mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-11-01 04:53:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1279 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1279 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * OpenEXR (.exr) image decoder
 | |
|  * Copyright (c) 2009 Jimmy Christensen
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * OpenEXR decoder
 | |
|  * @author Jimmy Christensen
 | |
|  *
 | |
|  * For more information on the OpenEXR format, visit:
 | |
|  *  http://openexr.com/
 | |
|  *
 | |
|  * exr_flt2uint() and exr_halflt2uint() is credited to  Reimar Döffinger
 | |
|  */
 | |
| 
 | |
| #include <zlib.h>
 | |
| 
 | |
| #include "get_bits.h"
 | |
| #include "avcodec.h"
 | |
| #include "bytestream.h"
 | |
| #include "internal.h"
 | |
| #include "mathops.h"
 | |
| #include "thread.h"
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/avassert.h"
 | |
| 
 | |
| enum ExrCompr {
 | |
|     EXR_RAW   = 0,
 | |
|     EXR_RLE   = 1,
 | |
|     EXR_ZIP1  = 2,
 | |
|     EXR_ZIP16 = 3,
 | |
|     EXR_PIZ   = 4,
 | |
|     EXR_PXR24 = 5,
 | |
|     EXR_B44   = 6,
 | |
|     EXR_B44A  = 7,
 | |
| };
 | |
| 
 | |
| enum ExrPixelType {
 | |
|     EXR_UINT,
 | |
|     EXR_HALF,
 | |
|     EXR_FLOAT
 | |
| };
 | |
| 
 | |
| typedef struct EXRChannel {
 | |
|     int               xsub, ysub;
 | |
|     enum ExrPixelType pixel_type;
 | |
| } EXRChannel;
 | |
| 
 | |
| typedef struct EXRThreadData {
 | |
|     uint8_t *uncompressed_data;
 | |
|     int uncompressed_size;
 | |
| 
 | |
|     uint8_t *tmp;
 | |
|     int tmp_size;
 | |
| 
 | |
|     uint8_t *bitmap;
 | |
|     uint16_t *lut;
 | |
| } EXRThreadData;
 | |
| 
 | |
| typedef struct EXRContext {
 | |
|     AVFrame *picture;
 | |
|     int compr;
 | |
|     enum ExrPixelType pixel_type;
 | |
|     int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
 | |
|     const AVPixFmtDescriptor *desc;
 | |
| 
 | |
|     uint32_t xmax, xmin;
 | |
|     uint32_t ymax, ymin;
 | |
|     uint32_t xdelta, ydelta;
 | |
| 
 | |
|     int ysize;
 | |
| 
 | |
|     uint64_t scan_line_size;
 | |
|     int scan_lines_per_block;
 | |
| 
 | |
|     const uint8_t *buf, *table;
 | |
|     int buf_size;
 | |
| 
 | |
|     EXRChannel *channels;
 | |
|     int nb_channels;
 | |
| 
 | |
|     EXRThreadData *thread_data;
 | |
|     int thread_data_size;
 | |
| } EXRContext;
 | |
| 
 | |
| /**
 | |
|  * Converts from 32-bit float as uint32_t to uint16_t
 | |
|  *
 | |
|  * @param v 32-bit float
 | |
|  * @return normalized 16-bit unsigned int
 | |
|  */
 | |
| static inline uint16_t exr_flt2uint(uint32_t v)
 | |
| {
 | |
|     unsigned int exp = v >> 23;
 | |
|     // "HACK": negative values result in exp<  0, so clipping them to 0
 | |
|     // is also handled by this condition, avoids explicit check for sign bit.
 | |
|     if (exp<= 127 + 7 - 24) // we would shift out all bits anyway
 | |
|         return 0;
 | |
|     if (exp >= 127)
 | |
|         return 0xffff;
 | |
|     v &= 0x007fffff;
 | |
|     return (v + (1 << 23)) >> (127 + 7 - exp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Converts from 16-bit float as uint16_t to uint16_t
 | |
|  *
 | |
|  * @param v 16-bit float
 | |
|  * @return normalized 16-bit unsigned int
 | |
|  */
 | |
| static inline uint16_t exr_halflt2uint(uint16_t v)
 | |
| {
 | |
|     unsigned exp = 14 - (v >> 10);
 | |
|     if (exp >= 14) {
 | |
|         if (exp == 14) return (v >> 9) & 1;
 | |
|         else           return (v & 0x8000) ? 0 : 0xffff;
 | |
|     }
 | |
|     v <<= 6;
 | |
|     return (v + (1 << 16)) >> (exp + 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Gets the size of the header variable
 | |
|  *
 | |
|  * @param **buf the current pointer location in the header where
 | |
|  * the variable data starts
 | |
|  * @param *buf_end pointer location of the end of the buffer
 | |
|  * @return size of variable data
 | |
|  */
 | |
| static unsigned int get_header_variable_length(const uint8_t **buf,
 | |
|                                                const uint8_t *buf_end)
 | |
| {
 | |
|     unsigned int variable_buffer_data_size = bytestream_get_le32(buf);
 | |
|     if (variable_buffer_data_size >= buf_end - *buf)
 | |
|         return 0;
 | |
|     return variable_buffer_data_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Checks if the variable name corresponds with it's data type
 | |
|  *
 | |
|  * @param *avctx the AVCodecContext
 | |
|  * @param **buf the current pointer location in the header where
 | |
|  * the variable name starts
 | |
|  * @param *buf_end pointer location of the end of the buffer
 | |
|  * @param *value_name name of the varible to check
 | |
|  * @param *value_type type of the varible to check
 | |
|  * @param minimum_length minimum length of the variable data
 | |
|  * @param variable_buffer_data_size variable length read from the header
 | |
|  * after it's checked
 | |
|  * @return negative if variable is invalid
 | |
|  */
 | |
| static int check_header_variable(AVCodecContext *avctx,
 | |
|                                               const uint8_t **buf,
 | |
|                                               const uint8_t *buf_end,
 | |
|                                               const char *value_name,
 | |
|                                               const char *value_type,
 | |
|                                               unsigned int minimum_length,
 | |
|                                               unsigned int *variable_buffer_data_size)
 | |
| {
 | |
|     if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) {
 | |
|         *buf += strlen(value_name)+1;
 | |
|         if (!strcmp(*buf, value_type)) {
 | |
|             *buf += strlen(value_type)+1;
 | |
|             *variable_buffer_data_size = get_header_variable_length(buf, buf_end);
 | |
|             if (!*variable_buffer_data_size)
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
 | |
|             return 1;
 | |
|         }
 | |
|         *buf -= strlen(value_name)+1;
 | |
|         av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name);
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void predictor(uint8_t *src, int size)
 | |
| {
 | |
|     uint8_t *t = src + 1;
 | |
|     uint8_t *stop = src + size;
 | |
| 
 | |
|     while (t < stop) {
 | |
|         int d = (int)t[-1] + (int)t[0] - 128;
 | |
|         t[0] = d;
 | |
|         ++t;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
 | |
| {
 | |
|     const int8_t *t1 = src;
 | |
|     const int8_t *t2 = src + (size + 1) / 2;
 | |
|     int8_t *s = dst;
 | |
|     int8_t *stop = s + size;
 | |
| 
 | |
|     while (1) {
 | |
|         if (s < stop)
 | |
|             *(s++) = *(t1++);
 | |
|         else
 | |
|             break;
 | |
| 
 | |
|         if (s < stop)
 | |
|             *(s++) = *(t2++);
 | |
|         else
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int zip_uncompress(const uint8_t *src, int compressed_size,
 | |
|                           int uncompressed_size, EXRThreadData *td)
 | |
| {
 | |
|     unsigned long dest_len = uncompressed_size;
 | |
| 
 | |
|     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
 | |
|         dest_len != uncompressed_size)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     predictor(td->tmp, uncompressed_size);
 | |
|     reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int rle_uncompress(const uint8_t *src, int compressed_size,
 | |
|                           int uncompressed_size, EXRThreadData *td)
 | |
| {
 | |
|     int8_t *d = (int8_t *)td->tmp;
 | |
|     const int8_t *s = (const int8_t *)src;
 | |
|     int ssize = compressed_size;
 | |
|     int dsize = uncompressed_size;
 | |
|     int8_t *dend = d + dsize;
 | |
|     int count;
 | |
| 
 | |
|     while (ssize > 0) {
 | |
|         count = *s++;
 | |
| 
 | |
|         if (count < 0) {
 | |
|             count = -count;
 | |
| 
 | |
|             if ((dsize -= count    ) < 0 ||
 | |
|                 (ssize -= count + 1) < 0)
 | |
|                 return -1;
 | |
| 
 | |
|             while (count--)
 | |
|                 *d++ = *s++;
 | |
|         } else {
 | |
|             count++;
 | |
| 
 | |
|             if ((dsize -= count) < 0 ||
 | |
|                 (ssize -= 2    ) < 0)
 | |
|                 return -1;
 | |
| 
 | |
|             while (count--)
 | |
|                 *d++ = *s;
 | |
| 
 | |
|             s++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (dend != d)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     predictor(td->tmp, uncompressed_size);
 | |
|     reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define USHORT_RANGE (1 << 16)
 | |
| #define BITMAP_SIZE (1 << 13)
 | |
| 
 | |
| static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
 | |
| {
 | |
|     int i, k = 0;
 | |
| 
 | |
|     for (i = 0; i < USHORT_RANGE; i++) {
 | |
|         if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
 | |
|             lut[k++] = i;
 | |
|     }
 | |
| 
 | |
|     i = k - 1;
 | |
| 
 | |
|     memset(lut + k, 0, (USHORT_RANGE - k) * 2);
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < dsize; ++i)
 | |
|         dst[i] = lut[dst[i]];
 | |
| }
 | |
| 
 | |
| #define HUF_ENCBITS 16  // literal (value) bit length
 | |
| #define HUF_DECBITS 14  // decoding bit size (>= 8)
 | |
| 
 | |
| #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
 | |
| #define HUF_DECSIZE (1 << HUF_DECBITS)     // decoding table size
 | |
| #define HUF_DECMASK (HUF_DECSIZE - 1)
 | |
| 
 | |
| typedef struct HufDec {
 | |
|     int len;
 | |
|     int lit;
 | |
|     int *p;
 | |
| } HufDec;
 | |
| 
 | |
| static void huf_canonical_code_table(uint64_t *hcode)
 | |
| {
 | |
|     uint64_t c, n[59] = { 0 };
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < HUF_ENCSIZE; ++i)
 | |
|         n[hcode[i]] += 1;
 | |
| 
 | |
|     c = 0;
 | |
|     for (i = 58; i > 0; --i) {
 | |
|         uint64_t nc = ((c + n[i]) >> 1);
 | |
|         n[i] = c;
 | |
|         c = nc;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < HUF_ENCSIZE; ++i) {
 | |
|         int l = hcode[i];
 | |
| 
 | |
|         if (l > 0)
 | |
|             hcode[i] = l | (n[l]++ << 6);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define SHORT_ZEROCODE_RUN  59
 | |
| #define LONG_ZEROCODE_RUN   63
 | |
| #define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
 | |
| #define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
 | |
| 
 | |
| static int huf_unpack_enc_table(GetByteContext *gb,
 | |
|                                 int32_t im, int32_t iM, uint64_t *hcode)
 | |
| {
 | |
|     GetBitContext gbit;
 | |
| 
 | |
|     init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
 | |
| 
 | |
|     for (; im <= iM; im++) {
 | |
|         uint64_t l = hcode[im] = get_bits(&gbit, 6);
 | |
| 
 | |
|         if (l == LONG_ZEROCODE_RUN) {
 | |
|             int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
 | |
| 
 | |
|             if (im + zerun > iM + 1)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             while (zerun--)
 | |
|                 hcode[im++] = 0;
 | |
| 
 | |
|             im--;
 | |
|         } else if (l >= (uint64_t) SHORT_ZEROCODE_RUN) {
 | |
|             int zerun = l - SHORT_ZEROCODE_RUN + 2;
 | |
| 
 | |
|             if (im + zerun > iM + 1)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             while (zerun--)
 | |
|                 hcode[im++] = 0;
 | |
| 
 | |
|             im--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
 | |
|     huf_canonical_code_table(hcode);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int huf_build_dec_table(const uint64_t *hcode, int im,
 | |
|                                int iM, HufDec *hdecod)
 | |
| {
 | |
|     for (; im <= iM; im++) {
 | |
|         uint64_t c = hcode[im] >> 6;
 | |
|         int i, l = hcode[im] & 63;
 | |
| 
 | |
|         if (c >> l)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         if (l > HUF_DECBITS) {
 | |
|             HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
 | |
|             if (pl->len)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             pl->lit++;
 | |
| 
 | |
|             pl->p = av_realloc_f(pl->p, pl->lit, sizeof(int));
 | |
|             if (!pl->p)
 | |
|                 return AVERROR(ENOMEM);
 | |
| 
 | |
|             pl->p[pl->lit - 1] = im;
 | |
|         } else if (l) {
 | |
|             HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
 | |
| 
 | |
|             for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
 | |
|                 if (pl->len || pl->p)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 pl->len = l;
 | |
|                 pl->lit = im;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define get_char(c, lc, gb) {                   \
 | |
|     c = (c << 8) | bytestream2_get_byte(gb);    \
 | |
|     lc += 8;                                    \
 | |
| }
 | |
| 
 | |
| #define get_code(po, rlc, c, lc, gb, out, oe) { \
 | |
|     if (po == rlc) {                            \
 | |
|         if (lc < 8)                             \
 | |
|             get_char(c, lc, gb);                \
 | |
|         lc -= 8;                                \
 | |
|                                                 \
 | |
|         cs = c >> lc;                           \
 | |
|                                                 \
 | |
|         if (out + cs > oe)                      \
 | |
|             return AVERROR_INVALIDDATA;         \
 | |
|                                                 \
 | |
|         s = out[-1];                            \
 | |
|                                                 \
 | |
|         while (cs-- > 0)                        \
 | |
|             *out++ = s;                         \
 | |
|     } else if (out < oe) {                      \
 | |
|         *out++ = po;                            \
 | |
|     } else {                                    \
 | |
|         return AVERROR_INVALIDDATA;             \
 | |
|     }                                           \
 | |
| }
 | |
| 
 | |
| static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
 | |
|                       GetByteContext *gb, int nbits,
 | |
|                       int rlc, int no, uint16_t *out)
 | |
| {
 | |
|     uint64_t c = 0;
 | |
|     uint16_t *outb = out;
 | |
|     uint16_t *oe = out + no;
 | |
|     const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
 | |
|     uint8_t cs, s;
 | |
|     int i, lc = 0;
 | |
| 
 | |
|     while (gb->buffer < ie) {
 | |
|         get_char(c, lc, gb);
 | |
| 
 | |
|         while (lc >= HUF_DECBITS) {
 | |
|             const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];
 | |
| 
 | |
|             if (pl.len) {
 | |
|                 lc -= pl.len;
 | |
|                 get_code(pl.lit, rlc, c, lc, gb, out, oe);
 | |
|             } else {
 | |
|                 int j;
 | |
| 
 | |
|                 if (!pl.p)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
| 
 | |
|                 for (j = 0; j < pl.lit; j++) {
 | |
|                     int l = hcode[pl.p[j]] & 63;
 | |
| 
 | |
|                     while (lc < l && bytestream2_get_bytes_left(gb) > 0)
 | |
|                         get_char(c, lc, gb);
 | |
| 
 | |
|                     if (lc >= l) {
 | |
|                         if ((hcode[pl.p[j]] >> 6) ==
 | |
|                             ((c >> (lc - l)) & ((1LL << l) - 1))) {
 | |
|                             lc -= l;
 | |
|                             get_code(pl.p[j], rlc, c, lc, gb, out, oe);
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (j == pl.lit)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     i = (8 - nbits) & 7;
 | |
|     c >>= i;
 | |
|     lc -= i;
 | |
| 
 | |
|     while (lc > 0) {
 | |
|         const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
 | |
| 
 | |
|         if (pl.len) {
 | |
|             lc -= pl.len;
 | |
|             get_code(pl.lit, rlc, c, lc, gb, out, oe);
 | |
|         } else {
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (out - outb != no)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int huf_uncompress(GetByteContext *gb,
 | |
|                           uint16_t *dst, int dst_size)
 | |
| {
 | |
|     int32_t src_size, im, iM;
 | |
|     uint32_t nBits;
 | |
|     uint64_t *freq;
 | |
|     HufDec *hdec;
 | |
|     int ret, i;
 | |
| 
 | |
|     src_size = bytestream2_get_le32(gb);
 | |
|     im = bytestream2_get_le32(gb);
 | |
|     iM = bytestream2_get_le32(gb);
 | |
|     bytestream2_skip(gb, 4);
 | |
|     nBits = bytestream2_get_le32(gb);
 | |
|     if (im < 0 || im >= HUF_ENCSIZE ||
 | |
|         iM < 0 || iM >= HUF_ENCSIZE ||
 | |
|         src_size < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     bytestream2_skip(gb, 4);
 | |
| 
 | |
|     freq = av_calloc(HUF_ENCSIZE, sizeof(*freq));
 | |
|     hdec = av_calloc(HUF_DECSIZE, sizeof(*hdec));
 | |
|     if (!freq || !hdec) {
 | |
|         ret = AVERROR(ENOMEM);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
 | |
|         ret = AVERROR_INVALIDDATA;
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
 | |
|         goto fail;
 | |
|     ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
 | |
| 
 | |
| fail:
 | |
|     for (i = 0; i < HUF_DECSIZE; i++) {
 | |
|         if (hdec)
 | |
|             av_freep(&hdec[i].p);
 | |
|     }
 | |
| 
 | |
|     av_free(freq);
 | |
|     av_free(hdec);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
 | |
| {
 | |
|     int16_t ls = l;
 | |
|     int16_t hs = h;
 | |
|     int hi = hs;
 | |
|     int ai = ls + (hi & 1) + (hi >> 1);
 | |
|     int16_t as = ai;
 | |
|     int16_t bs = ai - hi;
 | |
| 
 | |
|     *a = as;
 | |
|     *b = bs;
 | |
| }
 | |
| 
 | |
| #define NBITS      16
 | |
| #define A_OFFSET  (1 << (NBITS  - 1))
 | |
| #define MOD_MASK  ((1 << NBITS) - 1)
 | |
| 
 | |
| static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
 | |
| {
 | |
|     int m = l;
 | |
|     int d = h;
 | |
|     int bb = (m - (d >> 1)) & MOD_MASK;
 | |
|     int aa = (d + bb - A_OFFSET) & MOD_MASK;
 | |
|     *b = bb;
 | |
|     *a = aa;
 | |
| }
 | |
| 
 | |
| static void wav_decode(uint16_t *in, int nx, int ox,
 | |
|                        int ny, int oy, uint16_t mx)
 | |
| {
 | |
|     int w14 = (mx < (1 << 14));
 | |
|     int n = (nx > ny) ? ny: nx;
 | |
|     int p = 1;
 | |
|     int p2;
 | |
| 
 | |
|     while (p <= n)
 | |
|         p <<= 1;
 | |
| 
 | |
|     p >>= 1;
 | |
|     p2  = p;
 | |
|     p >>= 1;
 | |
| 
 | |
|     while (p >= 1) {
 | |
|         uint16_t *py = in;
 | |
|         uint16_t *ey = in + oy * (ny - p2);
 | |
|         uint16_t i00, i01, i10, i11;
 | |
|         int oy1 = oy * p;
 | |
|         int oy2 = oy * p2;
 | |
|         int ox1 = ox * p;
 | |
|         int ox2 = ox * p2;
 | |
| 
 | |
|         for (; py <= ey; py += oy2) {
 | |
|             uint16_t *px = py;
 | |
|             uint16_t *ex = py + ox * (nx - p2);
 | |
| 
 | |
|             for (; px <= ex; px += ox2) {
 | |
|                 uint16_t *p01 = px  + ox1;
 | |
|                 uint16_t *p10 = px  + oy1;
 | |
|                 uint16_t *p11 = p10 + ox1;
 | |
| 
 | |
|                 if (w14) {
 | |
|                     wdec14(*px,  *p10, &i00, &i10);
 | |
|                     wdec14(*p01, *p11, &i01, &i11);
 | |
|                     wdec14(i00, i01, px,  p01);
 | |
|                     wdec14(i10, i11, p10, p11);
 | |
|                 } else {
 | |
|                     wdec16(*px,  *p10, &i00, &i10);
 | |
|                     wdec16(*p01, *p11, &i01, &i11);
 | |
|                     wdec16(i00, i01, px,  p01);
 | |
|                     wdec16(i10, i11, p10, p11);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (nx & p) {
 | |
|                 uint16_t *p10 = px + oy1;
 | |
| 
 | |
|                 if (w14)
 | |
|                     wdec14(*px, *p10, &i00, p10);
 | |
|                 else
 | |
|                     wdec16(*px, *p10, &i00, p10);
 | |
| 
 | |
|                 *px = i00;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (ny & p) {
 | |
|             uint16_t *px = py;
 | |
|             uint16_t *ex = py + ox * (nx - p2);
 | |
| 
 | |
|             for (; px <= ex; px += ox2) {
 | |
|                 uint16_t *p01 = px + ox1;
 | |
| 
 | |
|                 if (w14)
 | |
|                     wdec14(*px, *p01, &i00, p01);
 | |
|                 else
 | |
|                     wdec16(*px, *p01, &i00, p01);
 | |
| 
 | |
|                 *px = i00;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         p2 = p;
 | |
|         p >>= 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
 | |
| {
 | |
|     GetByteContext gb;
 | |
|     uint16_t maxval, min_non_zero, max_non_zero;
 | |
|     uint16_t *ptr, *tmp = (uint16_t *)td->tmp;
 | |
|     int8_t *out;
 | |
|     int ret, i, j;
 | |
| 
 | |
|     if (!td->bitmap)
 | |
|         td->bitmap = av_malloc(BITMAP_SIZE);
 | |
|     if (!td->lut)
 | |
|         td->lut = av_malloc(1 << 17);
 | |
|     if (!td->bitmap || !td->lut)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     bytestream2_init(&gb, src, ssize);
 | |
|     min_non_zero = bytestream2_get_le16(&gb);
 | |
|     max_non_zero = bytestream2_get_le16(&gb);
 | |
| 
 | |
|     if (max_non_zero >= BITMAP_SIZE)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
 | |
|     if (min_non_zero <= max_non_zero)
 | |
|         bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
 | |
|                                max_non_zero - min_non_zero + 1);
 | |
|     memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
 | |
| 
 | |
|     maxval = reverse_lut(td->bitmap, td->lut);
 | |
| 
 | |
|     ret = huf_uncompress(&gb, tmp, dsize / sizeof(int16_t));
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     ptr = tmp;
 | |
|     for (i = 0; i < s->nb_channels; i++) {
 | |
|         EXRChannel *channel = &s->channels[i];
 | |
|         int size = channel->pixel_type;
 | |
| 
 | |
|         for (j = 0; j < size; j++)
 | |
|             wav_decode(ptr + j, s->xdelta, size, s->ysize, s->xdelta * size, maxval);
 | |
|         ptr += s->xdelta * s->ysize * size;
 | |
|     }
 | |
| 
 | |
|     apply_lut(td->lut, tmp, dsize / sizeof(int16_t));
 | |
| 
 | |
|     out = td->uncompressed_data;
 | |
|     for (i = 0; i < s->ysize; i++) {
 | |
|         for (j = 0; j < s->nb_channels; j++) {
 | |
|             uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
 | |
|             memcpy(out, in, s->xdelta * 2);
 | |
|             out += s->xdelta * 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
 | |
|                             int compressed_size, int uncompressed_size,
 | |
|                             EXRThreadData *td)
 | |
| {
 | |
|     unsigned long dest_len = uncompressed_size;
 | |
|     const uint8_t *in = td->tmp;
 | |
|     uint8_t *out;
 | |
|     int c, i, j;
 | |
| 
 | |
|     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
 | |
|         dest_len != uncompressed_size)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     out = td->uncompressed_data;
 | |
|     for (i = 0; i < s->ysize; i++) {
 | |
|         for (c = 0; c < s->nb_channels; c++) {
 | |
|             EXRChannel *channel = &s->channels[c];
 | |
|             const uint8_t *ptr[4];
 | |
|             uint32_t pixel = 0;
 | |
| 
 | |
|             switch (channel->pixel_type) {
 | |
|             case EXR_FLOAT:
 | |
|                 ptr[0] = in;
 | |
|                 ptr[1] = ptr[0] + s->xdelta;
 | |
|                 ptr[2] = ptr[1] + s->xdelta;
 | |
|                 in = ptr[2] + s->xdelta;
 | |
| 
 | |
|                 for (j = 0; j < s->xdelta; ++j) {
 | |
|                     uint32_t diff = (*(ptr[0]++) << 24) |
 | |
|                                     (*(ptr[1]++) << 16) |
 | |
|                                     (*(ptr[2]++) <<  8);
 | |
|                     pixel += diff;
 | |
|                     bytestream_put_le32(&out, pixel);
 | |
|                 }
 | |
|                 break;
 | |
|             case EXR_HALF:
 | |
|                 ptr[0] = in;
 | |
|                 ptr[1] = ptr[0] + s->xdelta;
 | |
|                 in = ptr[1] + s->xdelta;
 | |
|                 for (j = 0; j < s->xdelta; j++) {
 | |
|                     uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
 | |
| 
 | |
|                     pixel += diff;
 | |
|                     bytestream_put_le16(&out, pixel);
 | |
|                 }
 | |
|                 break;
 | |
|             default:
 | |
|                 av_assert1(0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int decode_block(AVCodecContext *avctx, void *tdata,
 | |
|                         int jobnr, int threadnr)
 | |
| {
 | |
|     EXRContext *s = avctx->priv_data;
 | |
|     AVFrame *const p = s->picture;
 | |
|     EXRThreadData *td = &s->thread_data[threadnr];
 | |
|     const uint8_t *channel_buffer[4] = { 0 };
 | |
|     const uint8_t *buf = s->buf;
 | |
|     uint64_t line_offset, uncompressed_size;
 | |
|     uint32_t xdelta = s->xdelta;
 | |
|     uint16_t *ptr_x;
 | |
|     uint8_t *ptr;
 | |
|     int32_t data_size, line;
 | |
|     const uint8_t *src;
 | |
|     int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
 | |
|     int bxmin = s->xmin * 2 * s->desc->nb_components;
 | |
|     int i, x, buf_size = s->buf_size;
 | |
|     int av_unused ret;
 | |
| 
 | |
|     line_offset = AV_RL64(s->table + jobnr * 8);
 | |
|     // Check if the buffer has the required bytes needed from the offset
 | |
|     if (line_offset > buf_size - 8)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     src = buf + line_offset + 8;
 | |
|     line = AV_RL32(src - 8);
 | |
|     if (line < s->ymin || line > s->ymax)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     data_size = AV_RL32(src - 4);
 | |
|     if (data_size <= 0 || data_size > buf_size)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
 | |
|     uncompressed_size = s->scan_line_size * s->ysize;
 | |
|     if ((s->compr == EXR_RAW && (data_size != uncompressed_size ||
 | |
|                                  line_offset > buf_size - uncompressed_size)) ||
 | |
|         (s->compr != EXR_RAW && (data_size > uncompressed_size ||
 | |
|                                  line_offset > buf_size - data_size))) {
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (data_size < uncompressed_size) {
 | |
|         av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size);
 | |
|         av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
 | |
|         if (!td->uncompressed_data || !td->tmp)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         switch (s->compr) {
 | |
|         case EXR_ZIP1:
 | |
|         case EXR_ZIP16:
 | |
|             ret = zip_uncompress(src, data_size, uncompressed_size, td);
 | |
|             break;
 | |
|         case EXR_PIZ:
 | |
|             ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
 | |
|             break;
 | |
|         case EXR_PXR24:
 | |
|             ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
 | |
|             break;
 | |
|         case EXR_RLE:
 | |
|             ret = rle_uncompress(src, data_size, uncompressed_size, td);
 | |
|         }
 | |
| 
 | |
|         src = td->uncompressed_data;
 | |
|     }
 | |
| 
 | |
|     channel_buffer[0] = src + xdelta * s->channel_offsets[0];
 | |
|     channel_buffer[1] = src + xdelta * s->channel_offsets[1];
 | |
|     channel_buffer[2] = src + xdelta * s->channel_offsets[2];
 | |
|     if (s->channel_offsets[3] >= 0)
 | |
|         channel_buffer[3] = src + xdelta * s->channel_offsets[3];
 | |
| 
 | |
|     ptr = p->data[0] + line * p->linesize[0];
 | |
|     for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) {
 | |
|         const uint8_t *r, *g, *b, *a;
 | |
| 
 | |
|         r = channel_buffer[0];
 | |
|         g = channel_buffer[1];
 | |
|         b = channel_buffer[2];
 | |
|         if (channel_buffer[3])
 | |
|             a = channel_buffer[3];
 | |
| 
 | |
|         ptr_x = (uint16_t *)ptr;
 | |
| 
 | |
|         // Zero out the start if xmin is not 0
 | |
|         memset(ptr_x, 0, bxmin);
 | |
|         ptr_x += s->xmin * s->desc->nb_components;
 | |
|         if (s->pixel_type == EXR_FLOAT) {
 | |
|             // 32-bit
 | |
|             for (x = 0; x < xdelta; x++) {
 | |
|                 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&r));
 | |
|                 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&g));
 | |
|                 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&b));
 | |
|                 if (channel_buffer[3])
 | |
|                     *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
 | |
|             }
 | |
|         } else {
 | |
|             // 16-bit
 | |
|             for (x = 0; x < xdelta; x++) {
 | |
|                 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r));
 | |
|                 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g));
 | |
|                 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b));
 | |
|                 if (channel_buffer[3])
 | |
|                     *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Zero out the end if xmax+1 is not w
 | |
|         memset(ptr_x, 0, axmax);
 | |
| 
 | |
|         channel_buffer[0] += s->scan_line_size;
 | |
|         channel_buffer[1] += s->scan_line_size;
 | |
|         channel_buffer[2] += s->scan_line_size;
 | |
|         if (channel_buffer[3])
 | |
|             channel_buffer[3] += s->scan_line_size;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int decode_frame(AVCodecContext *avctx,
 | |
|                         void *data,
 | |
|                         int *got_frame,
 | |
|                         AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf      = avpkt->data;
 | |
|     unsigned int   buf_size = avpkt->size;
 | |
|     const uint8_t *buf_end  = buf + buf_size;
 | |
| 
 | |
|     EXRContext *const s = avctx->priv_data;
 | |
|     ThreadFrame frame = { .f = data };
 | |
|     AVFrame *picture  = data;
 | |
|     uint8_t *ptr;
 | |
| 
 | |
|     int i, y, magic_number, version, flags, ret;
 | |
|     int w = 0;
 | |
|     int h = 0;
 | |
| 
 | |
|     int out_line_size;
 | |
|     int scan_line_blocks;
 | |
| 
 | |
|     unsigned int current_channel_offset = 0;
 | |
| 
 | |
|     s->xmin = ~0;
 | |
|     s->xmax = ~0;
 | |
|     s->ymin = ~0;
 | |
|     s->ymax = ~0;
 | |
|     s->xdelta = ~0;
 | |
|     s->ydelta = ~0;
 | |
|     s->channel_offsets[0] = -1;
 | |
|     s->channel_offsets[1] = -1;
 | |
|     s->channel_offsets[2] = -1;
 | |
|     s->channel_offsets[3] = -1;
 | |
|     s->pixel_type = -1;
 | |
|     s->nb_channels = 0;
 | |
|     s->compr = -1;
 | |
|     s->buf = buf;
 | |
|     s->buf_size = buf_size;
 | |
| 
 | |
|     if (buf_size < 10) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     magic_number = bytestream_get_le32(&buf);
 | |
|     if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian
 | |
|         av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     version = bytestream_get_byte(&buf);
 | |
|     if (version != 2) {
 | |
|         avpriv_report_missing_feature(avctx, "Version %d", version);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     flags = bytestream_get_le24(&buf);
 | |
|     if (flags & 0x2) {
 | |
|         avpriv_report_missing_feature(avctx, "Tile support");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Parse the header
 | |
|     while (buf < buf_end && buf[0]) {
 | |
|         unsigned int variable_buffer_data_size;
 | |
|         // Process the channel list
 | |
|         if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) {
 | |
|             const uint8_t *channel_list_end;
 | |
|             if (!variable_buffer_data_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             channel_list_end = buf + variable_buffer_data_size;
 | |
|             while (channel_list_end - buf >= 19) {
 | |
|                 EXRChannel *channel;
 | |
|                 enum ExrPixelType current_pixel_type;
 | |
|                 int channel_index = -1;
 | |
|                 int xsub, ysub;
 | |
| 
 | |
|                 if (!strcmp(buf, "R"))
 | |
|                     channel_index = 0;
 | |
|                 else if (!strcmp(buf, "G"))
 | |
|                     channel_index = 1;
 | |
|                 else if (!strcmp(buf, "B"))
 | |
|                     channel_index = 2;
 | |
|                 else if (!strcmp(buf, "A"))
 | |
|                     channel_index = 3;
 | |
|                 else
 | |
|                     av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf);
 | |
| 
 | |
|                 while (bytestream_get_byte(&buf) && buf < channel_list_end)
 | |
|                     continue; /* skip */
 | |
| 
 | |
|                 if (channel_list_end - * &buf < 4) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
| 
 | |
|                 current_pixel_type = bytestream_get_le32(&buf);
 | |
|                 if (current_pixel_type > 2) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
| 
 | |
|                 buf += 4;
 | |
|                 xsub = bytestream_get_le32(&buf);
 | |
|                 ysub = bytestream_get_le32(&buf);
 | |
|                 if (xsub != 1 || ysub != 1) {
 | |
|                     avpriv_report_missing_feature(avctx, "Subsampling %dx%d", xsub, ysub);
 | |
|                     return AVERROR_PATCHWELCOME;
 | |
|                 }
 | |
| 
 | |
|                 if (channel_index >= 0) {
 | |
|                     if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) {
 | |
|                         av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n");
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                     s->pixel_type = current_pixel_type;
 | |
|                     s->channel_offsets[channel_index] = current_channel_offset;
 | |
|                 }
 | |
| 
 | |
|                 s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel));
 | |
|                 if (!s->channels)
 | |
|                     return AVERROR(ENOMEM);
 | |
|                 channel = &s->channels[s->nb_channels - 1];
 | |
|                 channel->pixel_type = current_pixel_type;
 | |
|                 channel->xsub = xsub;
 | |
|                 channel->ysub = ysub;
 | |
| 
 | |
|                 current_channel_offset += 1 << current_pixel_type;
 | |
|             }
 | |
| 
 | |
|             /* Check if all channels are set with an offset or if the channels
 | |
|              * are causing an overflow  */
 | |
| 
 | |
|             if (FFMIN3(s->channel_offsets[0],
 | |
|                        s->channel_offsets[1],
 | |
|                        s->channel_offsets[2]) < 0) {
 | |
|                 if (s->channel_offsets[0] < 0)
 | |
|                     av_log(avctx, AV_LOG_ERROR, "Missing red channel\n");
 | |
|                 if (s->channel_offsets[1] < 0)
 | |
|                     av_log(avctx, AV_LOG_ERROR, "Missing green channel\n");
 | |
|                 if (s->channel_offsets[2] < 0)
 | |
|                     av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             buf = channel_list_end;
 | |
|             continue;
 | |
|         } else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) {
 | |
|             if (!variable_buffer_data_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             s->xmin = AV_RL32(buf);
 | |
|             s->ymin = AV_RL32(buf + 4);
 | |
|             s->xmax = AV_RL32(buf + 8);
 | |
|             s->ymax = AV_RL32(buf + 12);
 | |
|             s->xdelta = (s->xmax - s->xmin) + 1;
 | |
|             s->ydelta = (s->ymax - s->ymin) + 1;
 | |
| 
 | |
|             buf += variable_buffer_data_size;
 | |
|             continue;
 | |
|         } else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) {
 | |
|             if (!variable_buffer_data_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             w = AV_RL32(buf + 8) + 1;
 | |
|             h = AV_RL32(buf + 12) + 1;
 | |
| 
 | |
|             buf += variable_buffer_data_size;
 | |
|             continue;
 | |
|         } else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) {
 | |
|             if (!variable_buffer_data_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf);
 | |
|             if (*buf > 2) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Unknown line order\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             buf += variable_buffer_data_size;
 | |
|             continue;
 | |
|         } else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) {
 | |
|             if (!variable_buffer_data_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255);
 | |
| 
 | |
|             buf += variable_buffer_data_size;
 | |
|             continue;
 | |
|         } else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) {
 | |
|             if (!variable_buffer_data_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
| 
 | |
|             if (s->compr == -1)
 | |
|                 s->compr = *buf;
 | |
|             else
 | |
|                 av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n");
 | |
| 
 | |
|             buf += variable_buffer_data_size;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // Check if there is enough bytes for a header
 | |
|         if (buf_end - buf <= 9) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Process unknown variables
 | |
|         for (i = 0; i < 2; i++) {
 | |
|             // Skip variable name/type
 | |
|             while (++buf < buf_end)
 | |
|                 if (buf[0] == 0x0)
 | |
|                     break;
 | |
|         }
 | |
|         buf++;
 | |
|         // Skip variable length
 | |
|         if (buf_end - buf >= 5) {
 | |
|             variable_buffer_data_size = get_header_variable_length(&buf, buf_end);
 | |
|             if (!variable_buffer_data_size) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             buf += variable_buffer_data_size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->compr == -1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (buf >= buf_end) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     buf++;
 | |
| 
 | |
|     switch (s->pixel_type) {
 | |
|     case EXR_FLOAT:
 | |
|     case EXR_HALF:
 | |
|         if (s->channel_offsets[3] >= 0)
 | |
|             avctx->pix_fmt = AV_PIX_FMT_RGBA64;
 | |
|         else
 | |
|             avctx->pix_fmt = AV_PIX_FMT_RGB48;
 | |
|         break;
 | |
|     case EXR_UINT:
 | |
|         avpriv_request_sample(avctx, "32-bit unsigned int");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Missing channel list\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     switch (s->compr) {
 | |
|     case EXR_RAW:
 | |
|     case EXR_RLE:
 | |
|     case EXR_ZIP1:
 | |
|         s->scan_lines_per_block = 1;
 | |
|         break;
 | |
|     case EXR_PXR24:
 | |
|     case EXR_ZIP16:
 | |
|         s->scan_lines_per_block = 16;
 | |
|         break;
 | |
|     case EXR_PIZ:
 | |
|         s->scan_lines_per_block = 32;
 | |
|         break;
 | |
|     default:
 | |
|         avpriv_report_missing_feature(avctx, "Compression %d", s->compr);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size
 | |
|     if (s->xmin > s->xmax ||
 | |
|         s->ymin > s->ymax ||
 | |
|         s->xdelta != s->xmax - s->xmin + 1 ||
 | |
|         s->xmax >= w || s->ymax >= h) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if ((ret = ff_set_dimensions(avctx, w, h)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
 | |
|     out_line_size = avctx->width * 2 * s->desc->nb_components;
 | |
|     s->scan_line_size = s->xdelta * current_channel_offset;
 | |
|     scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block;
 | |
| 
 | |
|     if (s->compr != EXR_RAW) {
 | |
|         size_t thread_data_size, prev_size;
 | |
|         EXRThreadData *m;
 | |
| 
 | |
|         prev_size = s->thread_data_size;
 | |
|         if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size))
 | |
|             return AVERROR(EINVAL);
 | |
| 
 | |
|         m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size);
 | |
|         if (!m)
 | |
|             return AVERROR(ENOMEM);
 | |
|         s->thread_data = m;
 | |
|         memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size);
 | |
|     }
 | |
| 
 | |
|     if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (buf_end - buf < scan_line_blocks * 8)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     s->table = buf;
 | |
|     ptr = picture->data[0];
 | |
| 
 | |
|     // Zero out the start if ymin is not 0
 | |
|     for (y = 0; y < s->ymin; y++) {
 | |
|         memset(ptr, 0, out_line_size);
 | |
|         ptr += picture->linesize[0];
 | |
|     }
 | |
| 
 | |
|     s->picture = picture;
 | |
|     avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
 | |
| 
 | |
|     // Zero out the end if ymax+1 is not h
 | |
|     for (y = s->ymax + 1; y < avctx->height; y++) {
 | |
|         memset(ptr, 0, out_line_size);
 | |
|         ptr += picture->linesize[0];
 | |
|     }
 | |
| 
 | |
|     picture->pict_type = AV_PICTURE_TYPE_I;
 | |
|     *got_frame = 1;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| static av_cold int decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     EXRContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) {
 | |
|         EXRThreadData *td = &s->thread_data[i];
 | |
|         av_freep(&td->uncompressed_data);
 | |
|         av_freep(&td->tmp);
 | |
|         av_freep(&td->bitmap);
 | |
|         av_freep(&td->lut);
 | |
|     }
 | |
| 
 | |
|     av_freep(&s->thread_data);
 | |
|     s->thread_data_size = 0;
 | |
|     av_freep(&s->channels);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_exr_decoder = {
 | |
|     .name               = "exr",
 | |
|     .long_name          = NULL_IF_CONFIG_SMALL("OpenEXR image"),
 | |
|     .type               = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                 = AV_CODEC_ID_EXR,
 | |
|     .priv_data_size     = sizeof(EXRContext),
 | |
|     .close              = decode_end,
 | |
|     .decode             = decode_frame,
 | |
|     .capabilities       = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
 | |
| };
 | 
