mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-26 18:30:52 +08:00 
			
		
		
		
	 1be3d8a0cb
			
		
	
	1be3d8a0cb
	
	
	
		
			
			Also include channel_layout.h directly wherever used. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
		
			
				
	
	
		
			2448 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2448 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2016 foo86
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "dcaadpcm.h"
 | |
| #include "dcadec.h"
 | |
| #include "dcadata.h"
 | |
| #include "dcahuff.h"
 | |
| #include "dcamath.h"
 | |
| #include "dca_syncwords.h"
 | |
| 
 | |
| #if ARCH_ARM
 | |
| #include "arm/dca.h"
 | |
| #endif
 | |
| 
 | |
| enum HeaderType {
 | |
|     HEADER_CORE,
 | |
|     HEADER_XCH,
 | |
|     HEADER_XXCH
 | |
| };
 | |
| 
 | |
| static const int8_t prm_ch_to_spkr_map[DCA_AMODE_COUNT][5] = {
 | |
|     { DCA_SPEAKER_C,            -1,             -1,             -1,             -1 },
 | |
|     { DCA_SPEAKER_L, DCA_SPEAKER_R,             -1,             -1,             -1 },
 | |
|     { DCA_SPEAKER_L, DCA_SPEAKER_R,             -1,             -1,             -1 },
 | |
|     { DCA_SPEAKER_L, DCA_SPEAKER_R,             -1,             -1,             -1 },
 | |
|     { DCA_SPEAKER_L, DCA_SPEAKER_R,             -1,             -1,             -1 },
 | |
|     { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R ,             -1,             -1 },
 | |
|     { DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Cs,             -1,             -1 },
 | |
|     { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , DCA_SPEAKER_Cs,             -1 },
 | |
|     { DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs,             -1 },
 | |
|     { DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R,  DCA_SPEAKER_Ls, DCA_SPEAKER_Rs }
 | |
| };
 | |
| 
 | |
| static const uint8_t audio_mode_ch_mask[DCA_AMODE_COUNT] = {
 | |
|     DCA_SPEAKER_LAYOUT_MONO,
 | |
|     DCA_SPEAKER_LAYOUT_STEREO,
 | |
|     DCA_SPEAKER_LAYOUT_STEREO,
 | |
|     DCA_SPEAKER_LAYOUT_STEREO,
 | |
|     DCA_SPEAKER_LAYOUT_STEREO,
 | |
|     DCA_SPEAKER_LAYOUT_3_0,
 | |
|     DCA_SPEAKER_LAYOUT_2_1,
 | |
|     DCA_SPEAKER_LAYOUT_3_1,
 | |
|     DCA_SPEAKER_LAYOUT_2_2,
 | |
|     DCA_SPEAKER_LAYOUT_5POINT0
 | |
| };
 | |
| 
 | |
| static const uint8_t block_code_nbits[7] = {
 | |
|     7, 10, 12, 13, 15, 17, 19
 | |
| };
 | |
| 
 | |
| static int dca_get_vlc(GetBitContext *s, DCAVLC *v, int i)
 | |
| {
 | |
|     return get_vlc2(s, v->vlc[i].table, v->vlc[i].bits, v->max_depth) + v->offset;
 | |
| }
 | |
| 
 | |
| static void get_array(GetBitContext *s, int32_t *array, int size, int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < size; i++)
 | |
|         array[i] = get_sbits(s, n);
 | |
| }
 | |
| 
 | |
| // 5.3.1 - Bit stream header
 | |
| static int parse_frame_header(DCACoreDecoder *s)
 | |
| {
 | |
|     DCACoreFrameHeader h = { 0 };
 | |
|     int err = ff_dca_parse_core_frame_header(&h, &s->gb);
 | |
| 
 | |
|     if (err < 0) {
 | |
|         switch (err) {
 | |
|         case DCA_PARSE_ERROR_DEFICIT_SAMPLES:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Deficit samples are not supported\n");
 | |
|             return h.normal_frame ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_PCM_BLOCKS:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Unsupported number of PCM sample blocks (%d)\n", h.npcmblocks);
 | |
|             return (h.npcmblocks < 6 || h.normal_frame) ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_FRAME_SIZE:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid core frame size (%d bytes)\n", h.frame_size);
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_AMODE:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Unsupported audio channel arrangement (%d)\n", h.audio_mode);
 | |
|             return AVERROR_PATCHWELCOME;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_SAMPLE_RATE:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid core audio sampling frequency\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_RESERVED_BIT:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Reserved bit set\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_LFE_FLAG:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid low frequency effects flag\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         case DCA_PARSE_ERROR_PCM_RES:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid source PCM resolution\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         default:
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Unknown core frame header error\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->crc_present          = h.crc_present;
 | |
|     s->npcmblocks           = h.npcmblocks;
 | |
|     s->frame_size           = h.frame_size;
 | |
|     s->audio_mode           = h.audio_mode;
 | |
|     s->sample_rate          = avpriv_dca_sample_rates[h.sr_code];
 | |
|     s->bit_rate             = ff_dca_bit_rates[h.br_code];
 | |
|     s->drc_present          = h.drc_present;
 | |
|     s->ts_present           = h.ts_present;
 | |
|     s->aux_present          = h.aux_present;
 | |
|     s->ext_audio_type       = h.ext_audio_type;
 | |
|     s->ext_audio_present    = h.ext_audio_present;
 | |
|     s->sync_ssf             = h.sync_ssf;
 | |
|     s->lfe_present          = h.lfe_present;
 | |
|     s->predictor_history    = h.predictor_history;
 | |
|     s->filter_perfect       = h.filter_perfect;
 | |
|     s->source_pcm_res       = ff_dca_bits_per_sample[h.pcmr_code];
 | |
|     s->es_format            = h.pcmr_code & 1;
 | |
|     s->sumdiff_front        = h.sumdiff_front;
 | |
|     s->sumdiff_surround     = h.sumdiff_surround;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // 5.3.2 - Primary audio coding header
 | |
| static int parse_coding_header(DCACoreDecoder *s, enum HeaderType header, int xch_base)
 | |
| {
 | |
|     int n, ch, nchannels, header_size = 0, header_pos = get_bits_count(&s->gb);
 | |
|     unsigned int mask, index;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     switch (header) {
 | |
|     case HEADER_CORE:
 | |
|         // Number of subframes
 | |
|         s->nsubframes = get_bits(&s->gb, 4) + 1;
 | |
| 
 | |
|         // Number of primary audio channels
 | |
|         s->nchannels = get_bits(&s->gb, 3) + 1;
 | |
|         if (s->nchannels != ff_dca_channels[s->audio_mode]) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid number of primary audio channels (%d) for audio channel arrangement (%d)\n", s->nchannels, s->audio_mode);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         av_assert1(s->nchannels <= DCA_CHANNELS - 2);
 | |
| 
 | |
|         s->ch_mask = audio_mode_ch_mask[s->audio_mode];
 | |
| 
 | |
|         // Add LFE channel if present
 | |
|         if (s->lfe_present)
 | |
|             s->ch_mask |= DCA_SPEAKER_MASK_LFE1;
 | |
|         break;
 | |
| 
 | |
|     case HEADER_XCH:
 | |
|         s->nchannels = ff_dca_channels[s->audio_mode] + 1;
 | |
|         av_assert1(s->nchannels <= DCA_CHANNELS - 1);
 | |
|         s->ch_mask |= DCA_SPEAKER_MASK_Cs;
 | |
|         break;
 | |
| 
 | |
|     case HEADER_XXCH:
 | |
|         // Channel set header length
 | |
|         header_size = get_bits(&s->gb, 7) + 1;
 | |
| 
 | |
|         // Check CRC
 | |
|         if (s->xxch_crc_present
 | |
|             && ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH channel set header checksum\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Number of channels in a channel set
 | |
|         nchannels = get_bits(&s->gb, 3) + 1;
 | |
|         if (nchannels > DCA_XXCH_CHANNELS_MAX) {
 | |
|             avpriv_request_sample(s->avctx, "%d XXCH channels", nchannels);
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         s->nchannels = ff_dca_channels[s->audio_mode] + nchannels;
 | |
|         av_assert1(s->nchannels <= DCA_CHANNELS);
 | |
| 
 | |
|         // Loudspeaker layout mask
 | |
|         mask = get_bits_long(&s->gb, s->xxch_mask_nbits - DCA_SPEAKER_Cs);
 | |
|         s->xxch_spkr_mask = mask << DCA_SPEAKER_Cs;
 | |
| 
 | |
|         if (av_popcount(s->xxch_spkr_mask) != nchannels) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH speaker layout mask (%#x)\n", s->xxch_spkr_mask);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (s->xxch_core_mask & s->xxch_spkr_mask) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "XXCH speaker layout mask (%#x) overlaps with core (%#x)\n", s->xxch_spkr_mask, s->xxch_core_mask);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Combine core and XXCH masks together
 | |
|         s->ch_mask = s->xxch_core_mask | s->xxch_spkr_mask;
 | |
| 
 | |
|         // Downmix coefficients present in stream
 | |
|         if (get_bits1(&s->gb)) {
 | |
|             int *coeff_ptr = s->xxch_dmix_coeff;
 | |
| 
 | |
|             // Downmix already performed by encoder
 | |
|             s->xxch_dmix_embedded = get_bits1(&s->gb);
 | |
| 
 | |
|             // Downmix scale factor
 | |
|             index = get_bits(&s->gb, 6) * 4 - FF_DCA_DMIXTABLE_OFFSET - 3;
 | |
|             if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix scale index (%d)\n", index);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             s->xxch_dmix_scale_inv = ff_dca_inv_dmixtable[index];
 | |
| 
 | |
|             // Downmix channel mapping mask
 | |
|             for (ch = 0; ch < nchannels; ch++) {
 | |
|                 mask = get_bits_long(&s->gb, s->xxch_mask_nbits);
 | |
|                 if ((mask & s->xxch_core_mask) != mask) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix channel mapping mask (%#x)\n", mask);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 s->xxch_dmix_mask[ch] = mask;
 | |
|             }
 | |
| 
 | |
|             // Downmix coefficients
 | |
|             for (ch = 0; ch < nchannels; ch++) {
 | |
|                 for (n = 0; n < s->xxch_mask_nbits; n++) {
 | |
|                     if (s->xxch_dmix_mask[ch] & (1U << n)) {
 | |
|                         int code = get_bits(&s->gb, 7);
 | |
|                         int sign = (code >> 6) - 1;
 | |
|                         if (code &= 63) {
 | |
|                             index = code * 4 - 3;
 | |
|                             if (index >= FF_DCA_DMIXTABLE_SIZE) {
 | |
|                                 av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix coefficient index (%d)\n", index);
 | |
|                                 return AVERROR_INVALIDDATA;
 | |
|                             }
 | |
|                             *coeff_ptr++ = (ff_dca_dmixtable[index] ^ sign) - sign;
 | |
|                         } else {
 | |
|                             *coeff_ptr++ = 0;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             s->xxch_dmix_embedded = 0;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Subband activity count
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         s->nsubbands[ch] = get_bits(&s->gb, 5) + 2;
 | |
|         if (s->nsubbands[ch] > DCA_SUBBANDS) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid subband activity count\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // High frequency VQ start subband
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++)
 | |
|         s->subband_vq_start[ch] = get_bits(&s->gb, 5) + 1;
 | |
| 
 | |
|     // Joint intensity coding index
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         if ((n = get_bits(&s->gb, 3)) && header == HEADER_XXCH)
 | |
|             n += xch_base - 1;
 | |
|         if (n > s->nchannels) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid joint intensity coding index\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         s->joint_intensity_index[ch] = n;
 | |
|     }
 | |
| 
 | |
|     // Transient mode code book
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++)
 | |
|         s->transition_mode_sel[ch] = get_bits(&s->gb, 2);
 | |
| 
 | |
|     // Scale factor code book
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         s->scale_factor_sel[ch] = get_bits(&s->gb, 3);
 | |
|         if (s->scale_factor_sel[ch] == 7) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor code book\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Bit allocation quantizer select
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         s->bit_allocation_sel[ch] = get_bits(&s->gb, 3);
 | |
|         if (s->bit_allocation_sel[ch] == 7) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation quantizer select\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Quantization index codebook select
 | |
|     for (n = 0; n < DCA_CODE_BOOKS; n++)
 | |
|         for (ch = xch_base; ch < s->nchannels; ch++)
 | |
|             s->quant_index_sel[ch][n] = get_bits(&s->gb, ff_dca_quant_index_sel_nbits[n]);
 | |
| 
 | |
|     // Scale factor adjustment index
 | |
|     for (n = 0; n < DCA_CODE_BOOKS; n++)
 | |
|         for (ch = xch_base; ch < s->nchannels; ch++)
 | |
|             if (s->quant_index_sel[ch][n] < ff_dca_quant_index_group_size[n])
 | |
|                 s->scale_factor_adj[ch][n] = ff_dca_scale_factor_adj[get_bits(&s->gb, 2)];
 | |
| 
 | |
|     if (header == HEADER_XXCH) {
 | |
|         // Reserved
 | |
|         // Byte align
 | |
|         // CRC16 of channel set header
 | |
|         if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set header\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     } else {
 | |
|         // Audio header CRC check word
 | |
|         if (s->crc_present)
 | |
|             skip_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int parse_scale(DCACoreDecoder *s, int *scale_index, int sel)
 | |
| {
 | |
|     const uint32_t *scale_table;
 | |
|     unsigned int scale_size;
 | |
| 
 | |
|     // Select the root square table
 | |
|     if (sel > 5) {
 | |
|         scale_table = ff_dca_scale_factor_quant7;
 | |
|         scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7);
 | |
|     } else {
 | |
|         scale_table = ff_dca_scale_factor_quant6;
 | |
|         scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6);
 | |
|     }
 | |
| 
 | |
|     // If Huffman code was used, the difference of scales was encoded
 | |
|     if (sel < 5)
 | |
|         *scale_index += dca_get_vlc(&s->gb, &ff_dca_vlc_scale_factor, sel);
 | |
|     else
 | |
|         *scale_index = get_bits(&s->gb, sel + 1);
 | |
| 
 | |
|     // Look up scale factor from the root square table
 | |
|     if ((unsigned int)*scale_index >= scale_size) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor index\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return scale_table[*scale_index];
 | |
| }
 | |
| 
 | |
| static inline int parse_joint_scale(DCACoreDecoder *s, int sel)
 | |
| {
 | |
|     int scale_index;
 | |
| 
 | |
|     // Absolute value was encoded even when Huffman code was used
 | |
|     if (sel < 5)
 | |
|         scale_index = dca_get_vlc(&s->gb, &ff_dca_vlc_scale_factor, sel);
 | |
|     else
 | |
|         scale_index = get_bits(&s->gb, sel + 1);
 | |
| 
 | |
|     // Bias by 64
 | |
|     scale_index += 64;
 | |
| 
 | |
|     // Look up joint scale factor
 | |
|     if ((unsigned int)scale_index >= FF_ARRAY_ELEMS(ff_dca_joint_scale_factors)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor index\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return ff_dca_joint_scale_factors[scale_index];
 | |
| }
 | |
| 
 | |
| // 5.4.1 - Primary audio coding side information
 | |
| static int parse_subframe_header(DCACoreDecoder *s, int sf,
 | |
|                                  enum HeaderType header, int xch_base)
 | |
| {
 | |
|     int ch, band, ret;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (header == HEADER_CORE) {
 | |
|         // Subsubframe count
 | |
|         s->nsubsubframes[sf] = get_bits(&s->gb, 2) + 1;
 | |
| 
 | |
|         // Partial subsubframe sample count
 | |
|         skip_bits(&s->gb, 3);
 | |
|     }
 | |
| 
 | |
|     // Prediction mode
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++)
 | |
|         for (band = 0; band < s->nsubbands[ch]; band++)
 | |
|             s->prediction_mode[ch][band] = get_bits1(&s->gb);
 | |
| 
 | |
|     // Prediction coefficients VQ address
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++)
 | |
|         for (band = 0; band < s->nsubbands[ch]; band++)
 | |
|             if (s->prediction_mode[ch][band])
 | |
|                 s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12);
 | |
| 
 | |
|     // Bit allocation index
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         int sel = s->bit_allocation_sel[ch];
 | |
| 
 | |
|         for (band = 0; band < s->subband_vq_start[ch]; band++) {
 | |
|             int abits;
 | |
| 
 | |
|             if (sel < 5)
 | |
|                 abits = dca_get_vlc(&s->gb, &ff_dca_vlc_bit_allocation, sel);
 | |
|             else
 | |
|                 abits = get_bits(&s->gb, sel - 1);
 | |
| 
 | |
|             if (abits > DCA_ABITS_MAX) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             s->bit_allocation[ch][band] = abits;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Transition mode
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         // Clear transition mode for all subbands
 | |
|         memset(s->transition_mode[sf][ch], 0, sizeof(s->transition_mode[0][0]));
 | |
| 
 | |
|         // Transient possible only if more than one subsubframe
 | |
|         if (s->nsubsubframes[sf] > 1) {
 | |
|             int sel = s->transition_mode_sel[ch];
 | |
|             for (band = 0; band < s->subband_vq_start[ch]; band++)
 | |
|                 if (s->bit_allocation[ch][band])
 | |
|                     s->transition_mode[sf][ch][band] = dca_get_vlc(&s->gb, &ff_dca_vlc_transition_mode, sel);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Scale factors
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         int sel = s->scale_factor_sel[ch];
 | |
|         int scale_index = 0;
 | |
| 
 | |
|         // Extract scales for subbands up to VQ
 | |
|         for (band = 0; band < s->subband_vq_start[ch]; band++) {
 | |
|             if (s->bit_allocation[ch][band]) {
 | |
|                 if ((ret = parse_scale(s, &scale_index, sel)) < 0)
 | |
|                     return ret;
 | |
|                 s->scale_factors[ch][band][0] = ret;
 | |
|                 if (s->transition_mode[sf][ch][band]) {
 | |
|                     if ((ret = parse_scale(s, &scale_index, sel)) < 0)
 | |
|                         return ret;
 | |
|                     s->scale_factors[ch][band][1] = ret;
 | |
|                 }
 | |
|             } else {
 | |
|                 s->scale_factors[ch][band][0] = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // High frequency VQ subbands
 | |
|         for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) {
 | |
|             if ((ret = parse_scale(s, &scale_index, sel)) < 0)
 | |
|                 return ret;
 | |
|             s->scale_factors[ch][band][0] = ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Joint subband codebook select
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         if (s->joint_intensity_index[ch]) {
 | |
|             s->joint_scale_sel[ch] = get_bits(&s->gb, 3);
 | |
|             if (s->joint_scale_sel[ch] == 7) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor code book\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Scale factors for joint subband coding
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         int src_ch = s->joint_intensity_index[ch] - 1;
 | |
|         if (src_ch >= 0) {
 | |
|             int sel = s->joint_scale_sel[ch];
 | |
|             for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) {
 | |
|                 if ((ret = parse_joint_scale(s, sel)) < 0)
 | |
|                     return ret;
 | |
|                 s->joint_scale_factors[ch][band] = ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Dynamic range coefficient
 | |
|     if (s->drc_present && header == HEADER_CORE)
 | |
|         skip_bits(&s->gb, 8);
 | |
| 
 | |
|     // Side information CRC check word
 | |
|     if (s->crc_present)
 | |
|         skip_bits(&s->gb, 16);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifndef decode_blockcodes
 | |
| static inline int decode_blockcodes(int code1, int code2, int levels, int32_t *audio)
 | |
| {
 | |
|     int offset = (levels - 1) / 2;
 | |
|     int n, div;
 | |
| 
 | |
|     for (n = 0; n < DCA_SUBBAND_SAMPLES / 2; n++) {
 | |
|         div = FASTDIV(code1, levels);
 | |
|         audio[n] = code1 - div * levels - offset;
 | |
|         code1 = div;
 | |
|     }
 | |
|     for (; n < DCA_SUBBAND_SAMPLES; n++) {
 | |
|         div = FASTDIV(code2, levels);
 | |
|         audio[n] = code2 - div * levels - offset;
 | |
|         code2 = div;
 | |
|     }
 | |
| 
 | |
|     return code1 | code2;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int parse_block_codes(DCACoreDecoder *s, int32_t *audio, int abits)
 | |
| {
 | |
|     // Extract block code indices from the bit stream
 | |
|     int code1 = get_bits(&s->gb, block_code_nbits[abits - 1]);
 | |
|     int code2 = get_bits(&s->gb, block_code_nbits[abits - 1]);
 | |
|     int levels = ff_dca_quant_levels[abits];
 | |
| 
 | |
|     // Look up samples from the block code book
 | |
|     if (decode_blockcodes(code1, code2, levels, audio)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Failed to decode block code(s)\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int parse_huffman_codes(DCACoreDecoder *s, int32_t *audio, int abits, int sel)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     // Extract Huffman codes from the bit stream
 | |
|     for (i = 0; i < DCA_SUBBAND_SAMPLES; i++)
 | |
|         audio[i] = dca_get_vlc(&s->gb, &ff_dca_vlc_quant_index[abits - 1], sel);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static inline int extract_audio(DCACoreDecoder *s, int32_t *audio, int abits, int ch)
 | |
| {
 | |
|     av_assert1(abits >= 0 && abits <= DCA_ABITS_MAX);
 | |
| 
 | |
|     if (abits == 0) {
 | |
|         // No bits allocated
 | |
|         memset(audio, 0, DCA_SUBBAND_SAMPLES * sizeof(*audio));
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (abits <= DCA_CODE_BOOKS) {
 | |
|         int sel = s->quant_index_sel[ch][abits - 1];
 | |
|         if (sel < ff_dca_quant_index_group_size[abits - 1]) {
 | |
|             // Huffman codes
 | |
|             return parse_huffman_codes(s, audio, abits, sel);
 | |
|         }
 | |
|         if (abits <= 7) {
 | |
|             // Block codes
 | |
|             return parse_block_codes(s, audio, abits);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No further encoding
 | |
|     get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void inverse_adpcm(int32_t **subband_samples,
 | |
|                                  const int16_t *vq_index,
 | |
|                                  const int8_t *prediction_mode,
 | |
|                                  int sb_start, int sb_end,
 | |
|                                  int ofs, int len)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = sb_start; i < sb_end; i++) {
 | |
|         if (prediction_mode[i]) {
 | |
|             const int pred_id = vq_index[i];
 | |
|             int32_t *ptr = subband_samples[i] + ofs;
 | |
|             for (j = 0; j < len; j++) {
 | |
|                 int32_t x = ff_dcaadpcm_predict(pred_id, ptr + j - DCA_ADPCM_COEFFS);
 | |
|                 ptr[j] = clip23(ptr[j] + x);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // 5.5 - Primary audio data arrays
 | |
| static int parse_subframe_audio(DCACoreDecoder *s, int sf, enum HeaderType header,
 | |
|                                 int xch_base, int *sub_pos, int *lfe_pos)
 | |
| {
 | |
|     int32_t audio[16], scale;
 | |
|     int n, ssf, ofs, ch, band;
 | |
| 
 | |
|     // Check number of subband samples in this subframe
 | |
|     int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES;
 | |
|     if (*sub_pos + nsamples > s->npcmblocks) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     // VQ encoded subbands
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         int32_t vq_index[DCA_SUBBANDS];
 | |
| 
 | |
|         for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++)
 | |
|             // Extract the VQ address from the bit stream
 | |
|             vq_index[band] = get_bits(&s->gb, 10);
 | |
| 
 | |
|         if (s->subband_vq_start[ch] < s->nsubbands[ch]) {
 | |
|             s->dcadsp->decode_hf(s->subband_samples[ch], vq_index,
 | |
|                                  ff_dca_high_freq_vq, s->scale_factors[ch],
 | |
|                                  s->subband_vq_start[ch], s->nsubbands[ch],
 | |
|                                  *sub_pos, nsamples);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Low frequency effect data
 | |
|     if (s->lfe_present && header == HEADER_CORE) {
 | |
|         unsigned int index;
 | |
| 
 | |
|         // Determine number of LFE samples in this subframe
 | |
|         int nlfesamples = 2 * s->lfe_present * s->nsubsubframes[sf];
 | |
|         av_assert1((unsigned int)nlfesamples <= FF_ARRAY_ELEMS(audio));
 | |
| 
 | |
|         // Extract LFE samples from the bit stream
 | |
|         get_array(&s->gb, audio, nlfesamples, 8);
 | |
| 
 | |
|         // Extract scale factor index from the bit stream
 | |
|         index = get_bits(&s->gb, 8);
 | |
|         if (index >= FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE scale factor index\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Look up the 7-bit root square quantization table
 | |
|         scale = ff_dca_scale_factor_quant7[index];
 | |
| 
 | |
|         // Account for quantizer step size which is 0.035
 | |
|         scale = mul23(4697620 /* 0.035 * (1 << 27) */, scale);
 | |
| 
 | |
|         // Scale and take the LFE samples
 | |
|         for (n = 0, ofs = *lfe_pos; n < nlfesamples; n++, ofs++)
 | |
|             s->lfe_samples[ofs] = clip23(audio[n] * scale >> 4);
 | |
| 
 | |
|         // Advance LFE sample pointer for the next subframe
 | |
|         *lfe_pos = ofs;
 | |
|     }
 | |
| 
 | |
|     // Audio data
 | |
|     for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) {
 | |
|         for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|             if (get_bits_left(&s->gb) < 0)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             // Not high frequency VQ subbands
 | |
|             for (band = 0; band < s->subband_vq_start[ch]; band++) {
 | |
|                 int ret, trans_ssf, abits = s->bit_allocation[ch][band];
 | |
|                 int32_t step_size;
 | |
| 
 | |
|                 // Extract bits from the bit stream
 | |
|                 if ((ret = extract_audio(s, audio, abits, ch)) < 0)
 | |
|                     return ret;
 | |
| 
 | |
|                 // Select quantization step size table and look up
 | |
|                 // quantization step size
 | |
|                 if (s->bit_rate == 3)
 | |
|                     step_size = ff_dca_lossless_quant[abits];
 | |
|                 else
 | |
|                     step_size = ff_dca_lossy_quant[abits];
 | |
| 
 | |
|                 // Identify transient location
 | |
|                 trans_ssf = s->transition_mode[sf][ch][band];
 | |
| 
 | |
|                 // Determine proper scale factor
 | |
|                 if (trans_ssf == 0 || ssf < trans_ssf)
 | |
|                     scale = s->scale_factors[ch][band][0];
 | |
|                 else
 | |
|                     scale = s->scale_factors[ch][band][1];
 | |
| 
 | |
|                 // Adjust scale factor when SEL indicates Huffman code
 | |
|                 if (ret > 0) {
 | |
|                     int64_t adj = s->scale_factor_adj[ch][abits - 1];
 | |
|                     scale = clip23(adj * scale >> 22);
 | |
|                 }
 | |
| 
 | |
|                 ff_dca_core_dequantize(s->subband_samples[ch][band] + ofs,
 | |
|                            audio, step_size, scale, 0, DCA_SUBBAND_SAMPLES);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // DSYNC
 | |
|         if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "DSYNC check failed\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         ofs += DCA_SUBBAND_SAMPLES;
 | |
|     }
 | |
| 
 | |
|     // Inverse ADPCM
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         inverse_adpcm(s->subband_samples[ch], s->prediction_vq_index[ch],
 | |
|                       s->prediction_mode[ch], 0, s->nsubbands[ch],
 | |
|                       *sub_pos, nsamples);
 | |
|     }
 | |
| 
 | |
|     // Joint subband coding
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         int src_ch = s->joint_intensity_index[ch] - 1;
 | |
|         if (src_ch >= 0) {
 | |
|             s->dcadsp->decode_joint(s->subband_samples[ch], s->subband_samples[src_ch],
 | |
|                                     s->joint_scale_factors[ch], s->nsubbands[ch],
 | |
|                                     s->nsubbands[src_ch], *sub_pos, nsamples);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Advance subband sample pointer for the next subframe
 | |
|     *sub_pos = ofs;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void erase_adpcm_history(DCACoreDecoder *s)
 | |
| {
 | |
|     int ch, band;
 | |
| 
 | |
|     // Erase ADPCM history from previous frame if
 | |
|     // predictor history switch was disabled
 | |
|     for (ch = 0; ch < DCA_CHANNELS; ch++)
 | |
|         for (band = 0; band < DCA_SUBBANDS; band++)
 | |
|             AV_ZERO128(s->subband_samples[ch][band] - DCA_ADPCM_COEFFS);
 | |
| 
 | |
|     emms_c();
 | |
| }
 | |
| 
 | |
| static int alloc_sample_buffer(DCACoreDecoder *s)
 | |
| {
 | |
|     int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks;
 | |
|     int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS;
 | |
|     int nlfesamples = DCA_LFE_HISTORY + s->npcmblocks / 2;
 | |
|     unsigned int size = s->subband_size;
 | |
|     int ch, band;
 | |
| 
 | |
|     // Reallocate subband sample buffer
 | |
|     av_fast_mallocz(&s->subband_buffer, &s->subband_size,
 | |
|                     (nframesamples + nlfesamples) * sizeof(int32_t));
 | |
|     if (!s->subband_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (size != s->subband_size) {
 | |
|         for (ch = 0; ch < DCA_CHANNELS; ch++)
 | |
|             for (band = 0; band < DCA_SUBBANDS; band++)
 | |
|                 s->subband_samples[ch][band] = s->subband_buffer +
 | |
|                     (ch * DCA_SUBBANDS + band) * nchsamples + DCA_ADPCM_COEFFS;
 | |
|         s->lfe_samples = s->subband_buffer + nframesamples;
 | |
|     }
 | |
| 
 | |
|     if (!s->predictor_history)
 | |
|         erase_adpcm_history(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_frame_data(DCACoreDecoder *s, enum HeaderType header, int xch_base)
 | |
| {
 | |
|     int sf, ch, ret, band, sub_pos, lfe_pos;
 | |
| 
 | |
|     if ((ret = parse_coding_header(s, header, xch_base)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     for (sf = 0, sub_pos = 0, lfe_pos = DCA_LFE_HISTORY; sf < s->nsubframes; sf++) {
 | |
|         if ((ret = parse_subframe_header(s, sf, header, xch_base)) < 0)
 | |
|             return ret;
 | |
|         if ((ret = parse_subframe_audio(s, sf, header, xch_base, &sub_pos, &lfe_pos)) < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|         // Determine number of active subbands for this channel
 | |
|         int nsubbands = s->nsubbands[ch];
 | |
|         if (s->joint_intensity_index[ch])
 | |
|             nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]);
 | |
| 
 | |
|         // Update history for ADPCM
 | |
|         for (band = 0; band < nsubbands; band++) {
 | |
|             int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS;
 | |
|             AV_COPY128(samples, samples + s->npcmblocks);
 | |
|         }
 | |
| 
 | |
|         // Clear inactive subbands
 | |
|         for (; band < DCA_SUBBANDS; band++) {
 | |
|             int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS;
 | |
|             memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     emms_c();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_xch_frame(DCACoreDecoder *s)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (s->ch_mask & DCA_SPEAKER_MASK_Cs) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "XCH with Cs speaker already present\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if ((ret = parse_frame_data(s, HEADER_XCH, s->nchannels)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Seek to the end of core frame, don't trust XCH frame size
 | |
|     if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XCH frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_xxch_frame(DCACoreDecoder *s)
 | |
| {
 | |
|     int xxch_nchsets, xxch_frame_size;
 | |
|     int ret, mask, header_size, header_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|     // XXCH sync word
 | |
|     if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XXCH) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH sync word\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // XXCH frame header length
 | |
|     header_size = get_bits(&s->gb, 6) + 1;
 | |
| 
 | |
|     // Check XXCH frame header CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, header_pos + 32, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH frame header checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // CRC presence flag for channel set header
 | |
|     s->xxch_crc_present = get_bits1(&s->gb);
 | |
| 
 | |
|     // Number of bits for loudspeaker mask
 | |
|     s->xxch_mask_nbits = get_bits(&s->gb, 5) + 1;
 | |
|     if (s->xxch_mask_nbits <= DCA_SPEAKER_Cs) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XXCH speaker mask (%d)\n", s->xxch_mask_nbits);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Number of channel sets
 | |
|     xxch_nchsets = get_bits(&s->gb, 2) + 1;
 | |
|     if (xxch_nchsets > 1) {
 | |
|         avpriv_request_sample(s->avctx, "%d XXCH channel sets", xxch_nchsets);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Channel set 0 data byte size
 | |
|     xxch_frame_size = get_bits(&s->gb, 14) + 1;
 | |
| 
 | |
|     // Core loudspeaker activity mask
 | |
|     s->xxch_core_mask = get_bits_long(&s->gb, s->xxch_mask_nbits);
 | |
| 
 | |
|     // Validate the core mask
 | |
|     mask = s->ch_mask;
 | |
| 
 | |
|     if ((mask & DCA_SPEAKER_MASK_Ls) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss))
 | |
|         mask = (mask & ~DCA_SPEAKER_MASK_Ls) | DCA_SPEAKER_MASK_Lss;
 | |
| 
 | |
|     if ((mask & DCA_SPEAKER_MASK_Rs) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss))
 | |
|         mask = (mask & ~DCA_SPEAKER_MASK_Rs) | DCA_SPEAKER_MASK_Rss;
 | |
| 
 | |
|     if (mask != s->xxch_core_mask) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "XXCH core speaker activity mask (%#x) disagrees with core (%#x)\n", s->xxch_core_mask, mask);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Reserved
 | |
|     // Byte align
 | |
|     // CRC16 of XXCH frame header
 | |
|     if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH frame header\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Parse XXCH channel set 0
 | |
|     if ((ret = parse_frame_data(s, HEADER_XXCH, s->nchannels)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8 + xxch_frame_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_xbr_subframe(DCACoreDecoder *s, int xbr_base_ch, int xbr_nchannels,
 | |
|                               int *xbr_nsubbands, int xbr_transition_mode, int sf, int *sub_pos)
 | |
| {
 | |
|     int     xbr_nabits[DCA_CHANNELS];
 | |
|     int     xbr_bit_allocation[DCA_CHANNELS][DCA_SUBBANDS];
 | |
|     int     xbr_scale_nbits[DCA_CHANNELS];
 | |
|     int32_t xbr_scale_factors[DCA_CHANNELS][DCA_SUBBANDS][2];
 | |
|     int     ssf, ch, band, ofs;
 | |
| 
 | |
|     // Check number of subband samples in this subframe
 | |
|     if (*sub_pos + s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES > s->npcmblocks) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     // Number of bits for XBR bit allocation index
 | |
|     for (ch = xbr_base_ch; ch < xbr_nchannels; ch++)
 | |
|         xbr_nabits[ch] = get_bits(&s->gb, 2) + 2;
 | |
| 
 | |
|     // XBR bit allocation index
 | |
|     for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
 | |
|         for (band = 0; band < xbr_nsubbands[ch]; band++) {
 | |
|             xbr_bit_allocation[ch][band] = get_bits(&s->gb, xbr_nabits[ch]);
 | |
|             if (xbr_bit_allocation[ch][band] > DCA_ABITS_MAX) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR bit allocation index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Number of bits for scale indices
 | |
|     for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
 | |
|         xbr_scale_nbits[ch] = get_bits(&s->gb, 3);
 | |
|         if (!xbr_scale_nbits[ch]) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XBR scale factor index\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // XBR scale factors
 | |
|     for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
 | |
|         const uint32_t *scale_table;
 | |
|         int scale_size;
 | |
| 
 | |
|         // Select the root square table
 | |
|         if (s->scale_factor_sel[ch] > 5) {
 | |
|             scale_table = ff_dca_scale_factor_quant7;
 | |
|             scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7);
 | |
|         } else {
 | |
|             scale_table = ff_dca_scale_factor_quant6;
 | |
|             scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6);
 | |
|         }
 | |
| 
 | |
|         // Parse scale factor indices and look up scale factors from the root
 | |
|         // square table
 | |
|         for (band = 0; band < xbr_nsubbands[ch]; band++) {
 | |
|             if (xbr_bit_allocation[ch][band]) {
 | |
|                 int scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]);
 | |
|                 if (scale_index >= scale_size) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 xbr_scale_factors[ch][band][0] = scale_table[scale_index];
 | |
|                 if (xbr_transition_mode && s->transition_mode[sf][ch][band]) {
 | |
|                     scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]);
 | |
|                     if (scale_index >= scale_size) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n");
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                     xbr_scale_factors[ch][band][1] = scale_table[scale_index];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Audio data
 | |
|     for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) {
 | |
|         for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
 | |
|             if (get_bits_left(&s->gb) < 0)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             for (band = 0; band < xbr_nsubbands[ch]; band++) {
 | |
|                 int ret, trans_ssf, abits = xbr_bit_allocation[ch][band];
 | |
|                 int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale;
 | |
| 
 | |
|                 // Extract bits from the bit stream
 | |
|                 if (abits > 7) {
 | |
|                     // No further encoding
 | |
|                     get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3);
 | |
|                 } else if (abits > 0) {
 | |
|                     // Block codes
 | |
|                     if ((ret = parse_block_codes(s, audio, abits)) < 0)
 | |
|                         return ret;
 | |
|                 } else {
 | |
|                     // No bits allocated
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // Look up quantization step size
 | |
|                 step_size = ff_dca_lossless_quant[abits];
 | |
| 
 | |
|                 // Identify transient location
 | |
|                 if (xbr_transition_mode)
 | |
|                     trans_ssf = s->transition_mode[sf][ch][band];
 | |
|                 else
 | |
|                     trans_ssf = 0;
 | |
| 
 | |
|                 // Determine proper scale factor
 | |
|                 if (trans_ssf == 0 || ssf < trans_ssf)
 | |
|                     scale = xbr_scale_factors[ch][band][0];
 | |
|                 else
 | |
|                     scale = xbr_scale_factors[ch][band][1];
 | |
| 
 | |
|                 ff_dca_core_dequantize(s->subband_samples[ch][band] + ofs,
 | |
|                            audio, step_size, scale, 1, DCA_SUBBAND_SAMPLES);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // DSYNC
 | |
|         if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "XBR-DSYNC check failed\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         ofs += DCA_SUBBAND_SAMPLES;
 | |
|     }
 | |
| 
 | |
|     // Advance subband sample pointer for the next subframe
 | |
|     *sub_pos = ofs;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_xbr_frame(DCACoreDecoder *s)
 | |
| {
 | |
|     int     xbr_frame_size[DCA_EXSS_CHSETS_MAX];
 | |
|     int     xbr_nchannels[DCA_EXSS_CHSETS_MAX];
 | |
|     int     xbr_nsubbands[DCA_EXSS_CHSETS_MAX * DCA_EXSS_CHANNELS_MAX];
 | |
|     int     xbr_nchsets, xbr_transition_mode, xbr_band_nbits, xbr_base_ch;
 | |
|     int     i, ch1, ch2, ret, header_size, header_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|     // XBR sync word
 | |
|     if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XBR) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR sync word\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // XBR frame header length
 | |
|     header_size = get_bits(&s->gb, 6) + 1;
 | |
| 
 | |
|     // Check XBR frame header CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, header_pos + 32, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR frame header checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Number of channel sets
 | |
|     xbr_nchsets = get_bits(&s->gb, 2) + 1;
 | |
| 
 | |
|     // Channel set data byte size
 | |
|     for (i = 0; i < xbr_nchsets; i++)
 | |
|         xbr_frame_size[i] = get_bits(&s->gb, 14) + 1;
 | |
| 
 | |
|     // Transition mode flag
 | |
|     xbr_transition_mode = get_bits1(&s->gb);
 | |
| 
 | |
|     // Channel set headers
 | |
|     for (i = 0, ch2 = 0; i < xbr_nchsets; i++) {
 | |
|         xbr_nchannels[i] = get_bits(&s->gb, 3) + 1;
 | |
|         xbr_band_nbits = get_bits(&s->gb, 2) + 5;
 | |
|         for (ch1 = 0; ch1 < xbr_nchannels[i]; ch1++, ch2++) {
 | |
|             xbr_nsubbands[ch2] = get_bits(&s->gb, xbr_band_nbits) + 1;
 | |
|             if (xbr_nsubbands[ch2] > DCA_SUBBANDS) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid number of active XBR subbands (%d)\n", xbr_nsubbands[ch2]);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Reserved
 | |
|     // Byte align
 | |
|     // CRC16 of XBR frame header
 | |
|     if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR frame header\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Channel set data
 | |
|     for (i = 0, xbr_base_ch = 0; i < xbr_nchsets; i++) {
 | |
|         header_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|         if (xbr_base_ch + xbr_nchannels[i] <= s->nchannels) {
 | |
|             int sf, sub_pos;
 | |
| 
 | |
|             for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) {
 | |
|                 if ((ret = parse_xbr_subframe(s, xbr_base_ch,
 | |
|                                               xbr_base_ch + xbr_nchannels[i],
 | |
|                                               xbr_nsubbands, xbr_transition_mode,
 | |
|                                               sf, &sub_pos)) < 0)
 | |
|                     return ret;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         xbr_base_ch += xbr_nchannels[i];
 | |
| 
 | |
|         if (ff_dca_seek_bits(&s->gb, header_pos + xbr_frame_size[i] * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR channel set\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Modified ISO/IEC 9899 linear congruential generator
 | |
| // Returns pseudorandom integer in range [-2^30, 2^30 - 1]
 | |
| static int rand_x96(DCACoreDecoder *s)
 | |
| {
 | |
|     s->x96_rand = 1103515245U * s->x96_rand + 12345U;
 | |
|     return (s->x96_rand & 0x7fffffff) - 0x40000000;
 | |
| }
 | |
| 
 | |
| static int parse_x96_subframe_audio(DCACoreDecoder *s, int sf, int xch_base, int *sub_pos)
 | |
| {
 | |
|     int n, ssf, ch, band, ofs;
 | |
| 
 | |
|     // Check number of subband samples in this subframe
 | |
|     int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES;
 | |
|     if (*sub_pos + nsamples > s->npcmblocks) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     // VQ encoded or unallocated subbands
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
 | |
|             // Get the sample pointer and scale factor
 | |
|             int32_t *samples = s->x96_subband_samples[ch][band] + *sub_pos;
 | |
|             int32_t scale    = s->scale_factors[ch][band >> 1][band & 1];
 | |
| 
 | |
|             switch (s->bit_allocation[ch][band]) {
 | |
|             case 0: // No bits allocated for subband
 | |
|                 if (scale <= 1)
 | |
|                     memset(samples, 0, nsamples * sizeof(int32_t));
 | |
|                 else for (n = 0; n < nsamples; n++)
 | |
|                     // Generate scaled random samples
 | |
|                     samples[n] = mul31(rand_x96(s), scale);
 | |
|                 break;
 | |
| 
 | |
|             case 1: // VQ encoded subband
 | |
|                 for (ssf = 0; ssf < (s->nsubsubframes[sf] + 1) / 2; ssf++) {
 | |
|                     // Extract the VQ address from the bit stream and look up
 | |
|                     // the VQ code book for up to 16 subband samples
 | |
|                     const int8_t *vq_samples = ff_dca_high_freq_vq[get_bits(&s->gb, 10)];
 | |
|                     // Scale and take the samples
 | |
|                     for (n = 0; n < FFMIN(nsamples - ssf * 16, 16); n++)
 | |
|                         *samples++ = clip23(vq_samples[n] * scale + (1 << 3) >> 4);
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Audio data
 | |
|     for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) {
 | |
|         for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|             if (get_bits_left(&s->gb) < 0)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
 | |
|                 int ret, abits = s->bit_allocation[ch][band] - 1;
 | |
|                 int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale;
 | |
| 
 | |
|                 // Not VQ encoded or unallocated subbands
 | |
|                 if (abits < 1)
 | |
|                     continue;
 | |
| 
 | |
|                 // Extract bits from the bit stream
 | |
|                 if ((ret = extract_audio(s, audio, abits, ch)) < 0)
 | |
|                     return ret;
 | |
| 
 | |
|                 // Select quantization step size table and look up quantization
 | |
|                 // step size
 | |
|                 if (s->bit_rate == 3)
 | |
|                     step_size = ff_dca_lossless_quant[abits];
 | |
|                 else
 | |
|                     step_size = ff_dca_lossy_quant[abits];
 | |
| 
 | |
|                 // Get the scale factor
 | |
|                 scale = s->scale_factors[ch][band >> 1][band & 1];
 | |
| 
 | |
|                 ff_dca_core_dequantize(s->x96_subband_samples[ch][band] + ofs,
 | |
|                            audio, step_size, scale, 0, DCA_SUBBAND_SAMPLES);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // DSYNC
 | |
|         if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "X96-DSYNC check failed\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         ofs += DCA_SUBBAND_SAMPLES;
 | |
|     }
 | |
| 
 | |
|     // Inverse ADPCM
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         inverse_adpcm(s->x96_subband_samples[ch], s->prediction_vq_index[ch],
 | |
|                       s->prediction_mode[ch], s->x96_subband_start, s->nsubbands[ch],
 | |
|                       *sub_pos, nsamples);
 | |
|     }
 | |
| 
 | |
|     // Joint subband coding
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         int src_ch = s->joint_intensity_index[ch] - 1;
 | |
|         if (src_ch >= 0) {
 | |
|             s->dcadsp->decode_joint(s->x96_subband_samples[ch], s->x96_subband_samples[src_ch],
 | |
|                                     s->joint_scale_factors[ch], s->nsubbands[ch],
 | |
|                                     s->nsubbands[src_ch], *sub_pos, nsamples);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Advance subband sample pointer for the next subframe
 | |
|     *sub_pos = ofs;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void erase_x96_adpcm_history(DCACoreDecoder *s)
 | |
| {
 | |
|     int ch, band;
 | |
| 
 | |
|     // Erase ADPCM history from previous frame if
 | |
|     // predictor history switch was disabled
 | |
|     for (ch = 0; ch < DCA_CHANNELS; ch++)
 | |
|         for (band = 0; band < DCA_SUBBANDS_X96; band++)
 | |
|             AV_ZERO128(s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS);
 | |
| 
 | |
|     emms_c();
 | |
| }
 | |
| 
 | |
| static int alloc_x96_sample_buffer(DCACoreDecoder *s)
 | |
| {
 | |
|     int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks;
 | |
|     int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS_X96;
 | |
|     unsigned int size = s->x96_subband_size;
 | |
|     int ch, band;
 | |
| 
 | |
|     // Reallocate subband sample buffer
 | |
|     av_fast_mallocz(&s->x96_subband_buffer, &s->x96_subband_size,
 | |
|                     nframesamples * sizeof(int32_t));
 | |
|     if (!s->x96_subband_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (size != s->x96_subband_size) {
 | |
|         for (ch = 0; ch < DCA_CHANNELS; ch++)
 | |
|             for (band = 0; band < DCA_SUBBANDS_X96; band++)
 | |
|                 s->x96_subband_samples[ch][band] = s->x96_subband_buffer +
 | |
|                     (ch * DCA_SUBBANDS_X96 + band) * nchsamples + DCA_ADPCM_COEFFS;
 | |
|     }
 | |
| 
 | |
|     if (!s->predictor_history)
 | |
|         erase_x96_adpcm_history(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_x96_subframe_header(DCACoreDecoder *s, int xch_base)
 | |
| {
 | |
|     int ch, band, ret;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     // Prediction mode
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++)
 | |
|         for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++)
 | |
|             s->prediction_mode[ch][band] = get_bits1(&s->gb);
 | |
| 
 | |
|     // Prediction coefficients VQ address
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++)
 | |
|         for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++)
 | |
|             if (s->prediction_mode[ch][band])
 | |
|                 s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12);
 | |
| 
 | |
|     // Bit allocation index
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         int sel = s->bit_allocation_sel[ch];
 | |
|         int abits = 0;
 | |
| 
 | |
|         for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
 | |
|             // If Huffman code was used, the difference of abits was encoded
 | |
|             if (sel < 7)
 | |
|                 abits += dca_get_vlc(&s->gb, &ff_dca_vlc_quant_index[5 + 2 * s->x96_high_res], sel);
 | |
|             else
 | |
|                 abits = get_bits(&s->gb, 3 + s->x96_high_res);
 | |
| 
 | |
|             if (abits < 0 || abits > 7 + 8 * s->x96_high_res) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 bit allocation index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             s->bit_allocation[ch][band] = abits;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Scale factors
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         int sel = s->scale_factor_sel[ch];
 | |
|         int scale_index = 0;
 | |
| 
 | |
|         // Extract scales for subbands which are transmitted even for
 | |
|         // unallocated subbands
 | |
|         for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
 | |
|             if ((ret = parse_scale(s, &scale_index, sel)) < 0)
 | |
|                 return ret;
 | |
|             s->scale_factors[ch][band >> 1][band & 1] = ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Joint subband codebook select
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         if (s->joint_intensity_index[ch]) {
 | |
|             s->joint_scale_sel[ch] = get_bits(&s->gb, 3);
 | |
|             if (s->joint_scale_sel[ch] == 7) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint scale factor code book\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Scale factors for joint subband coding
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         int src_ch = s->joint_intensity_index[ch] - 1;
 | |
|         if (src_ch >= 0) {
 | |
|             int sel = s->joint_scale_sel[ch];
 | |
|             for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) {
 | |
|                 if ((ret = parse_joint_scale(s, sel)) < 0)
 | |
|                     return ret;
 | |
|                 s->joint_scale_factors[ch][band] = ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Side information CRC check word
 | |
|     if (s->crc_present)
 | |
|         skip_bits(&s->gb, 16);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_x96_coding_header(DCACoreDecoder *s, int exss, int xch_base)
 | |
| {
 | |
|     int n, ch, header_size = 0, header_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (exss) {
 | |
|         // Channel set header length
 | |
|         header_size = get_bits(&s->gb, 7) + 1;
 | |
| 
 | |
|         // Check CRC
 | |
|         if (s->x96_crc_present
 | |
|             && ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 channel set header checksum\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // High resolution flag
 | |
|     s->x96_high_res = get_bits1(&s->gb);
 | |
| 
 | |
|     // First encoded subband
 | |
|     if (s->x96_rev_no < 8) {
 | |
|         s->x96_subband_start = get_bits(&s->gb, 5);
 | |
|         if (s->x96_subband_start > 27) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband start index (%d)\n", s->x96_subband_start);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     } else {
 | |
|         s->x96_subband_start = DCA_SUBBANDS;
 | |
|     }
 | |
| 
 | |
|     // Subband activity count
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         s->nsubbands[ch] = get_bits(&s->gb, 6) + 1;
 | |
|         if (s->nsubbands[ch] < DCA_SUBBANDS) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband activity count (%d)\n", s->nsubbands[ch]);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Joint intensity coding index
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         if ((n = get_bits(&s->gb, 3)) && xch_base)
 | |
|             n += xch_base - 1;
 | |
|         if (n > s->x96_nchannels) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint intensity coding index\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         s->joint_intensity_index[ch] = n;
 | |
|     }
 | |
| 
 | |
|     // Scale factor code book
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         s->scale_factor_sel[ch] = get_bits(&s->gb, 3);
 | |
|         if (s->scale_factor_sel[ch] >= 6) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 scale factor code book\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Bit allocation quantizer select
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++)
 | |
|         s->bit_allocation_sel[ch] = get_bits(&s->gb, 3);
 | |
| 
 | |
|     // Quantization index codebook select
 | |
|     for (n = 0; n < 6 + 4 * s->x96_high_res; n++)
 | |
|         for (ch = xch_base; ch < s->x96_nchannels; ch++)
 | |
|             s->quant_index_sel[ch][n] = get_bits(&s->gb, ff_dca_quant_index_sel_nbits[n]);
 | |
| 
 | |
|     if (exss) {
 | |
|         // Reserved
 | |
|         // Byte align
 | |
|         // CRC16 of channel set header
 | |
|         if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set header\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     } else {
 | |
|         if (s->crc_present)
 | |
|             skip_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_x96_frame_data(DCACoreDecoder *s, int exss, int xch_base)
 | |
| {
 | |
|     int sf, ch, ret, band, sub_pos;
 | |
| 
 | |
|     if ((ret = parse_x96_coding_header(s, exss, xch_base)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) {
 | |
|         if ((ret = parse_x96_subframe_header(s, xch_base)) < 0)
 | |
|             return ret;
 | |
|         if ((ret = parse_x96_subframe_audio(s, sf, xch_base, &sub_pos)) < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     for (ch = xch_base; ch < s->x96_nchannels; ch++) {
 | |
|         // Determine number of active subbands for this channel
 | |
|         int nsubbands = s->nsubbands[ch];
 | |
|         if (s->joint_intensity_index[ch])
 | |
|             nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]);
 | |
| 
 | |
|         // Update history for ADPCM and clear inactive subbands
 | |
|         for (band = 0; band < DCA_SUBBANDS_X96; band++) {
 | |
|             int32_t *samples = s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS;
 | |
|             if (band >= s->x96_subband_start && band < nsubbands)
 | |
|                 AV_COPY128(samples, samples + s->npcmblocks);
 | |
|             else
 | |
|                 memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     emms_c();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_x96_frame(DCACoreDecoder *s)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     // Revision number
 | |
|     s->x96_rev_no = get_bits(&s->gb, 4);
 | |
|     if (s->x96_rev_no < 1 || s->x96_rev_no > 8) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     s->x96_crc_present = 0;
 | |
|     s->x96_nchannels = s->nchannels;
 | |
| 
 | |
|     if ((ret = alloc_x96_sample_buffer(s)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if ((ret = parse_x96_frame_data(s, 0, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Seek to the end of core frame
 | |
|     if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_x96_frame_exss(DCACoreDecoder *s)
 | |
| {
 | |
|     int     x96_frame_size[DCA_EXSS_CHSETS_MAX];
 | |
|     int     x96_nchannels[DCA_EXSS_CHSETS_MAX];
 | |
|     int     x96_nchsets, x96_base_ch;
 | |
|     int     i, ret, header_size, header_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|     // X96 sync word
 | |
|     if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_X96) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 sync word\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // X96 frame header length
 | |
|     header_size = get_bits(&s->gb, 6) + 1;
 | |
| 
 | |
|     // Check X96 frame header CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, header_pos + 32, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 frame header checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Revision number
 | |
|     s->x96_rev_no = get_bits(&s->gb, 4);
 | |
|     if (s->x96_rev_no < 1 || s->x96_rev_no > 8) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // CRC presence flag for channel set header
 | |
|     s->x96_crc_present = get_bits1(&s->gb);
 | |
| 
 | |
|     // Number of channel sets
 | |
|     x96_nchsets = get_bits(&s->gb, 2) + 1;
 | |
| 
 | |
|     // Channel set data byte size
 | |
|     for (i = 0; i < x96_nchsets; i++)
 | |
|         x96_frame_size[i] = get_bits(&s->gb, 12) + 1;
 | |
| 
 | |
|     // Number of channels in channel set
 | |
|     for (i = 0; i < x96_nchsets; i++)
 | |
|         x96_nchannels[i] = get_bits(&s->gb, 3) + 1;
 | |
| 
 | |
|     // Reserved
 | |
|     // Byte align
 | |
|     // CRC16 of X96 frame header
 | |
|     if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame header\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if ((ret = alloc_x96_sample_buffer(s)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Channel set data
 | |
|     s->x96_nchannels = 0;
 | |
|     for (i = 0, x96_base_ch = 0; i < x96_nchsets; i++) {
 | |
|         header_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|         if (x96_base_ch + x96_nchannels[i] <= s->nchannels) {
 | |
|             s->x96_nchannels = x96_base_ch + x96_nchannels[i];
 | |
|             if ((ret = parse_x96_frame_data(s, 1, x96_base_ch)) < 0)
 | |
|                 return ret;
 | |
|         }
 | |
| 
 | |
|         x96_base_ch += x96_nchannels[i];
 | |
| 
 | |
|         if (ff_dca_seek_bits(&s->gb, header_pos + x96_frame_size[i] * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_aux_data(DCACoreDecoder *s)
 | |
| {
 | |
|     int aux_pos;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     // Auxiliary data byte count (can't be trusted)
 | |
|     skip_bits(&s->gb, 6);
 | |
| 
 | |
|     // 4-byte align
 | |
|     skip_bits_long(&s->gb, -get_bits_count(&s->gb) & 31);
 | |
| 
 | |
|     // Auxiliary data sync word
 | |
|     if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_REV1AUX) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data sync word\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     aux_pos = get_bits_count(&s->gb);
 | |
| 
 | |
|     // Auxiliary decode time stamp flag
 | |
|     if (get_bits1(&s->gb))
 | |
|         skip_bits_long(&s->gb, 47);
 | |
| 
 | |
|     // Auxiliary dynamic downmix flag
 | |
|     if (s->prim_dmix_embedded = get_bits1(&s->gb)) {
 | |
|         int i, m, n;
 | |
| 
 | |
|         // Auxiliary primary channel downmix type
 | |
|         s->prim_dmix_type = get_bits(&s->gb, 3);
 | |
|         if (s->prim_dmix_type >= DCA_DMIX_TYPE_COUNT) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid primary channel set downmix type\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Size of downmix coefficients matrix
 | |
|         m = ff_dca_dmix_primary_nch[s->prim_dmix_type];
 | |
|         n = ff_dca_channels[s->audio_mode] + !!s->lfe_present;
 | |
| 
 | |
|         // Dynamic downmix code coefficients
 | |
|         for (i = 0; i < m * n; i++) {
 | |
|             int code = get_bits(&s->gb, 9);
 | |
|             int sign = (code >> 8) - 1;
 | |
|             unsigned int index = code & 0xff;
 | |
|             if (index >= FF_DCA_DMIXTABLE_SIZE) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid downmix coefficient index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             s->prim_dmix_coeff[i] = (ff_dca_dmixtable[index] ^ sign) - sign;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Byte align
 | |
|     skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
 | |
| 
 | |
|     // CRC16 of auxiliary data
 | |
|     skip_bits(&s->gb, 16);
 | |
| 
 | |
|     // Check CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, aux_pos, get_bits_count(&s->gb))) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_optional_info(DCACoreDecoder *s)
 | |
| {
 | |
|     DCAContext *dca = s->avctx->priv_data;
 | |
|     int ret = -1;
 | |
| 
 | |
|     // Time code stamp
 | |
|     if (s->ts_present)
 | |
|         skip_bits_long(&s->gb, 32);
 | |
| 
 | |
|     // Auxiliary data
 | |
|     if (s->aux_present && (ret = parse_aux_data(s)) < 0
 | |
|         && (s->avctx->err_recognition & AV_EF_EXPLODE))
 | |
|         return ret;
 | |
| 
 | |
|     if (ret < 0)
 | |
|         s->prim_dmix_embedded = 0;
 | |
| 
 | |
|     // Core extensions
 | |
|     if (s->ext_audio_present && !dca->core_only) {
 | |
|         int sync_pos = FFMIN(s->frame_size / 4, s->gb.size_in_bits / 32) - 1;
 | |
|         int last_pos = get_bits_count(&s->gb) / 32;
 | |
|         int size, dist;
 | |
|         uint32_t w1, w2 = 0;
 | |
| 
 | |
|         // Search for extension sync words aligned on 4-byte boundary. Search
 | |
|         // must be done backwards from the end of core frame to work around
 | |
|         // sync word aliasing issues.
 | |
|         switch (s->ext_audio_type) {
 | |
|         case DCA_EXT_AUDIO_XCH:
 | |
|             if (dca->request_channel_layout)
 | |
|                 break;
 | |
| 
 | |
|             // The distance between XCH sync word and end of the core frame
 | |
|             // must be equal to XCH frame size. Off by one error is allowed for
 | |
|             // compatibility with legacy bitstreams. Minimum XCH frame size is
 | |
|             // 96 bytes. AMODE and PCHS are further checked to reduce
 | |
|             // probability of alias sync detection.
 | |
|             for (; sync_pos >= last_pos; sync_pos--, w2 = w1) {
 | |
|                 w1 = AV_RB32(s->gb.buffer + sync_pos * 4);
 | |
|                 if (w1 == DCA_SYNCWORD_XCH) {
 | |
|                     size = (w2 >> 22) + 1;
 | |
|                     dist = s->frame_size - sync_pos * 4;
 | |
|                     if (size >= 96
 | |
|                         && (size == dist || size - 1 == dist)
 | |
|                         && (w2 >> 15 & 0x7f) == 0x08) {
 | |
|                         s->xch_pos = sync_pos * 32 + 49;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!s->xch_pos) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "XCH sync word not found\n");
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case DCA_EXT_AUDIO_X96:
 | |
|             // The distance between X96 sync word and end of the core frame
 | |
|             // must be equal to X96 frame size. Minimum X96 frame size is 96
 | |
|             // bytes.
 | |
|             for (; sync_pos >= last_pos; sync_pos--, w2 = w1) {
 | |
|                 w1 = AV_RB32(s->gb.buffer + sync_pos * 4);
 | |
|                 if (w1 == DCA_SYNCWORD_X96) {
 | |
|                     size = (w2 >> 20) + 1;
 | |
|                     dist = s->frame_size - sync_pos * 4;
 | |
|                     if (size >= 96 && size == dist) {
 | |
|                         s->x96_pos = sync_pos * 32 + 44;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!s->x96_pos) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "X96 sync word not found\n");
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case DCA_EXT_AUDIO_XXCH:
 | |
|             if (dca->request_channel_layout)
 | |
|                 break;
 | |
| 
 | |
|             // XXCH frame header CRC must be valid. Minimum XXCH frame header
 | |
|             // size is 11 bytes.
 | |
|             for (; sync_pos >= last_pos; sync_pos--, w2 = w1) {
 | |
|                 w1 = AV_RB32(s->gb.buffer + sync_pos * 4);
 | |
|                 if (w1 == DCA_SYNCWORD_XXCH) {
 | |
|                     size = (w2 >> 26) + 1;
 | |
|                     dist = s->gb.size_in_bits / 8 - sync_pos * 4;
 | |
|                     if (size >= 11 && size <= dist &&
 | |
|                         !av_crc(dca->crctab, 0xffff, s->gb.buffer +
 | |
|                                 (sync_pos + 1) * 4, size - 4)) {
 | |
|                         s->xxch_pos = sync_pos * 32;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!s->xxch_pos) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "XXCH sync word not found\n");
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     s->ext_audio_mask = 0;
 | |
|     s->xch_pos = s->xxch_pos = s->x96_pos = 0;
 | |
| 
 | |
|     if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
 | |
|         return ret;
 | |
|     s->gb_in = s->gb;
 | |
| 
 | |
|     if ((ret = parse_frame_header(s)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = alloc_sample_buffer(s)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = parse_frame_data(s, HEADER_CORE, 0)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = parse_optional_info(s)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Workaround for DTS in WAV
 | |
|     if (s->frame_size > size)
 | |
|         s->frame_size = size;
 | |
| 
 | |
|     if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of core frame\n");
 | |
|         if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     DCAContext *dca = avctx->priv_data;
 | |
|     int exss_mask = asset ? asset->extension_mask : 0;
 | |
|     int ret = 0, ext = 0;
 | |
| 
 | |
|     // Parse (X)XCH unless downmixing
 | |
|     if (!dca->request_channel_layout) {
 | |
|         if (exss_mask & DCA_EXSS_XXCH) {
 | |
|             if ((ret = init_get_bits8(&s->gb, data + asset->xxch_offset, asset->xxch_size)) < 0)
 | |
|                 return ret;
 | |
|             ret = parse_xxch_frame(s);
 | |
|             ext = DCA_EXSS_XXCH;
 | |
|         } else if (s->xxch_pos) {
 | |
|             s->gb = s->gb_in;
 | |
|             skip_bits_long(&s->gb, s->xxch_pos);
 | |
|             ret = parse_xxch_frame(s);
 | |
|             ext = DCA_CSS_XXCH;
 | |
|         } else if (s->xch_pos) {
 | |
|             s->gb = s->gb_in;
 | |
|             skip_bits_long(&s->gb, s->xch_pos);
 | |
|             ret = parse_xch_frame(s);
 | |
|             ext = DCA_CSS_XCH;
 | |
|         }
 | |
| 
 | |
|         // Revert to primary channel set in case (X)XCH parsing fails
 | |
|         if (ret < 0) {
 | |
|             if (avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                 return ret;
 | |
|             s->nchannels = ff_dca_channels[s->audio_mode];
 | |
|             s->ch_mask = audio_mode_ch_mask[s->audio_mode];
 | |
|             if (s->lfe_present)
 | |
|                 s->ch_mask |= DCA_SPEAKER_MASK_LFE1;
 | |
|         } else {
 | |
|             s->ext_audio_mask |= ext;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Parse XBR
 | |
|     if (exss_mask & DCA_EXSS_XBR) {
 | |
|         if ((ret = init_get_bits8(&s->gb, data + asset->xbr_offset, asset->xbr_size)) < 0)
 | |
|             return ret;
 | |
|         if ((ret = parse_xbr_frame(s)) < 0) {
 | |
|             if (avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                 return ret;
 | |
|         } else {
 | |
|             s->ext_audio_mask |= DCA_EXSS_XBR;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Parse X96 unless decoding XLL
 | |
|     if (!(dca->packet & DCA_PACKET_XLL)) {
 | |
|         if (exss_mask & DCA_EXSS_X96) {
 | |
|             if ((ret = init_get_bits8(&s->gb, data + asset->x96_offset, asset->x96_size)) < 0)
 | |
|                 return ret;
 | |
|             if ((ret = parse_x96_frame_exss(s)) < 0) {
 | |
|                 if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE))
 | |
|                     return ret;
 | |
|             } else {
 | |
|                 s->ext_audio_mask |= DCA_EXSS_X96;
 | |
|             }
 | |
|         } else if (s->x96_pos) {
 | |
|             s->gb = s->gb_in;
 | |
|             skip_bits_long(&s->gb, s->x96_pos);
 | |
|             if ((ret = parse_x96_frame(s)) < 0) {
 | |
|                 if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE))
 | |
|                     return ret;
 | |
|             } else {
 | |
|                 s->ext_audio_mask |= DCA_CSS_X96;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int map_prm_ch_to_spkr(DCACoreDecoder *s, int ch)
 | |
| {
 | |
|     int pos, spkr;
 | |
| 
 | |
|     // Try to map this channel to core first
 | |
|     pos = ff_dca_channels[s->audio_mode];
 | |
|     if (ch < pos) {
 | |
|         spkr = prm_ch_to_spkr_map[s->audio_mode][ch];
 | |
|         if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) {
 | |
|             if (s->xxch_core_mask & (1U << spkr))
 | |
|                 return spkr;
 | |
|             if (spkr == DCA_SPEAKER_Ls && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss))
 | |
|                 return DCA_SPEAKER_Lss;
 | |
|             if (spkr == DCA_SPEAKER_Rs && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss))
 | |
|                 return DCA_SPEAKER_Rss;
 | |
|             return -1;
 | |
|         }
 | |
|         return spkr;
 | |
|     }
 | |
| 
 | |
|     // Then XCH
 | |
|     if ((s->ext_audio_mask & DCA_CSS_XCH) && ch == pos)
 | |
|         return DCA_SPEAKER_Cs;
 | |
| 
 | |
|     // Then XXCH
 | |
|     if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) {
 | |
|         for (spkr = DCA_SPEAKER_Cs; spkr < s->xxch_mask_nbits; spkr++)
 | |
|             if (s->xxch_spkr_mask & (1U << spkr))
 | |
|                 if (pos++ == ch)
 | |
|                     return spkr;
 | |
|     }
 | |
| 
 | |
|     // No mapping
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void erase_dsp_history(DCACoreDecoder *s)
 | |
| {
 | |
|     memset(s->dcadsp_data, 0, sizeof(s->dcadsp_data));
 | |
|     s->output_history_lfe_fixed = 0;
 | |
|     s->output_history_lfe_float = 0;
 | |
| }
 | |
| 
 | |
| static void set_filter_mode(DCACoreDecoder *s, int mode)
 | |
| {
 | |
|     if (s->filter_mode != mode) {
 | |
|         erase_dsp_history(s);
 | |
|         s->filter_mode = mode;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth)
 | |
| {
 | |
|     int n, ch, spkr, nsamples, x96_nchannels = 0;
 | |
|     const int32_t *filter_coeff;
 | |
|     int32_t *ptr;
 | |
| 
 | |
|     // Externally set x96_synth flag implies that X96 synthesis should be
 | |
|     // enabled, yet actual X96 subband data should be discarded. This is a
 | |
|     // special case for lossless residual decoder that ignores X96 data if
 | |
|     // present.
 | |
|     if (!x96_synth && (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96))) {
 | |
|         x96_nchannels = s->x96_nchannels;
 | |
|         x96_synth = 1;
 | |
|     }
 | |
|     if (x96_synth < 0)
 | |
|         x96_synth = 0;
 | |
| 
 | |
|     s->output_rate = s->sample_rate << x96_synth;
 | |
|     s->npcmsamples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth;
 | |
| 
 | |
|     // Reallocate PCM output buffer
 | |
|     av_fast_malloc(&s->output_buffer, &s->output_size,
 | |
|                    nsamples * av_popcount(s->ch_mask) * sizeof(int32_t));
 | |
|     if (!s->output_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     ptr = (int32_t *)s->output_buffer;
 | |
|     for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) {
 | |
|         if (s->ch_mask & (1U << spkr)) {
 | |
|             s->output_samples[spkr] = ptr;
 | |
|             ptr += nsamples;
 | |
|         } else {
 | |
|             s->output_samples[spkr] = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Handle change of filtering mode
 | |
|     set_filter_mode(s, x96_synth | DCA_FILTER_MODE_FIXED);
 | |
| 
 | |
|     // Select filter
 | |
|     if (x96_synth)
 | |
|         filter_coeff = ff_dca_fir_64bands_fixed;
 | |
|     else if (s->filter_perfect)
 | |
|         filter_coeff = ff_dca_fir_32bands_perfect_fixed;
 | |
|     else
 | |
|         filter_coeff = ff_dca_fir_32bands_nonperfect_fixed;
 | |
| 
 | |
|     // Filter primary channels
 | |
|     for (ch = 0; ch < s->nchannels; ch++) {
 | |
|         // Map this primary channel to speaker
 | |
|         spkr = map_prm_ch_to_spkr(s, ch);
 | |
|         if (spkr < 0)
 | |
|             return AVERROR(EINVAL);
 | |
| 
 | |
|         // Filter bank reconstruction
 | |
|         s->dcadsp->sub_qmf_fixed[x96_synth](
 | |
|             &s->synth,
 | |
|             &s->dcadct,
 | |
|             s->output_samples[spkr],
 | |
|             s->subband_samples[ch],
 | |
|             ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL,
 | |
|             s->dcadsp_data[ch].u.fix.hist1,
 | |
|             &s->dcadsp_data[ch].offset,
 | |
|             s->dcadsp_data[ch].u.fix.hist2,
 | |
|             filter_coeff,
 | |
|             s->npcmblocks);
 | |
|     }
 | |
| 
 | |
|     // Filter LFE channel
 | |
|     if (s->lfe_present) {
 | |
|         int32_t *samples = s->output_samples[DCA_SPEAKER_LFE1];
 | |
|         int nlfesamples = s->npcmblocks >> 1;
 | |
| 
 | |
|         // Check LFF
 | |
|         if (s->lfe_present == DCA_LFE_FLAG_128) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Fixed point mode doesn't support LFF=1\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         // Offset intermediate buffer for X96
 | |
|         if (x96_synth)
 | |
|             samples += nsamples / 2;
 | |
| 
 | |
|         // Interpolate LFE channel
 | |
|         s->dcadsp->lfe_fir_fixed(samples, s->lfe_samples + DCA_LFE_HISTORY,
 | |
|                                  ff_dca_lfe_fir_64_fixed, s->npcmblocks);
 | |
| 
 | |
|         if (x96_synth) {
 | |
|             // Filter 96 kHz oversampled LFE PCM to attenuate high frequency
 | |
|             // (47.6 - 48.0 kHz) components of interpolation image
 | |
|             s->dcadsp->lfe_x96_fixed(s->output_samples[DCA_SPEAKER_LFE1],
 | |
|                                      samples, &s->output_history_lfe_fixed,
 | |
|                                      nsamples / 2);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         // Update LFE history
 | |
|         for (n = DCA_LFE_HISTORY - 1; n >= 0; n--)
 | |
|             s->lfe_samples[n] = s->lfe_samples[nlfesamples + n];
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame_fixed(DCACoreDecoder *s, AVFrame *frame)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     DCAContext *dca = avctx->priv_data;
 | |
|     int i, n, ch, ret, spkr, nsamples;
 | |
| 
 | |
|     // Don't filter twice when falling back from XLL
 | |
|     if (!(dca->packet & DCA_PACKET_XLL) && (ret = ff_dca_core_filter_fixed(s, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     avctx->sample_rate = s->output_rate;
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
 | |
|     avctx->bits_per_raw_sample = 24;
 | |
| 
 | |
|     frame->nb_samples = nsamples = s->npcmsamples;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Undo embedded XCH downmix
 | |
|     if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH)
 | |
|         && s->audio_mode >= DCA_AMODE_2F2R) {
 | |
|         s->dcadsp->dmix_sub_xch(s->output_samples[DCA_SPEAKER_Ls],
 | |
|                                 s->output_samples[DCA_SPEAKER_Rs],
 | |
|                                 s->output_samples[DCA_SPEAKER_Cs],
 | |
|                                 nsamples);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // Undo embedded XXCH downmix
 | |
|     if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH))
 | |
|         && s->xxch_dmix_embedded) {
 | |
|         int scale_inv   = s->xxch_dmix_scale_inv;
 | |
|         int *coeff_ptr  = s->xxch_dmix_coeff;
 | |
|         int xch_base    = ff_dca_channels[s->audio_mode];
 | |
|         av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX);
 | |
| 
 | |
|         // Undo embedded core downmix pre-scaling
 | |
|         for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
 | |
|             if (s->xxch_core_mask & (1U << spkr)) {
 | |
|                 s->dcadsp->dmix_scale_inv(s->output_samples[spkr],
 | |
|                                           scale_inv, nsamples);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Undo downmix
 | |
|         for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|             int src_spkr = map_prm_ch_to_spkr(s, ch);
 | |
|             if (src_spkr < 0)
 | |
|                 return AVERROR(EINVAL);
 | |
|             for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
 | |
|                 if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) {
 | |
|                     int coeff = mul16(*coeff_ptr++, scale_inv);
 | |
|                     if (coeff) {
 | |
|                         s->dcadsp->dmix_sub(s->output_samples[spkr    ],
 | |
|                                             s->output_samples[src_spkr],
 | |
|                                             coeff, nsamples);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) {
 | |
|         // Front sum/difference decoding
 | |
|         if ((s->sumdiff_front && s->audio_mode > DCA_AMODE_MONO)
 | |
|             || s->audio_mode == DCA_AMODE_STEREO_SUMDIFF) {
 | |
|             s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_L],
 | |
|                                             s->output_samples[DCA_SPEAKER_R],
 | |
|                                             nsamples);
 | |
|         }
 | |
| 
 | |
|         // Surround sum/difference decoding
 | |
|         if (s->sumdiff_surround && s->audio_mode >= DCA_AMODE_2F2R) {
 | |
|             s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_Ls],
 | |
|                                             s->output_samples[DCA_SPEAKER_Rs],
 | |
|                                             nsamples);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Downmix primary channel set to stereo
 | |
|     if (s->request_mask != s->ch_mask) {
 | |
|         ff_dca_downmix_to_stereo_fixed(s->dcadsp,
 | |
|                                        s->output_samples,
 | |
|                                        s->prim_dmix_coeff,
 | |
|                                        nsamples, s->ch_mask);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < avctx->channels; i++) {
 | |
|         int32_t *samples = s->output_samples[s->ch_remap[i]];
 | |
|         int32_t *plane = (int32_t *)frame->extended_data[i];
 | |
|         for (n = 0; n < nsamples; n++)
 | |
|             plane[n] = clip23(samples[n]) * (1 << 8);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame_float(DCACoreDecoder *s, AVFrame *frame)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     int x96_nchannels = 0, x96_synth = 0;
 | |
|     int i, n, ch, ret, spkr, nsamples, nchannels;
 | |
|     float *output_samples[DCA_SPEAKER_COUNT] = { NULL }, *ptr;
 | |
|     const float *filter_coeff;
 | |
| 
 | |
|     if (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96)) {
 | |
|         x96_nchannels = s->x96_nchannels;
 | |
|         x96_synth = 1;
 | |
|     }
 | |
| 
 | |
|     avctx->sample_rate = s->sample_rate << x96_synth;
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
|     avctx->bits_per_raw_sample = 0;
 | |
| 
 | |
|     frame->nb_samples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Build reverse speaker to channel mapping
 | |
|     for (i = 0; i < avctx->channels; i++)
 | |
|         output_samples[s->ch_remap[i]] = (float *)frame->extended_data[i];
 | |
| 
 | |
|     // Allocate space for extra channels
 | |
|     nchannels = av_popcount(s->ch_mask) - avctx->channels;
 | |
|     if (nchannels > 0) {
 | |
|         av_fast_malloc(&s->output_buffer, &s->output_size,
 | |
|                        nsamples * nchannels * sizeof(float));
 | |
|         if (!s->output_buffer)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         ptr = (float *)s->output_buffer;
 | |
|         for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) {
 | |
|             if (!(s->ch_mask & (1U << spkr)))
 | |
|                 continue;
 | |
|             if (output_samples[spkr])
 | |
|                 continue;
 | |
|             output_samples[spkr] = ptr;
 | |
|             ptr += nsamples;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Handle change of filtering mode
 | |
|     set_filter_mode(s, x96_synth);
 | |
| 
 | |
|     // Select filter
 | |
|     if (x96_synth)
 | |
|         filter_coeff = ff_dca_fir_64bands;
 | |
|     else if (s->filter_perfect)
 | |
|         filter_coeff = ff_dca_fir_32bands_perfect;
 | |
|     else
 | |
|         filter_coeff = ff_dca_fir_32bands_nonperfect;
 | |
| 
 | |
|     // Filter primary channels
 | |
|     for (ch = 0; ch < s->nchannels; ch++) {
 | |
|         // Map this primary channel to speaker
 | |
|         spkr = map_prm_ch_to_spkr(s, ch);
 | |
|         if (spkr < 0)
 | |
|             return AVERROR(EINVAL);
 | |
| 
 | |
|         // Filter bank reconstruction
 | |
|         s->dcadsp->sub_qmf_float[x96_synth](
 | |
|             &s->synth,
 | |
|             &s->imdct[x96_synth],
 | |
|             output_samples[spkr],
 | |
|             s->subband_samples[ch],
 | |
|             ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL,
 | |
|             s->dcadsp_data[ch].u.flt.hist1,
 | |
|             &s->dcadsp_data[ch].offset,
 | |
|             s->dcadsp_data[ch].u.flt.hist2,
 | |
|             filter_coeff,
 | |
|             s->npcmblocks,
 | |
|             1.0f / (1 << (17 - x96_synth)));
 | |
|     }
 | |
| 
 | |
|     // Filter LFE channel
 | |
|     if (s->lfe_present) {
 | |
|         int dec_select = (s->lfe_present == DCA_LFE_FLAG_128);
 | |
|         float *samples = output_samples[DCA_SPEAKER_LFE1];
 | |
|         int nlfesamples = s->npcmblocks >> (dec_select + 1);
 | |
| 
 | |
|         // Offset intermediate buffer for X96
 | |
|         if (x96_synth)
 | |
|             samples += nsamples / 2;
 | |
| 
 | |
|         // Select filter
 | |
|         if (dec_select)
 | |
|             filter_coeff = ff_dca_lfe_fir_128;
 | |
|         else
 | |
|             filter_coeff = ff_dca_lfe_fir_64;
 | |
| 
 | |
|         // Interpolate LFE channel
 | |
|         s->dcadsp->lfe_fir_float[dec_select](
 | |
|             samples, s->lfe_samples + DCA_LFE_HISTORY,
 | |
|             filter_coeff, s->npcmblocks);
 | |
| 
 | |
|         if (x96_synth) {
 | |
|             // Filter 96 kHz oversampled LFE PCM to attenuate high frequency
 | |
|             // (47.6 - 48.0 kHz) components of interpolation image
 | |
|             s->dcadsp->lfe_x96_float(output_samples[DCA_SPEAKER_LFE1],
 | |
|                                      samples, &s->output_history_lfe_float,
 | |
|                                      nsamples / 2);
 | |
|         }
 | |
| 
 | |
|         // Update LFE history
 | |
|         for (n = DCA_LFE_HISTORY - 1; n >= 0; n--)
 | |
|             s->lfe_samples[n] = s->lfe_samples[nlfesamples + n];
 | |
|     }
 | |
| 
 | |
|     // Undo embedded XCH downmix
 | |
|     if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH)
 | |
|         && s->audio_mode >= DCA_AMODE_2F2R) {
 | |
|         s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Ls],
 | |
|                                          output_samples[DCA_SPEAKER_Cs],
 | |
|                                          -M_SQRT1_2, nsamples);
 | |
|         s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Rs],
 | |
|                                          output_samples[DCA_SPEAKER_Cs],
 | |
|                                          -M_SQRT1_2, nsamples);
 | |
|     }
 | |
| 
 | |
|     // Undo embedded XXCH downmix
 | |
|     if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH))
 | |
|         && s->xxch_dmix_embedded) {
 | |
|         float scale_inv = s->xxch_dmix_scale_inv * (1.0f / (1 << 16));
 | |
|         int *coeff_ptr  = s->xxch_dmix_coeff;
 | |
|         int xch_base    = ff_dca_channels[s->audio_mode];
 | |
|         av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX);
 | |
| 
 | |
|         // Undo downmix
 | |
|         for (ch = xch_base; ch < s->nchannels; ch++) {
 | |
|             int src_spkr = map_prm_ch_to_spkr(s, ch);
 | |
|             if (src_spkr < 0)
 | |
|                 return AVERROR(EINVAL);
 | |
|             for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
 | |
|                 if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) {
 | |
|                     int coeff = *coeff_ptr++;
 | |
|                     if (coeff) {
 | |
|                         s->float_dsp->vector_fmac_scalar(output_samples[    spkr],
 | |
|                                                          output_samples[src_spkr],
 | |
|                                                          coeff * (-1.0f / (1 << 15)),
 | |
|                                                          nsamples);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Undo embedded core downmix pre-scaling
 | |
|         for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
 | |
|             if (s->xxch_core_mask & (1U << spkr)) {
 | |
|                 s->float_dsp->vector_fmul_scalar(output_samples[spkr],
 | |
|                                                  output_samples[spkr],
 | |
|                                                  scale_inv, nsamples);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) {
 | |
|         // Front sum/difference decoding
 | |
|         if ((s->sumdiff_front && s->audio_mode > DCA_AMODE_MONO)
 | |
|             || s->audio_mode == DCA_AMODE_STEREO_SUMDIFF) {
 | |
|             s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_L],
 | |
|                                             output_samples[DCA_SPEAKER_R],
 | |
|                                             nsamples);
 | |
|         }
 | |
| 
 | |
|         // Surround sum/difference decoding
 | |
|         if (s->sumdiff_surround && s->audio_mode >= DCA_AMODE_2F2R) {
 | |
|             s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_Ls],
 | |
|                                             output_samples[DCA_SPEAKER_Rs],
 | |
|                                             nsamples);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Downmix primary channel set to stereo
 | |
|     if (s->request_mask != s->ch_mask) {
 | |
|         ff_dca_downmix_to_stereo_float(s->float_dsp, output_samples,
 | |
|                                        s->prim_dmix_coeff,
 | |
|                                        nsamples, s->ch_mask);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_dca_core_filter_frame(DCACoreDecoder *s, AVFrame *frame)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     DCAContext *dca = avctx->priv_data;
 | |
|     DCAExssAsset *asset = &dca->exss.assets[0];
 | |
|     enum AVMatrixEncoding matrix_encoding;
 | |
|     int ret;
 | |
| 
 | |
|     // Handle downmixing to stereo request
 | |
|     if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
 | |
|         && s->audio_mode > DCA_AMODE_MONO && s->prim_dmix_embedded
 | |
|         && (s->prim_dmix_type == DCA_DMIX_TYPE_LoRo ||
 | |
|             s->prim_dmix_type == DCA_DMIX_TYPE_LtRt))
 | |
|         s->request_mask = DCA_SPEAKER_LAYOUT_STEREO;
 | |
|     else
 | |
|         s->request_mask = s->ch_mask;
 | |
|     if (!ff_dca_set_channel_layout(avctx, s->ch_remap, s->request_mask))
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     // Force fixed point mode when falling back from XLL
 | |
|     if ((avctx->flags & AV_CODEC_FLAG_BITEXACT) || ((dca->packet & DCA_PACKET_EXSS)
 | |
|                                                     && (asset->extension_mask & DCA_EXSS_XLL)))
 | |
|         ret = filter_frame_fixed(s, frame);
 | |
|     else
 | |
|         ret = filter_frame_float(s, frame);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Set profile, bit rate, etc
 | |
|     if (s->ext_audio_mask & DCA_EXSS_MASK)
 | |
|         avctx->profile = FF_PROFILE_DTS_HD_HRA;
 | |
|     else if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH))
 | |
|         avctx->profile = FF_PROFILE_DTS_ES;
 | |
|     else if (s->ext_audio_mask & DCA_CSS_X96)
 | |
|         avctx->profile = FF_PROFILE_DTS_96_24;
 | |
|     else
 | |
|         avctx->profile = FF_PROFILE_DTS;
 | |
| 
 | |
|     if (s->bit_rate > 3 && !(s->ext_audio_mask & DCA_EXSS_MASK))
 | |
|         avctx->bit_rate = s->bit_rate;
 | |
|     else
 | |
|         avctx->bit_rate = 0;
 | |
| 
 | |
|     if (s->audio_mode == DCA_AMODE_STEREO_TOTAL || (s->request_mask != s->ch_mask &&
 | |
|                                                     s->prim_dmix_type == DCA_DMIX_TYPE_LtRt))
 | |
|         matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
 | |
|     else
 | |
|         matrix_encoding = AV_MATRIX_ENCODING_NONE;
 | |
|     if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold void ff_dca_core_flush(DCACoreDecoder *s)
 | |
| {
 | |
|     if (s->subband_buffer) {
 | |
|         erase_adpcm_history(s);
 | |
|         memset(s->lfe_samples, 0, DCA_LFE_HISTORY * sizeof(int32_t));
 | |
|     }
 | |
| 
 | |
|     if (s->x96_subband_buffer)
 | |
|         erase_x96_adpcm_history(s);
 | |
| 
 | |
|     erase_dsp_history(s);
 | |
| }
 | |
| 
 | |
| av_cold int ff_dca_core_init(DCACoreDecoder *s)
 | |
| {
 | |
|     if (!(s->float_dsp = avpriv_float_dsp_alloc(0)))
 | |
|         return -1;
 | |
|     if (!(s->fixed_dsp = avpriv_alloc_fixed_dsp(0)))
 | |
|         return -1;
 | |
| 
 | |
|     ff_dcadct_init(&s->dcadct);
 | |
|     if (ff_mdct_init(&s->imdct[0], 6, 1, 1.0) < 0)
 | |
|         return -1;
 | |
|     if (ff_mdct_init(&s->imdct[1], 7, 1, 1.0) < 0)
 | |
|         return -1;
 | |
|     ff_synth_filter_init(&s->synth);
 | |
| 
 | |
|     s->x96_rand = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold void ff_dca_core_close(DCACoreDecoder *s)
 | |
| {
 | |
|     av_freep(&s->float_dsp);
 | |
|     av_freep(&s->fixed_dsp);
 | |
| 
 | |
|     ff_mdct_end(&s->imdct[0]);
 | |
|     ff_mdct_end(&s->imdct[1]);
 | |
| 
 | |
|     av_freep(&s->subband_buffer);
 | |
|     s->subband_size = 0;
 | |
| 
 | |
|     av_freep(&s->x96_subband_buffer);
 | |
|     s->x96_subband_size = 0;
 | |
| 
 | |
|     av_freep(&s->output_buffer);
 | |
|     s->output_size = 0;
 | |
| }
 |