264_pred_direct_motion(h, &mb_type);
 | |
|         mb_type |= MB_TYPE_SKIP;
 | |
|     } else {
 | |
|         mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P1L0 | MB_TYPE_SKIP;
 | |
| 
 | |
|         fill_decode_neighbors(h, mb_type);
 | |
|         pred_pskip_motion(h);
 | |
|     }
 | |
| 
 | |
|     write_back_motion(h, mb_type);
 | |
|     h->cur_pic.mb_type[mb_xy]      = mb_type;
 | |
|     h->cur_pic.qscale_table[mb_xy] = h->qscale;
 | |
|     h->slice_table[mb_xy]            = h->slice_num;
 | |
|     h->prev_mb_skipped               = 1;
 | |
| }
 | |
| 
 | |
| #endif /* AVCODEC_H264_MVPRED_H */
 | 
