mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	 def3c83e1b
			
		
	
	def3c83e1b
	
	
	
		
			
			This uses ff_exp2fi to get a speedup (~ 6x). sample benchmark (Haswell, GNU/Linux): old: 19102 decicycles in sbr_dequant, 1023 runs, 1 skips 19002 decicycles in sbr_dequant, 2045 runs, 3 skips 17638 decicycles in sbr_dequant, 4093 runs, 3 skips 15825 decicycles in sbr_dequant, 8189 runs, 3 skips 16404 decicycles in sbr_dequant, 16379 runs, 5 skips new: 3063 decicycles in sbr_dequant, 1024 runs, 0 skips 3049 decicycles in sbr_dequant, 2048 runs, 0 skips 2968 decicycles in sbr_dequant, 4096 runs, 0 skips 2818 decicycles in sbr_dequant, 8191 runs, 1 skips 2853 decicycles in sbr_dequant, 16383 runs, 1 skips Reviewed-by: Andreas Cadhalpun <Andreas.Cadhalpun@googlemail.com> Signed-off-by: Ganesh Ajjanagadde <gajjanagadde@gmail.com>
		
			
				
	
	
		
			370 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AAC Spectral Band Replication decoding functions
 | |
|  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
 | |
|  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * AAC Spectral Band Replication decoding functions
 | |
|  * @author Robert Swain ( rob opendot cl )
 | |
|  */
 | |
| #define USE_FIXED 0
 | |
| 
 | |
| #include "aac.h"
 | |
| #include "sbr.h"
 | |
| #include "aacsbr.h"
 | |
| #include "aacsbrdata.h"
 | |
| #include "aacsbr_tablegen.h"
 | |
| #include "fft.h"
 | |
| #include "internal.h"
 | |
| #include "aacps.h"
 | |
| #include "sbrdsp.h"
 | |
| #include "libavutil/internal.h"
 | |
| #include "libavutil/libm.h"
 | |
| #include "libavutil/avassert.h"
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #if ARCH_MIPS
 | |
| #include "mips/aacsbr_mips.h"
 | |
| #endif /* ARCH_MIPS */
 | |
| 
 | |
| static VLC vlc_sbr[10];
 | |
| static void aacsbr_func_ptr_init(AACSBRContext *c);
 | |
| 
 | |
| static void make_bands(int16_t* bands, int start, int stop, int num_bands)
 | |
| {
 | |
|     int k, previous, present;
 | |
|     float base, prod;
 | |
| 
 | |
|     base = powf((float)stop / start, 1.0f / num_bands);
 | |
|     prod = start;
 | |
|     previous = start;
 | |
| 
 | |
|     for (k = 0; k < num_bands-1; k++) {
 | |
|         prod *= base;
 | |
|         present  = lrintf(prod);
 | |
|         bands[k] = present - previous;
 | |
|         previous = present;
 | |
|     }
 | |
|     bands[num_bands-1] = stop - previous;
 | |
| }
 | |
| 
 | |
| /// Dequantization and stereo decoding (14496-3 sp04 p203)
 | |
| static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
 | |
| {
 | |
|     int k, e;
 | |
|     int ch;
 | |
|     static const double exp2_tab[2] = {1, M_SQRT2};
 | |
|     if (id_aac == TYPE_CPE && sbr->bs_coupling) {
 | |
|         int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
 | |
|         for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
 | |
|             for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
 | |
|                 float temp1, temp2, fac;
 | |
|                 if (sbr->data[0].bs_amp_res) {
 | |
|                     temp1 = ff_exp2fi(sbr->data[0].env_facs_q[e][k] + 7);
 | |
|                     temp2 = ff_exp2fi(pan_offset - sbr->data[1].env_facs_q[e][k]);
 | |
|                 }
 | |
|                 else {
 | |
|                     temp1 = ff_exp2fi((sbr->data[0].env_facs_q[e][k]>>1) + 7) *
 | |
|                             exp2_tab[sbr->data[0].env_facs_q[e][k] & 1];
 | |
|                     temp2 = ff_exp2fi((pan_offset - sbr->data[1].env_facs_q[e][k])>>1) *
 | |
|                             exp2_tab[(pan_offset - sbr->data[1].env_facs_q[e][k]) & 1];
 | |
|                 }
 | |
|                 if (temp1 > 1E20) {
 | |
|                     av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
 | |
|                     temp1 = 1;
 | |
|                 }
 | |
|                 fac   = temp1 / (1.0f + temp2);
 | |
|                 sbr->data[0].env_facs[e][k] = fac;
 | |
|                 sbr->data[1].env_facs[e][k] = fac * temp2;
 | |
|             }
 | |
|         }
 | |
|         for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
 | |
|             for (k = 0; k < sbr->n_q; k++) {
 | |
|                 float temp1 = ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs_q[e][k] + 1);
 | |
|                 float temp2 = ff_exp2fi(12 - sbr->data[1].noise_facs_q[e][k]);
 | |
|                 float fac;
 | |
|                 av_assert0(temp1 <= 1E20);
 | |
|                 fac = temp1 / (1.0f + temp2);
 | |
|                 sbr->data[0].noise_facs[e][k] = fac;
 | |
|                 sbr->data[1].noise_facs[e][k] = fac * temp2;
 | |
|             }
 | |
|         }
 | |
|     } else { // SCE or one non-coupled CPE
 | |
|         for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
 | |
|             for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
 | |
|                 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
 | |
|                     if (sbr->data[ch].bs_amp_res)
 | |
|                         sbr->data[ch].env_facs[e][k] = ff_exp2fi(sbr->data[ch].env_facs_q[e][k] + 6);
 | |
|                     else
 | |
|                         sbr->data[ch].env_facs[e][k] = ff_exp2fi((sbr->data[ch].env_facs_q[e][k]>>1) + 6)
 | |
|                                                        * exp2_tab[sbr->data[ch].env_facs_q[e][k] & 1];
 | |
|                     if (sbr->data[ch].env_facs[e][k] > 1E20) {
 | |
|                         av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
 | |
|                         sbr->data[ch].env_facs[e][k] = 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|             for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
 | |
|                 for (k = 0; k < sbr->n_q; k++)
 | |
|                     sbr->data[ch].noise_facs[e][k] =
 | |
|                         ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs_q[e][k]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
 | |
|  * (14496-3 sp04 p214)
 | |
|  * Warning: This routine does not seem numerically stable.
 | |
|  */
 | |
| static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
 | |
|                                   float (*alpha0)[2], float (*alpha1)[2],
 | |
|                                   const float X_low[32][40][2], int k0)
 | |
| {
 | |
|     int k;
 | |
|     for (k = 0; k < k0; k++) {
 | |
|         LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
 | |
|         float dk;
 | |
| 
 | |
|         dsp->autocorrelate(X_low[k], phi);
 | |
| 
 | |
|         dk =  phi[2][1][0] * phi[1][0][0] -
 | |
|              (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
 | |
| 
 | |
|         if (!dk) {
 | |
|             alpha1[k][0] = 0;
 | |
|             alpha1[k][1] = 0;
 | |
|         } else {
 | |
|             float temp_real, temp_im;
 | |
|             temp_real = phi[0][0][0] * phi[1][1][0] -
 | |
|                         phi[0][0][1] * phi[1][1][1] -
 | |
|                         phi[0][1][0] * phi[1][0][0];
 | |
|             temp_im   = phi[0][0][0] * phi[1][1][1] +
 | |
|                         phi[0][0][1] * phi[1][1][0] -
 | |
|                         phi[0][1][1] * phi[1][0][0];
 | |
| 
 | |
|             alpha1[k][0] = temp_real / dk;
 | |
|             alpha1[k][1] = temp_im   / dk;
 | |
|         }
 | |
| 
 | |
|         if (!phi[1][0][0]) {
 | |
|             alpha0[k][0] = 0;
 | |
|             alpha0[k][1] = 0;
 | |
|         } else {
 | |
|             float temp_real, temp_im;
 | |
|             temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
 | |
|                                        alpha1[k][1] * phi[1][1][1];
 | |
|             temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
 | |
|                                        alpha1[k][0] * phi[1][1][1];
 | |
| 
 | |
|             alpha0[k][0] = -temp_real / phi[1][0][0];
 | |
|             alpha0[k][1] = -temp_im   / phi[1][0][0];
 | |
|         }
 | |
| 
 | |
|         if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
 | |
|            alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
 | |
|             alpha1[k][0] = 0;
 | |
|             alpha1[k][1] = 0;
 | |
|             alpha0[k][0] = 0;
 | |
|             alpha0[k][1] = 0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Chirp Factors (14496-3 sp04 p214)
 | |
| static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
 | |
| {
 | |
|     int i;
 | |
|     float new_bw;
 | |
|     static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
 | |
| 
 | |
|     for (i = 0; i < sbr->n_q; i++) {
 | |
|         if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
 | |
|             new_bw = 0.6f;
 | |
|         } else
 | |
|             new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
 | |
| 
 | |
|         if (new_bw < ch_data->bw_array[i]) {
 | |
|             new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
 | |
|         } else
 | |
|             new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
 | |
|         ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
 | |
|  * and Calculation of gain (14496-3 sp04 p219)
 | |
|  */
 | |
| static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                           SBRData *ch_data, const int e_a[2])
 | |
| {
 | |
|     int e, k, m;
 | |
|     // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
 | |
|     static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
 | |
| 
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         int delta = !((e == e_a[1]) || (e == e_a[0]));
 | |
|         for (k = 0; k < sbr->n_lim; k++) {
 | |
|             float gain_boost, gain_max;
 | |
|             float sum[2] = { 0.0f, 0.0f };
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
 | |
|                 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
 | |
|                 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
 | |
|                 if (!sbr->s_mapped[e][m]) {
 | |
|                     sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
 | |
|                                             ((1.0f + sbr->e_curr[e][m]) *
 | |
|                                              (1.0f + sbr->q_mapped[e][m] * delta)));
 | |
|                 } else {
 | |
|                     sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
 | |
|                                             ((1.0f + sbr->e_curr[e][m]) *
 | |
|                                              (1.0f + sbr->q_mapped[e][m])));
 | |
|                 }
 | |
|             }
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 sum[0] += sbr->e_origmapped[e][m];
 | |
|                 sum[1] += sbr->e_curr[e][m];
 | |
|             }
 | |
|             gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
 | |
|             gain_max = FFMIN(100000.f, gain_max);
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
 | |
|                 sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
 | |
|                 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
 | |
|             }
 | |
|             sum[0] = sum[1] = 0.0f;
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 sum[0] += sbr->e_origmapped[e][m];
 | |
|                 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
 | |
|                           + sbr->s_m[e][m] * sbr->s_m[e][m]
 | |
|                           + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
 | |
|             }
 | |
|             gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
 | |
|             gain_boost = FFMIN(1.584893192f, gain_boost);
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 sbr->gain[e][m] *= gain_boost;
 | |
|                 sbr->q_m[e][m]  *= gain_boost;
 | |
|                 sbr->s_m[e][m]  *= gain_boost;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Assembling HF Signals (14496-3 sp04 p220)
 | |
| static void sbr_hf_assemble(float Y1[38][64][2],
 | |
|                             const float X_high[64][40][2],
 | |
|                             SpectralBandReplication *sbr, SBRData *ch_data,
 | |
|                             const int e_a[2])
 | |
| {
 | |
|     int e, i, j, m;
 | |
|     const int h_SL = 4 * !sbr->bs_smoothing_mode;
 | |
|     const int kx = sbr->kx[1];
 | |
|     const int m_max = sbr->m[1];
 | |
|     static const float h_smooth[5] = {
 | |
|         0.33333333333333,
 | |
|         0.30150283239582,
 | |
|         0.21816949906249,
 | |
|         0.11516383427084,
 | |
|         0.03183050093751,
 | |
|     };
 | |
|     float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
 | |
|     int indexnoise = ch_data->f_indexnoise;
 | |
|     int indexsine  = ch_data->f_indexsine;
 | |
| 
 | |
|     if (sbr->reset) {
 | |
|         for (i = 0; i < h_SL; i++) {
 | |
|             memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
 | |
|             memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
 | |
|         }
 | |
|     } else if (h_SL) {
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             memcpy(g_temp[i + 2 * ch_data->t_env[0]],
 | |
|                    g_temp[i + 2 * ch_data->t_env_num_env_old],
 | |
|                    sizeof(g_temp[0]));
 | |
|             memcpy(q_temp[i + 2 * ch_data->t_env[0]],
 | |
|                    q_temp[i + 2 * ch_data->t_env_num_env_old],
 | |
|                    sizeof(q_temp[0]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
 | |
|             memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
 | |
|             memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
 | |
|             LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
 | |
|             LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
 | |
|             float *g_filt, *q_filt;
 | |
| 
 | |
|             if (h_SL && e != e_a[0] && e != e_a[1]) {
 | |
|                 g_filt = g_filt_tab;
 | |
|                 q_filt = q_filt_tab;
 | |
|                 for (m = 0; m < m_max; m++) {
 | |
|                     const int idx1 = i + h_SL;
 | |
|                     g_filt[m] = 0.0f;
 | |
|                     q_filt[m] = 0.0f;
 | |
|                     for (j = 0; j <= h_SL; j++) {
 | |
|                         g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
 | |
|                         q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 g_filt = g_temp[i + h_SL];
 | |
|                 q_filt = q_temp[i];
 | |
|             }
 | |
| 
 | |
|             sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
 | |
|                                i + ENVELOPE_ADJUSTMENT_OFFSET);
 | |
| 
 | |
|             if (e != e_a[0] && e != e_a[1]) {
 | |
|                 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
 | |
|                                                    q_filt, indexnoise,
 | |
|                                                    kx, m_max);
 | |
|             } else {
 | |
|                 int idx = indexsine&1;
 | |
|                 int A = (1-((indexsine+(kx & 1))&2));
 | |
|                 int B = (A^(-idx)) + idx;
 | |
|                 float *out = &Y1[i][kx][idx];
 | |
|                 float *in  = sbr->s_m[e];
 | |
|                 for (m = 0; m+1 < m_max; m+=2) {
 | |
|                     out[2*m  ] += in[m  ] * A;
 | |
|                     out[2*m+2] += in[m+1] * B;
 | |
|                 }
 | |
|                 if(m_max&1)
 | |
|                     out[2*m  ] += in[m  ] * A;
 | |
|             }
 | |
|             indexnoise = (indexnoise + m_max) & 0x1ff;
 | |
|             indexsine = (indexsine + 1) & 3;
 | |
|         }
 | |
|     }
 | |
|     ch_data->f_indexnoise = indexnoise;
 | |
|     ch_data->f_indexsine  = indexsine;
 | |
| }
 | |
| 
 | |
| #include "aacsbr_template.c"
 |