mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-26 18:30:52 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1310 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1310 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * COOK compatible decoder
 | |
|  * Copyright (c) 2003 Sascha Sommer
 | |
|  * Copyright (c) 2005 Benjamin Larsson
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Cook compatible decoder. Bastardization of the G.722.1 standard.
 | |
|  * This decoder handles RealNetworks, RealAudio G2 data.
 | |
|  * Cook is identified by the codec name cook in RM files.
 | |
|  *
 | |
|  * To use this decoder, a calling application must supply the extradata
 | |
|  * bytes provided from the RM container; 8+ bytes for mono streams and
 | |
|  * 16+ for stereo streams (maybe more).
 | |
|  *
 | |
|  * Codec technicalities (all this assume a buffer length of 1024):
 | |
|  * Cook works with several different techniques to achieve its compression.
 | |
|  * In the timedomain the buffer is divided into 8 pieces and quantized. If
 | |
|  * two neighboring pieces have different quantization index a smooth
 | |
|  * quantization curve is used to get a smooth overlap between the different
 | |
|  * pieces.
 | |
|  * To get to the transformdomain Cook uses a modulated lapped transform.
 | |
|  * The transform domain has 50 subbands with 20 elements each. This
 | |
|  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
 | |
|  * available.
 | |
|  */
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/lfg.h"
 | |
| #include "libavutil/mem_internal.h"
 | |
| #include "libavutil/thread.h"
 | |
| 
 | |
| #include "audiodsp.h"
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "bytestream.h"
 | |
| #include "fft.h"
 | |
| #include "internal.h"
 | |
| #include "sinewin.h"
 | |
| #include "unary.h"
 | |
| 
 | |
| #include "cookdata.h"
 | |
| 
 | |
| /* the different Cook versions */
 | |
| #define MONO            0x1000001
 | |
| #define STEREO          0x1000002
 | |
| #define JOINT_STEREO    0x1000003
 | |
| #define MC_COOK         0x2000000
 | |
| 
 | |
| #define SUBBAND_SIZE    20
 | |
| #define MAX_SUBPACKETS   5
 | |
| 
 | |
| #define QUANT_VLC_BITS    9
 | |
| #define COUPLING_VLC_BITS 6
 | |
| 
 | |
| typedef struct cook_gains {
 | |
|     int *now;
 | |
|     int *previous;
 | |
| } cook_gains;
 | |
| 
 | |
| typedef struct COOKSubpacket {
 | |
|     int                 ch_idx;
 | |
|     int                 size;
 | |
|     int                 num_channels;
 | |
|     int                 cookversion;
 | |
|     int                 subbands;
 | |
|     int                 js_subband_start;
 | |
|     int                 js_vlc_bits;
 | |
|     int                 samples_per_channel;
 | |
|     int                 log2_numvector_size;
 | |
|     unsigned int        channel_mask;
 | |
|     VLC                 channel_coupling;
 | |
|     int                 joint_stereo;
 | |
|     int                 bits_per_subpacket;
 | |
|     int                 bits_per_subpdiv;
 | |
|     int                 total_subbands;
 | |
|     int                 numvector_size;       // 1 << log2_numvector_size;
 | |
| 
 | |
|     float               mono_previous_buffer1[1024];
 | |
|     float               mono_previous_buffer2[1024];
 | |
| 
 | |
|     cook_gains          gains1;
 | |
|     cook_gains          gains2;
 | |
|     int                 gain_1[9];
 | |
|     int                 gain_2[9];
 | |
|     int                 gain_3[9];
 | |
|     int                 gain_4[9];
 | |
| } COOKSubpacket;
 | |
| 
 | |
| typedef struct cook {
 | |
|     /*
 | |
|      * The following 5 functions provide the lowlevel arithmetic on
 | |
|      * the internal audio buffers.
 | |
|      */
 | |
|     void (*scalar_dequant)(struct cook *q, int index, int quant_index,
 | |
|                            int *subband_coef_index, int *subband_coef_sign,
 | |
|                            float *mlt_p);
 | |
| 
 | |
|     void (*decouple)(struct cook *q,
 | |
|                      COOKSubpacket *p,
 | |
|                      int subband,
 | |
|                      float f1, float f2,
 | |
|                      float *decode_buffer,
 | |
|                      float *mlt_buffer1, float *mlt_buffer2);
 | |
| 
 | |
|     void (*imlt_window)(struct cook *q, float *buffer1,
 | |
|                         cook_gains *gains_ptr, float *previous_buffer);
 | |
| 
 | |
|     void (*interpolate)(struct cook *q, float *buffer,
 | |
|                         int gain_index, int gain_index_next);
 | |
| 
 | |
|     void (*saturate_output)(struct cook *q, float *out);
 | |
| 
 | |
|     AVCodecContext*     avctx;
 | |
|     AudioDSPContext     adsp;
 | |
|     GetBitContext       gb;
 | |
|     /* stream data */
 | |
|     int                 num_vectors;
 | |
|     int                 samples_per_channel;
 | |
|     /* states */
 | |
|     AVLFG               random_state;
 | |
|     int                 discarded_packets;
 | |
| 
 | |
|     /* transform data */
 | |
|     FFTContext          mdct_ctx;
 | |
|     float*              mlt_window;
 | |
| 
 | |
|     /* VLC data */
 | |
|     VLC                 envelope_quant_index[13];
 | |
|     VLC                 sqvh[7];          // scalar quantization
 | |
| 
 | |
|     /* generate tables and related variables */
 | |
|     int                 gain_size_factor;
 | |
|     float               gain_table[31];
 | |
| 
 | |
|     /* data buffers */
 | |
| 
 | |
|     uint8_t*            decoded_bytes_buffer;
 | |
|     DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
 | |
|     float               decode_buffer_1[1024];
 | |
|     float               decode_buffer_2[1024];
 | |
|     float               decode_buffer_0[1060]; /* static allocation for joint decode */
 | |
| 
 | |
|     const float         *cplscales[5];
 | |
|     int                 num_subpackets;
 | |
|     COOKSubpacket       subpacket[MAX_SUBPACKETS];
 | |
| } COOKContext;
 | |
| 
 | |
| static float     pow2tab[127];
 | |
| static float rootpow2tab[127];
 | |
| 
 | |
| /*************** init functions ***************/
 | |
| 
 | |
| /* table generator */
 | |
| static av_cold void init_pow2table(void)
 | |
| {
 | |
|     /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */
 | |
|     int i;
 | |
|     static const float exp2_tab[2] = {1, M_SQRT2};
 | |
|     float exp2_val = powf(2, -63);
 | |
|     float root_val = powf(2, -32);
 | |
|     for (i = -63; i < 64; i++) {
 | |
|         if (!(i & 1))
 | |
|             root_val *= 2;
 | |
|         pow2tab[63 + i] = exp2_val;
 | |
|         rootpow2tab[63 + i] = root_val * exp2_tab[i & 1];
 | |
|         exp2_val *= 2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* table generator */
 | |
| static av_cold void init_gain_table(COOKContext *q)
 | |
| {
 | |
|     int i;
 | |
|     q->gain_size_factor = q->samples_per_channel / 8;
 | |
|     for (i = 0; i < 31; i++)
 | |
|         q->gain_table[i] = pow(pow2tab[i + 48],
 | |
|                                (1.0 / (double) q->gain_size_factor));
 | |
| }
 | |
| 
 | |
| static av_cold int build_vlc(VLC *vlc, int nb_bits, const uint8_t counts[16],
 | |
|                              const void *syms, int symbol_size, int offset,
 | |
|                              void *logctx)
 | |
| {
 | |
|     uint8_t lens[MAX_COOK_VLC_ENTRIES];
 | |
|     unsigned num = 0;
 | |
| 
 | |
|     for (int i = 0; i < 16; i++)
 | |
|         for (unsigned count = num + counts[i]; num < count; num++)
 | |
|             lens[num] = i + 1;
 | |
| 
 | |
|     return ff_init_vlc_from_lengths(vlc, nb_bits, num, lens, 1,
 | |
|                                     syms, symbol_size, symbol_size,
 | |
|                                     offset, 0, logctx);
 | |
| }
 | |
| 
 | |
| static av_cold int init_cook_vlc_tables(COOKContext *q)
 | |
| {
 | |
|     int i, result;
 | |
| 
 | |
|     result = 0;
 | |
|     for (i = 0; i < 13; i++) {
 | |
|         result |= build_vlc(&q->envelope_quant_index[i], QUANT_VLC_BITS,
 | |
|                             envelope_quant_index_huffcounts[i],
 | |
|                             envelope_quant_index_huffsyms[i], 1, -12, q->avctx);
 | |
|     }
 | |
|     av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
 | |
|     for (i = 0; i < 7; i++) {
 | |
|         int sym_size = 1 + (i == 3);
 | |
|         result |= build_vlc(&q->sqvh[i], vhvlcsize_tab[i],
 | |
|                             cvh_huffcounts[i],
 | |
|                             cvh_huffsyms[i], sym_size, 0, q->avctx);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < q->num_subpackets; i++) {
 | |
|         if (q->subpacket[i].joint_stereo == 1) {
 | |
|             result |= build_vlc(&q->subpacket[i].channel_coupling, COUPLING_VLC_BITS,
 | |
|                                 ccpl_huffcounts[q->subpacket[i].js_vlc_bits - 2],
 | |
|                                 ccpl_huffsyms[q->subpacket[i].js_vlc_bits - 2], 1,
 | |
|                                 0, q->avctx);
 | |
|             av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static av_cold int init_cook_mlt(COOKContext *q)
 | |
| {
 | |
|     int j, ret;
 | |
|     int mlt_size = q->samples_per_channel;
 | |
| 
 | |
|     if (!(q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     /* Initialize the MLT window: simple sine window. */
 | |
|     ff_sine_window_init(q->mlt_window, mlt_size);
 | |
|     for (j = 0; j < mlt_size; j++)
 | |
|         q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
 | |
| 
 | |
|     /* Initialize the MDCT. */
 | |
|     ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
 | |
|            av_log2(mlt_size) + 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void init_cplscales_table(COOKContext *q)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < 5; i++)
 | |
|         q->cplscales[i] = cplscales[i];
 | |
| }
 | |
| 
 | |
| /*************** init functions end ***********/
 | |
| 
 | |
| #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
 | |
| #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
 | |
| 
 | |
| /**
 | |
|  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
 | |
|  * Why? No idea, some checksum/error detection method maybe.
 | |
|  *
 | |
|  * Out buffer size: extra bytes are needed to cope with
 | |
|  * padding/misalignment.
 | |
|  * Subpackets passed to the decoder can contain two, consecutive
 | |
|  * half-subpackets, of identical but arbitrary size.
 | |
|  *          1234 1234 1234 1234  extraA extraB
 | |
|  * Case 1:  AAAA BBBB              0      0
 | |
|  * Case 2:  AAAA ABBB BB--         3      3
 | |
|  * Case 3:  AAAA AABB BBBB         2      2
 | |
|  * Case 4:  AAAA AAAB BBBB BB--    1      5
 | |
|  *
 | |
|  * Nice way to waste CPU cycles.
 | |
|  *
 | |
|  * @param inbuffer  pointer to byte array of indata
 | |
|  * @param out       pointer to byte array of outdata
 | |
|  * @param bytes     number of bytes
 | |
|  */
 | |
| static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
 | |
| {
 | |
|     static const uint32_t tab[4] = {
 | |
|         AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
 | |
|         AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
 | |
|     };
 | |
|     int i, off;
 | |
|     uint32_t c;
 | |
|     const uint32_t *buf;
 | |
|     uint32_t *obuf = (uint32_t *) out;
 | |
|     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
 | |
|      * I'm too lazy though, should be something like
 | |
|      * for (i = 0; i < bitamount / 64; i++)
 | |
|      *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
 | |
|      * Buffer alignment needs to be checked. */
 | |
| 
 | |
|     off = (intptr_t) inbuffer & 3;
 | |
|     buf = (const uint32_t *) (inbuffer - off);
 | |
|     c = tab[off];
 | |
|     bytes += 3 + off;
 | |
|     for (i = 0; i < bytes / 4; i++)
 | |
|         obuf[i] = c ^ buf[i];
 | |
| 
 | |
|     return off;
 | |
| }
 | |
| 
 | |
| static av_cold int cook_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     int i;
 | |
|     COOKContext *q = avctx->priv_data;
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
 | |
| 
 | |
|     /* Free allocated memory buffers. */
 | |
|     av_freep(&q->mlt_window);
 | |
|     av_freep(&q->decoded_bytes_buffer);
 | |
| 
 | |
|     /* Free the transform. */
 | |
|     ff_mdct_end(&q->mdct_ctx);
 | |
| 
 | |
|     /* Free the VLC tables. */
 | |
|     for (i = 0; i < 13; i++)
 | |
|         ff_free_vlc(&q->envelope_quant_index[i]);
 | |
|     for (i = 0; i < 7; i++)
 | |
|         ff_free_vlc(&q->sqvh[i]);
 | |
|     for (i = 0; i < q->num_subpackets; i++)
 | |
|         ff_free_vlc(&q->subpacket[i].channel_coupling);
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Fill the gain array for the timedomain quantization.
 | |
|  *
 | |
|  * @param gb          pointer to the GetBitContext
 | |
|  * @param gaininfo    array[9] of gain indexes
 | |
|  */
 | |
| static void decode_gain_info(GetBitContext *gb, int *gaininfo)
 | |
| {
 | |
|     int i, n;
 | |
| 
 | |
|     n = get_unary(gb, 0, get_bits_left(gb));     // amount of elements*2 to update
 | |
| 
 | |
|     i = 0;
 | |
|     while (n--) {
 | |
|         int index = get_bits(gb, 3);
 | |
|         int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
 | |
| 
 | |
|         while (i <= index)
 | |
|             gaininfo[i++] = gain;
 | |
|     }
 | |
|     while (i <= 8)
 | |
|         gaininfo[i++] = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create the quant index table needed for the envelope.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param quant_index_table pointer to the array
 | |
|  */
 | |
| static int decode_envelope(COOKContext *q, COOKSubpacket *p,
 | |
|                            int *quant_index_table)
 | |
| {
 | |
|     int i, j, vlc_index;
 | |
| 
 | |
|     quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
 | |
| 
 | |
|     for (i = 1; i < p->total_subbands; i++) {
 | |
|         vlc_index = i;
 | |
|         if (i >= p->js_subband_start * 2) {
 | |
|             vlc_index -= p->js_subband_start;
 | |
|         } else {
 | |
|             vlc_index /= 2;
 | |
|             if (vlc_index < 1)
 | |
|                 vlc_index = 1;
 | |
|         }
 | |
|         if (vlc_index > 13)
 | |
|             vlc_index = 13; // the VLC tables >13 are identical to No. 13
 | |
| 
 | |
|         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
 | |
|                      QUANT_VLC_BITS, 2);
 | |
|         quant_index_table[i] = quant_index_table[i - 1] + j; // differential encoding
 | |
|         if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
 | |
|             av_log(q->avctx, AV_LOG_ERROR,
 | |
|                    "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
 | |
|                    quant_index_table[i], i);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate the category and category_index vector.
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param quant_index_table     pointer to the array
 | |
|  * @param category              pointer to the category array
 | |
|  * @param category_index        pointer to the category_index array
 | |
|  */
 | |
| static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
 | |
|                        int *category, int *category_index)
 | |
| {
 | |
|     int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
 | |
|     int exp_index2[102] = { 0 };
 | |
|     int exp_index1[102] = { 0 };
 | |
| 
 | |
|     int tmp_categorize_array[128 * 2] = { 0 };
 | |
|     int tmp_categorize_array1_idx = p->numvector_size;
 | |
|     int tmp_categorize_array2_idx = p->numvector_size;
 | |
| 
 | |
|     bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
 | |
| 
 | |
|     if (bits_left > q->samples_per_channel)
 | |
|         bits_left = q->samples_per_channel +
 | |
|                     ((bits_left - q->samples_per_channel) * 5) / 8;
 | |
| 
 | |
|     bias = -32;
 | |
| 
 | |
|     /* Estimate bias. */
 | |
|     for (i = 32; i > 0; i = i / 2) {
 | |
|         num_bits = 0;
 | |
|         index    = 0;
 | |
|         for (j = p->total_subbands; j > 0; j--) {
 | |
|             exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
 | |
|             index++;
 | |
|             num_bits += expbits_tab[exp_idx];
 | |
|         }
 | |
|         if (num_bits >= bits_left - 32)
 | |
|             bias += i;
 | |
|     }
 | |
| 
 | |
|     /* Calculate total number of bits. */
 | |
|     num_bits = 0;
 | |
|     for (i = 0; i < p->total_subbands; i++) {
 | |
|         exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
 | |
|         num_bits += expbits_tab[exp_idx];
 | |
|         exp_index1[i] = exp_idx;
 | |
|         exp_index2[i] = exp_idx;
 | |
|     }
 | |
|     tmpbias1 = tmpbias2 = num_bits;
 | |
| 
 | |
|     for (j = 1; j < p->numvector_size; j++) {
 | |
|         if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
 | |
|             int max = -999999;
 | |
|             index = -1;
 | |
|             for (i = 0; i < p->total_subbands; i++) {
 | |
|                 if (exp_index1[i] < 7) {
 | |
|                     v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
 | |
|                     if (v >= max) {
 | |
|                         max   = v;
 | |
|                         index = i;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (index == -1)
 | |
|                 break;
 | |
|             tmp_categorize_array[tmp_categorize_array1_idx++] = index;
 | |
|             tmpbias1 -= expbits_tab[exp_index1[index]] -
 | |
|                         expbits_tab[exp_index1[index] + 1];
 | |
|             ++exp_index1[index];
 | |
|         } else {  /* <--- */
 | |
|             int min = 999999;
 | |
|             index = -1;
 | |
|             for (i = 0; i < p->total_subbands; i++) {
 | |
|                 if (exp_index2[i] > 0) {
 | |
|                     v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
 | |
|                     if (v < min) {
 | |
|                         min   = v;
 | |
|                         index = i;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (index == -1)
 | |
|                 break;
 | |
|             tmp_categorize_array[--tmp_categorize_array2_idx] = index;
 | |
|             tmpbias2 -= expbits_tab[exp_index2[index]] -
 | |
|                         expbits_tab[exp_index2[index] - 1];
 | |
|             --exp_index2[index];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < p->total_subbands; i++)
 | |
|         category[i] = exp_index2[i];
 | |
| 
 | |
|     for (i = 0; i < p->numvector_size - 1; i++)
 | |
|         category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Expand the category vector.
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param category              pointer to the category array
 | |
|  * @param category_index        pointer to the category_index array
 | |
|  */
 | |
| static inline void expand_category(COOKContext *q, int *category,
 | |
|                                    int *category_index)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < q->num_vectors; i++)
 | |
|     {
 | |
|         int idx = category_index[i];
 | |
|         if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
 | |
|             --category[idx];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The real requantization of the mltcoefs
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param index                 index
 | |
|  * @param quant_index           quantisation index
 | |
|  * @param subband_coef_index    array of indexes to quant_centroid_tab
 | |
|  * @param subband_coef_sign     signs of coefficients
 | |
|  * @param mlt_p                 pointer into the mlt buffer
 | |
|  */
 | |
| static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
 | |
|                                  int *subband_coef_index, int *subband_coef_sign,
 | |
|                                  float *mlt_p)
 | |
| {
 | |
|     int i;
 | |
|     float f1;
 | |
| 
 | |
|     for (i = 0; i < SUBBAND_SIZE; i++) {
 | |
|         if (subband_coef_index[i]) {
 | |
|             f1 = quant_centroid_tab[index][subband_coef_index[i]];
 | |
|             if (subband_coef_sign[i])
 | |
|                 f1 = -f1;
 | |
|         } else {
 | |
|             /* noise coding if subband_coef_index[i] == 0 */
 | |
|             f1 = dither_tab[index];
 | |
|             if (av_lfg_get(&q->random_state) < 0x80000000)
 | |
|                 f1 = -f1;
 | |
|         }
 | |
|         mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
 | |
|     }
 | |
| }
 | |
| /**
 | |
|  * Unpack the subband_coef_index and subband_coef_sign vectors.
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param category              pointer to the category array
 | |
|  * @param subband_coef_index    array of indexes to quant_centroid_tab
 | |
|  * @param subband_coef_sign     signs of coefficients
 | |
|  */
 | |
| static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
 | |
|                        int *subband_coef_index, int *subband_coef_sign)
 | |
| {
 | |
|     int i, j;
 | |
|     int vlc, vd, tmp, result;
 | |
| 
 | |
|     vd = vd_tab[category];
 | |
|     result = 0;
 | |
|     for (i = 0; i < vpr_tab[category]; i++) {
 | |
|         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
 | |
|         if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
 | |
|             vlc = 0;
 | |
|             result = 1;
 | |
|         }
 | |
|         for (j = vd - 1; j >= 0; j--) {
 | |
|             tmp = (vlc * invradix_tab[category]) / 0x100000;
 | |
|             subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
 | |
|             vlc = tmp;
 | |
|         }
 | |
|         for (j = 0; j < vd; j++) {
 | |
|             if (subband_coef_index[i * vd + j]) {
 | |
|                 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
 | |
|                     subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
 | |
|                 } else {
 | |
|                     result = 1;
 | |
|                     subband_coef_sign[i * vd + j] = 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 subband_coef_sign[i * vd + j] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Fill the mlt_buffer with mlt coefficients.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param category          pointer to the category array
 | |
|  * @param quant_index_table pointer to the array
 | |
|  * @param mlt_buffer        pointer to mlt coefficients
 | |
|  */
 | |
| static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
 | |
|                            int *quant_index_table, float *mlt_buffer)
 | |
| {
 | |
|     /* A zero in this table means that the subband coefficient is
 | |
|        random noise coded. */
 | |
|     int subband_coef_index[SUBBAND_SIZE];
 | |
|     /* A zero in this table means that the subband coefficient is a
 | |
|        positive multiplicator. */
 | |
|     int subband_coef_sign[SUBBAND_SIZE];
 | |
|     int band, j;
 | |
|     int index = 0;
 | |
| 
 | |
|     for (band = 0; band < p->total_subbands; band++) {
 | |
|         index = category[band];
 | |
|         if (category[band] < 7) {
 | |
|             if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
 | |
|                 index = 7;
 | |
|                 for (j = 0; j < p->total_subbands; j++)
 | |
|                     category[band + j] = 7;
 | |
|             }
 | |
|         }
 | |
|         if (index >= 7) {
 | |
|             memset(subband_coef_index, 0, sizeof(subband_coef_index));
 | |
|             memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
 | |
|         }
 | |
|         q->scalar_dequant(q, index, quant_index_table[band],
 | |
|                           subband_coef_index, subband_coef_sign,
 | |
|                           &mlt_buffer[band * SUBBAND_SIZE]);
 | |
|     }
 | |
| 
 | |
|     /* FIXME: should this be removed, or moved into loop above? */
 | |
|     if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
 | |
|         return;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
 | |
| {
 | |
|     int category_index[128] = { 0 };
 | |
|     int category[128]       = { 0 };
 | |
|     int quant_index_table[102];
 | |
|     int res, i;
 | |
| 
 | |
|     if ((res = decode_envelope(q, p, quant_index_table)) < 0)
 | |
|         return res;
 | |
|     q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
 | |
|     categorize(q, p, quant_index_table, category, category_index);
 | |
|     expand_category(q, category, category_index);
 | |
|     for (i=0; i<p->total_subbands; i++) {
 | |
|         if (category[i] > 7)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     decode_vectors(q, p, category, quant_index_table, mlt_buffer);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * the actual requantization of the timedomain samples
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param buffer            pointer to the timedomain buffer
 | |
|  * @param gain_index        index for the block multiplier
 | |
|  * @param gain_index_next   index for the next block multiplier
 | |
|  */
 | |
| static void interpolate_float(COOKContext *q, float *buffer,
 | |
|                               int gain_index, int gain_index_next)
 | |
| {
 | |
|     int i;
 | |
|     float fc1, fc2;
 | |
|     fc1 = pow2tab[gain_index + 63];
 | |
| 
 | |
|     if (gain_index == gain_index_next) {             // static gain
 | |
|         for (i = 0; i < q->gain_size_factor; i++)
 | |
|             buffer[i] *= fc1;
 | |
|     } else {                                        // smooth gain
 | |
|         fc2 = q->gain_table[15 + (gain_index_next - gain_index)];
 | |
|         for (i = 0; i < q->gain_size_factor; i++) {
 | |
|             buffer[i] *= fc1;
 | |
|             fc1       *= fc2;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply transform window, overlap buffers.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param inbuffer          pointer to the mltcoefficients
 | |
|  * @param gains_ptr         current and previous gains
 | |
|  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 | |
|  */
 | |
| static void imlt_window_float(COOKContext *q, float *inbuffer,
 | |
|                               cook_gains *gains_ptr, float *previous_buffer)
 | |
| {
 | |
|     const float fc = pow2tab[gains_ptr->previous[0] + 63];
 | |
|     int i;
 | |
|     /* The weird thing here, is that the two halves of the time domain
 | |
|      * buffer are swapped. Also, the newest data, that we save away for
 | |
|      * next frame, has the wrong sign. Hence the subtraction below.
 | |
|      * Almost sounds like a complex conjugate/reverse data/FFT effect.
 | |
|      */
 | |
| 
 | |
|     /* Apply window and overlap */
 | |
|     for (i = 0; i < q->samples_per_channel; i++)
 | |
|         inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
 | |
|                       previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The modulated lapped transform, this takes transform coefficients
 | |
|  * and transforms them into timedomain samples.
 | |
|  * Apply transform window, overlap buffers, apply gain profile
 | |
|  * and buffer management.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param inbuffer          pointer to the mltcoefficients
 | |
|  * @param gains_ptr         current and previous gains
 | |
|  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 | |
|  */
 | |
| static void imlt_gain(COOKContext *q, float *inbuffer,
 | |
|                       cook_gains *gains_ptr, float *previous_buffer)
 | |
| {
 | |
|     float *buffer0 = q->mono_mdct_output;
 | |
|     float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
 | |
|     int i;
 | |
| 
 | |
|     /* Inverse modified discrete cosine transform */
 | |
|     q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
 | |
| 
 | |
|     q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
 | |
| 
 | |
|     /* Apply gain profile */
 | |
|     for (i = 0; i < 8; i++)
 | |
|         if (gains_ptr->now[i] || gains_ptr->now[i + 1])
 | |
|             q->interpolate(q, &buffer1[q->gain_size_factor * i],
 | |
|                            gains_ptr->now[i], gains_ptr->now[i + 1]);
 | |
| 
 | |
|     /* Save away the current to be previous block. */
 | |
|     memcpy(previous_buffer, buffer0,
 | |
|            q->samples_per_channel * sizeof(*previous_buffer));
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * function for getting the jointstereo coupling information
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param decouple_tab      decoupling array
 | |
|  */
 | |
| static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
 | |
| {
 | |
|     int i;
 | |
|     int vlc    = get_bits1(&q->gb);
 | |
|     int start  = cplband[p->js_subband_start];
 | |
|     int end    = cplband[p->subbands - 1];
 | |
|     int length = end - start + 1;
 | |
| 
 | |
|     if (start > end)
 | |
|         return 0;
 | |
| 
 | |
|     if (vlc)
 | |
|         for (i = 0; i < length; i++)
 | |
|             decouple_tab[start + i] = get_vlc2(&q->gb,
 | |
|                                                p->channel_coupling.table,
 | |
|                                                COUPLING_VLC_BITS, 3);
 | |
|     else
 | |
|         for (i = 0; i < length; i++) {
 | |
|             int v = get_bits(&q->gb, p->js_vlc_bits);
 | |
|             if (v == (1<<p->js_vlc_bits)-1) {
 | |
|                 av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             decouple_tab[start + i] = v;
 | |
|         }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * function decouples a pair of signals from a single signal via multiplication.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param subband           index of the current subband
 | |
|  * @param f1                multiplier for channel 1 extraction
 | |
|  * @param f2                multiplier for channel 2 extraction
 | |
|  * @param decode_buffer     input buffer
 | |
|  * @param mlt_buffer1       pointer to left channel mlt coefficients
 | |
|  * @param mlt_buffer2       pointer to right channel mlt coefficients
 | |
|  */
 | |
| static void decouple_float(COOKContext *q,
 | |
|                            COOKSubpacket *p,
 | |
|                            int subband,
 | |
|                            float f1, float f2,
 | |
|                            float *decode_buffer,
 | |
|                            float *mlt_buffer1, float *mlt_buffer2)
 | |
| {
 | |
|     int j, tmp_idx;
 | |
|     for (j = 0; j < SUBBAND_SIZE; j++) {
 | |
|         tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
 | |
|         mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
 | |
|         mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * function for decoding joint stereo data
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param mlt_buffer1       pointer to left channel mlt coefficients
 | |
|  * @param mlt_buffer2       pointer to right channel mlt coefficients
 | |
|  */
 | |
| static int joint_decode(COOKContext *q, COOKSubpacket *p,
 | |
|                         float *mlt_buffer_left, float *mlt_buffer_right)
 | |
| {
 | |
|     int i, j, res;
 | |
|     int decouple_tab[SUBBAND_SIZE] = { 0 };
 | |
|     float *decode_buffer = q->decode_buffer_0;
 | |
|     int idx, cpl_tmp;
 | |
|     float f1, f2;
 | |
|     const float *cplscale;
 | |
| 
 | |
|     memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
 | |
| 
 | |
|     /* Make sure the buffers are zeroed out. */
 | |
|     memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
 | |
|     memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
 | |
|     if ((res = decouple_info(q, p, decouple_tab)) < 0)
 | |
|         return res;
 | |
|     if ((res = mono_decode(q, p, decode_buffer)) < 0)
 | |
|         return res;
 | |
|     /* The two channels are stored interleaved in decode_buffer. */
 | |
|     for (i = 0; i < p->js_subband_start; i++) {
 | |
|         for (j = 0; j < SUBBAND_SIZE; j++) {
 | |
|             mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
 | |
|             mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* When we reach js_subband_start (the higher frequencies)
 | |
|        the coefficients are stored in a coupling scheme. */
 | |
|     idx = (1 << p->js_vlc_bits) - 1;
 | |
|     for (i = p->js_subband_start; i < p->subbands; i++) {
 | |
|         cpl_tmp = cplband[i];
 | |
|         idx -= decouple_tab[cpl_tmp];
 | |
|         cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
 | |
|         f1 = cplscale[decouple_tab[cpl_tmp] + 1];
 | |
|         f2 = cplscale[idx];
 | |
|         q->decouple(q, p, i, f1, f2, decode_buffer,
 | |
|                     mlt_buffer_left, mlt_buffer_right);
 | |
|         idx = (1 << p->js_vlc_bits) - 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * First part of subpacket decoding:
 | |
|  *  decode raw stream bytes and read gain info.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param inbuffer          pointer to raw stream data
 | |
|  * @param gains_ptr         array of current/prev gain pointers
 | |
|  */
 | |
| static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
 | |
|                                          const uint8_t *inbuffer,
 | |
|                                          cook_gains *gains_ptr)
 | |
| {
 | |
|     int offset;
 | |
| 
 | |
|     offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
 | |
|                           p->bits_per_subpacket / 8);
 | |
|     init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
 | |
|                   p->bits_per_subpacket);
 | |
|     decode_gain_info(&q->gb, gains_ptr->now);
 | |
| 
 | |
|     /* Swap current and previous gains */
 | |
|     FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Saturate the output signal and interleave.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param out               pointer to the output vector
 | |
|  */
 | |
| static void saturate_output_float(COOKContext *q, float *out)
 | |
| {
 | |
|     q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
 | |
|                          FFALIGN(q->samples_per_channel, 8), -1.0f, 1.0f);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Final part of subpacket decoding:
 | |
|  *  Apply modulated lapped transform, gain compensation,
 | |
|  *  clip and convert to integer.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param decode_buffer     pointer to the mlt coefficients
 | |
|  * @param gains_ptr         array of current/prev gain pointers
 | |
|  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 | |
|  * @param out               pointer to the output buffer
 | |
|  */
 | |
| static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
 | |
|                                          cook_gains *gains_ptr, float *previous_buffer,
 | |
|                                          float *out)
 | |
| {
 | |
|     imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
 | |
|     if (out)
 | |
|         q->saturate_output(q, out);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Cook subpacket decoding. This function returns one decoded subpacket,
 | |
|  * usually 1024 samples per channel.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param inbuffer          pointer to the inbuffer
 | |
|  * @param outbuffer         pointer to the outbuffer
 | |
|  */
 | |
| static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
 | |
|                             const uint8_t *inbuffer, float **outbuffer)
 | |
| {
 | |
|     int sub_packet_size = p->size;
 | |
|     int res;
 | |
| 
 | |
|     memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
 | |
|     decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
 | |
| 
 | |
|     if (p->joint_stereo) {
 | |
|         if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
 | |
|             return res;
 | |
|     } else {
 | |
|         if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
 | |
|             return res;
 | |
| 
 | |
|         if (p->num_channels == 2) {
 | |
|             decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
 | |
|             if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
 | |
|                 return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
 | |
|                           p->mono_previous_buffer1,
 | |
|                           outbuffer ? outbuffer[p->ch_idx] : NULL);
 | |
| 
 | |
|     if (p->num_channels == 2) {
 | |
|         if (p->joint_stereo)
 | |
|             mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
 | |
|                                   p->mono_previous_buffer2,
 | |
|                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
 | |
|         else
 | |
|             mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
 | |
|                                   p->mono_previous_buffer2,
 | |
|                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cook_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                              int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     COOKContext *q = avctx->priv_data;
 | |
|     float **samples = NULL;
 | |
|     int i, ret;
 | |
|     int offset = 0;
 | |
|     int chidx = 0;
 | |
| 
 | |
|     if (buf_size < avctx->block_align)
 | |
|         return buf_size;
 | |
| 
 | |
|     /* get output buffer */
 | |
|     if (q->discarded_packets >= 2) {
 | |
|         frame->nb_samples = q->samples_per_channel;
 | |
|         if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|             return ret;
 | |
|         samples = (float **)frame->extended_data;
 | |
|     }
 | |
| 
 | |
|     /* estimate subpacket sizes */
 | |
|     q->subpacket[0].size = avctx->block_align;
 | |
| 
 | |
|     for (i = 1; i < q->num_subpackets; i++) {
 | |
|         q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
 | |
|         q->subpacket[0].size -= q->subpacket[i].size + 1;
 | |
|         if (q->subpacket[0].size < 0) {
 | |
|             av_log(avctx, AV_LOG_DEBUG,
 | |
|                    "frame subpacket size total > avctx->block_align!\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* decode supbackets */
 | |
|     for (i = 0; i < q->num_subpackets; i++) {
 | |
|         q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
 | |
|                                               q->subpacket[i].bits_per_subpdiv;
 | |
|         q->subpacket[i].ch_idx = chidx;
 | |
|         av_log(avctx, AV_LOG_DEBUG,
 | |
|                "subpacket[%i] size %i js %i %i block_align %i\n",
 | |
|                i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
 | |
|                avctx->block_align);
 | |
| 
 | |
|         if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
 | |
|             return ret;
 | |
|         offset += q->subpacket[i].size;
 | |
|         chidx += q->subpacket[i].num_channels;
 | |
|         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
 | |
|                i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
 | |
|     }
 | |
| 
 | |
|     /* Discard the first two frames: no valid audio. */
 | |
|     if (q->discarded_packets < 2) {
 | |
|         q->discarded_packets++;
 | |
|         *got_frame_ptr = 0;
 | |
|         return avctx->block_align;
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return avctx->block_align;
 | |
| }
 | |
| 
 | |
| static void dump_cook_context(COOKContext *q)
 | |
| {
 | |
|     //int i=0;
 | |
| #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
 | |
|     ff_dlog(q->avctx, "COOKextradata\n");
 | |
|     ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
 | |
|     if (q->subpacket[0].cookversion > STEREO) {
 | |
|         PRINT("js_subband_start", q->subpacket[0].js_subband_start);
 | |
|         PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
 | |
|     }
 | |
|     ff_dlog(q->avctx, "COOKContext\n");
 | |
|     PRINT("nb_channels", q->avctx->channels);
 | |
|     PRINT("bit_rate", (int)q->avctx->bit_rate);
 | |
|     PRINT("sample_rate", q->avctx->sample_rate);
 | |
|     PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
 | |
|     PRINT("subbands", q->subpacket[0].subbands);
 | |
|     PRINT("js_subband_start", q->subpacket[0].js_subband_start);
 | |
|     PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
 | |
|     PRINT("numvector_size", q->subpacket[0].numvector_size);
 | |
|     PRINT("total_subbands", q->subpacket[0].total_subbands);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Cook initialization
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| static av_cold int cook_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     static AVOnce init_static_once = AV_ONCE_INIT;
 | |
|     COOKContext *q = avctx->priv_data;
 | |
|     GetByteContext gb;
 | |
|     int s = 0;
 | |
|     unsigned int channel_mask = 0;
 | |
|     int samples_per_frame = 0;
 | |
|     int ret;
 | |
|     q->avctx = avctx;
 | |
| 
 | |
|     /* Take care of the codec specific extradata. */
 | |
|     if (avctx->extradata_size < 8) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
 | |
| 
 | |
|     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
 | |
| 
 | |
|     /* Take data from the AVCodecContext (RM container). */
 | |
|     if (!avctx->channels) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (avctx->block_align >= INT_MAX / 8)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     /* Initialize RNG. */
 | |
|     av_lfg_init(&q->random_state, 0);
 | |
| 
 | |
|     ff_audiodsp_init(&q->adsp);
 | |
| 
 | |
|     while (bytestream2_get_bytes_left(&gb)) {
 | |
|         if (s >= FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
 | |
|             avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         /* 8 for mono, 16 for stereo, ? for multichannel
 | |
|            Swap to right endianness so we don't need to care later on. */
 | |
|         q->subpacket[s].cookversion      = bytestream2_get_be32(&gb);
 | |
|         samples_per_frame                = bytestream2_get_be16(&gb);
 | |
|         q->subpacket[s].subbands         = bytestream2_get_be16(&gb);
 | |
|         bytestream2_get_be32(&gb);    // Unknown unused
 | |
|         q->subpacket[s].js_subband_start = bytestream2_get_be16(&gb);
 | |
|         if (q->subpacket[s].js_subband_start >= 51) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         q->subpacket[s].js_vlc_bits      = bytestream2_get_be16(&gb);
 | |
| 
 | |
|         /* Initialize extradata related variables. */
 | |
|         q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
 | |
|         q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
 | |
| 
 | |
|         /* Initialize default data states. */
 | |
|         q->subpacket[s].log2_numvector_size = 5;
 | |
|         q->subpacket[s].total_subbands = q->subpacket[s].subbands;
 | |
|         q->subpacket[s].num_channels = 1;
 | |
| 
 | |
|         /* Initialize version-dependent variables */
 | |
| 
 | |
|         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
 | |
|                q->subpacket[s].cookversion);
 | |
|         q->subpacket[s].joint_stereo = 0;
 | |
|         switch (q->subpacket[s].cookversion) {
 | |
|         case MONO:
 | |
|             if (avctx->channels != 1) {
 | |
|                 avpriv_request_sample(avctx, "Container channels != 1");
 | |
|                 return AVERROR_PATCHWELCOME;
 | |
|             }
 | |
|             av_log(avctx, AV_LOG_DEBUG, "MONO\n");
 | |
|             break;
 | |
|         case STEREO:
 | |
|             if (avctx->channels != 1) {
 | |
|                 q->subpacket[s].bits_per_subpdiv = 1;
 | |
|                 q->subpacket[s].num_channels = 2;
 | |
|             }
 | |
|             av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
 | |
|             break;
 | |
|         case JOINT_STEREO:
 | |
|             if (avctx->channels != 2) {
 | |
|                 avpriv_request_sample(avctx, "Container channels != 2");
 | |
|                 return AVERROR_PATCHWELCOME;
 | |
|             }
 | |
|             av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
 | |
|             if (avctx->extradata_size >= 16) {
 | |
|                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
 | |
|                                                  q->subpacket[s].js_subband_start;
 | |
|                 q->subpacket[s].joint_stereo = 1;
 | |
|                 q->subpacket[s].num_channels = 2;
 | |
|             }
 | |
|             if (q->subpacket[s].samples_per_channel > 256) {
 | |
|                 q->subpacket[s].log2_numvector_size = 6;
 | |
|             }
 | |
|             if (q->subpacket[s].samples_per_channel > 512) {
 | |
|                 q->subpacket[s].log2_numvector_size = 7;
 | |
|             }
 | |
|             break;
 | |
|         case MC_COOK:
 | |
|             av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
 | |
|             channel_mask |= q->subpacket[s].channel_mask = bytestream2_get_be32(&gb);
 | |
| 
 | |
|             if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
 | |
|                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
 | |
|                                                  q->subpacket[s].js_subband_start;
 | |
|                 q->subpacket[s].joint_stereo = 1;
 | |
|                 q->subpacket[s].num_channels = 2;
 | |
|                 q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
 | |
| 
 | |
|                 if (q->subpacket[s].samples_per_channel > 256) {
 | |
|                     q->subpacket[s].log2_numvector_size = 6;
 | |
|                 }
 | |
|                 if (q->subpacket[s].samples_per_channel > 512) {
 | |
|                     q->subpacket[s].log2_numvector_size = 7;
 | |
|                 }
 | |
|             } else
 | |
|                 q->subpacket[s].samples_per_channel = samples_per_frame;
 | |
| 
 | |
|             break;
 | |
|         default:
 | |
|             avpriv_request_sample(avctx, "Cook version %d",
 | |
|                                   q->subpacket[s].cookversion);
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         } else
 | |
|             q->samples_per_channel = q->subpacket[0].samples_per_channel;
 | |
| 
 | |
| 
 | |
|         /* Initialize variable relations */
 | |
|         q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
 | |
| 
 | |
|         /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
 | |
|         if (q->subpacket[s].total_subbands > 53) {
 | |
|             avpriv_request_sample(avctx, "total_subbands > 53");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         if ((q->subpacket[s].js_vlc_bits > 6) ||
 | |
|             (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
 | |
|                    q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (q->subpacket[s].subbands > 50) {
 | |
|             avpriv_request_sample(avctx, "subbands > 50");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         if (q->subpacket[s].subbands == 0) {
 | |
|             avpriv_request_sample(avctx, "subbands = 0");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
 | |
|         q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
 | |
|         q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
 | |
|         q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
 | |
| 
 | |
|         if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         q->num_subpackets++;
 | |
|         s++;
 | |
|     }
 | |
| 
 | |
|     /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
 | |
|     if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
 | |
|         q->samples_per_channel != 1024) {
 | |
|         avpriv_request_sample(avctx, "samples_per_channel = %d",
 | |
|                               q->samples_per_channel);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     /* Generate tables */
 | |
|     ff_thread_once(&init_static_once, init_pow2table);
 | |
|     init_gain_table(q);
 | |
|     init_cplscales_table(q);
 | |
| 
 | |
|     if ((ret = init_cook_vlc_tables(q)))
 | |
|         return ret;
 | |
| 
 | |
|     /* Pad the databuffer with:
 | |
|        DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
 | |
|        AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
 | |
|     q->decoded_bytes_buffer =
 | |
|         av_mallocz(avctx->block_align
 | |
|                    + DECODE_BYTES_PAD1(avctx->block_align)
 | |
|                    + AV_INPUT_BUFFER_PADDING_SIZE);
 | |
|     if (!q->decoded_bytes_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     /* Initialize transform. */
 | |
|     if ((ret = init_cook_mlt(q)))
 | |
|         return ret;
 | |
| 
 | |
|     /* Initialize COOK signal arithmetic handling */
 | |
|     if (1) {
 | |
|         q->scalar_dequant  = scalar_dequant_float;
 | |
|         q->decouple        = decouple_float;
 | |
|         q->imlt_window     = imlt_window_float;
 | |
|         q->interpolate     = interpolate_float;
 | |
|         q->saturate_output = saturate_output_float;
 | |
|     }
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
|     if (channel_mask)
 | |
|         avctx->channel_layout = channel_mask;
 | |
|     else
 | |
|         avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
 | |
| 
 | |
| 
 | |
|     dump_cook_context(q);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| const AVCodec ff_cook_decoder = {
 | |
|     .name           = "cook",
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_COOK,
 | |
|     .priv_data_size = sizeof(COOKContext),
 | |
|     .init           = cook_decode_init,
 | |
|     .close          = cook_decode_close,
 | |
|     .decode         = cook_decode_frame,
 | |
|     .capabilities   = AV_CODEC_CAP_DR1,
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
|     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
 | |
| };
 | 
