mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1302 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1302 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * COOK compatible decoder
 | |
|  * Copyright (c) 2003 Sascha Sommer
 | |
|  * Copyright (c) 2005 Benjamin Larsson
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file cook.c
 | |
|  * Cook compatible decoder.
 | |
|  * This decoder handles RealNetworks, RealAudio G2 data.
 | |
|  * Cook is identified by the codec name cook in RM files.
 | |
|  *
 | |
|  * To use this decoder, a calling application must supply the extradata
 | |
|  * bytes provided from the RM container; 8+ bytes for mono streams and
 | |
|  * 16+ for stereo streams (maybe more).
 | |
|  *
 | |
|  * Codec technicalities (all this assume a buffer length of 1024):
 | |
|  * Cook works with several different techniques to achieve its compression.
 | |
|  * In the timedomain the buffer is divided into 8 pieces and quantized. If
 | |
|  * two neighboring pieces have different quantization index a smooth
 | |
|  * quantization curve is used to get a smooth overlap between the different
 | |
|  * pieces.
 | |
|  * To get to the transformdomain Cook uses a modulated lapped transform.
 | |
|  * The transform domain has 50 subbands with 20 elements each. This
 | |
|  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
 | |
|  * available.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #define ALT_BITSTREAM_READER
 | |
| #include "avcodec.h"
 | |
| #include "bitstream.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| #include "cookdata.h"
 | |
| 
 | |
| /* the different Cook versions */
 | |
| #define MONO_COOK1      0x1000001
 | |
| #define MONO_COOK2      0x1000002
 | |
| #define JOINT_STEREO    0x1000003
 | |
| #define MC_COOK         0x2000000   //multichannel Cook, not supported
 | |
| 
 | |
| #define SUBBAND_SIZE    20
 | |
| //#define COOKDEBUG
 | |
| 
 | |
| typedef struct {
 | |
|     int     size;
 | |
|     int     qidx_table1[8];
 | |
|     int     qidx_table2[8];
 | |
| } COOKgain;
 | |
| 
 | |
| typedef struct __attribute__((__packed__)){
 | |
|     /* codec data start */
 | |
|     uint32_t cookversion;               //in network order, bigendian
 | |
|     uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
 | |
|     uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
 | |
|     /* Mono extradata ends here. */
 | |
|     uint32_t unused;
 | |
|     uint16_t js_subband_start;          //bigendian
 | |
|     uint16_t js_vlc_bits;               //bigendian
 | |
|     /* Stereo extradata ends here. */
 | |
| } COOKextradata;
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     GetBitContext       gb;
 | |
|     /* stream data */
 | |
|     int                 nb_channels;
 | |
|     int                 joint_stereo;
 | |
|     int                 bit_rate;
 | |
|     int                 sample_rate;
 | |
|     int                 samples_per_channel;
 | |
|     int                 samples_per_frame;
 | |
|     int                 subbands;
 | |
|     int                 numvector_bits;
 | |
|     int                 numvector_size;                //1 << numvector_bits;
 | |
|     int                 js_subband_start;
 | |
|     int                 total_subbands;
 | |
|     int                 num_vectors;
 | |
|     int                 bits_per_subpacket;
 | |
|     /* states */
 | |
|     int                 random_state;
 | |
| 
 | |
|     /* transform data */
 | |
|     FFTContext          fft_ctx;
 | |
|     FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
 | |
|     float*              mlt_window;
 | |
|     float*              mlt_precos;
 | |
|     float*              mlt_presin;
 | |
|     float*              mlt_postcos;
 | |
|     int                 fft_size;
 | |
|     int                 fft_order;
 | |
|     int                 mlt_size;       //modulated lapped transform size
 | |
| 
 | |
|     /* gain buffers */
 | |
|     COOKgain*           gain_now_ptr;
 | |
|     COOKgain*           gain_previous_ptr;
 | |
|     COOKgain            gain_current;
 | |
|     COOKgain            gain_now;
 | |
|     COOKgain            gain_previous;
 | |
|     COOKgain            gain_channel1[2];
 | |
|     COOKgain            gain_channel2[2];
 | |
| 
 | |
|     /* VLC data */
 | |
|     int                 js_vlc_bits;
 | |
|     VLC                 envelope_quant_index[13];
 | |
|     VLC                 sqvh[7];          //scalar quantization
 | |
|     VLC                 ccpl;             //channel coupling
 | |
| 
 | |
|     /* generatable tables and related variables */
 | |
|     int                 gain_size_factor;
 | |
|     float               gain_table[23];
 | |
|     float               pow2tab[127];
 | |
|     float               rootpow2tab[127];
 | |
| 
 | |
|     /* data buffers */
 | |
| 
 | |
|     uint8_t*            decoded_bytes_buffer;
 | |
|     float               mono_mdct_output[2048] __attribute__((aligned(16)));
 | |
|     float*              previous_buffer_ptr[2];
 | |
|     float               mono_previous_buffer1[1024];
 | |
|     float               mono_previous_buffer2[1024];
 | |
|     float*              decode_buf_ptr[4];
 | |
|     float*              decode_buf_ptr2[2];
 | |
|     float               decode_buffer_1[1024];
 | |
|     float               decode_buffer_2[1024];
 | |
|     float               decode_buffer_3[1024];
 | |
|     float               decode_buffer_4[1024];
 | |
| } COOKContext;
 | |
| 
 | |
| /* debug functions */
 | |
| 
 | |
| #ifdef COOKDEBUG
 | |
| static void dump_float_table(float* table, int size, int delimiter) {
 | |
|     int i=0;
 | |
|     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
 | |
|     for (i=0 ; i<size ; i++) {
 | |
|         av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
 | |
|         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dump_int_table(int* table, int size, int delimiter) {
 | |
|     int i=0;
 | |
|     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
 | |
|     for (i=0 ; i<size ; i++) {
 | |
|         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
 | |
|         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dump_short_table(short* table, int size, int delimiter) {
 | |
|     int i=0;
 | |
|     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
 | |
|     for (i=0 ; i<size ; i++) {
 | |
|         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
 | |
|         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*************** init functions ***************/
 | |
| 
 | |
| /* table generator */
 | |
| static void init_pow2table(COOKContext *q){
 | |
|     int i;
 | |
|     q->pow2tab[63] = 1.0;
 | |
|     for (i=1 ; i<64 ; i++){
 | |
|         q->pow2tab[63+i]=(float)pow(2.0,(double)i);
 | |
|         q->pow2tab[63-i]=1.0/(float)pow(2.0,(double)i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* table generator */
 | |
| static void init_rootpow2table(COOKContext *q){
 | |
|     int i;
 | |
|     q->rootpow2tab[63] = 1.0;
 | |
|     for (i=1 ; i<64 ; i++){
 | |
|         q->rootpow2tab[63+i]=sqrt((float)powf(2.0,(float)i));
 | |
|         q->rootpow2tab[63-i]=sqrt(1.0/(float)powf(2.0,(float)i));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* table generator */
 | |
| static void init_gain_table(COOKContext *q) {
 | |
|     int i;
 | |
|     q->gain_size_factor = q->samples_per_channel/8;
 | |
|     for (i=0 ; i<23 ; i++) {
 | |
|         q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
 | |
|                                (1.0/(double)q->gain_size_factor));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int init_cook_vlc_tables(COOKContext *q) {
 | |
|     int i, result;
 | |
| 
 | |
|     result = 0;
 | |
|     for (i=0 ; i<13 ; i++) {
 | |
|         result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
 | |
|             envelope_quant_index_huffbits[i], 1, 1,
 | |
|             envelope_quant_index_huffcodes[i], 2, 2, 0);
 | |
|     }
 | |
|     av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
 | |
|     for (i=0 ; i<7 ; i++) {
 | |
|         result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
 | |
|             cvh_huffbits[i], 1, 1,
 | |
|             cvh_huffcodes[i], 2, 2, 0);
 | |
|     }
 | |
| 
 | |
|     if (q->nb_channels==2 && q->joint_stereo==1){
 | |
|         result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
 | |
|             ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
 | |
|             ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
 | |
|         av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
 | |
|     }
 | |
| 
 | |
|     av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static int init_cook_mlt(COOKContext *q) {
 | |
|     int j;
 | |
|     float alpha;
 | |
| 
 | |
|     /* Allocate the buffers, could be replaced with a static [512]
 | |
|        array if needed. */
 | |
|     q->mlt_size = q->samples_per_channel;
 | |
|     q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
 | |
|     q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
 | |
|     q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
 | |
|     q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
 | |
| 
 | |
|     /* Initialize the MLT window: simple sine window. */
 | |
|     alpha = M_PI / (2.0 * (float)q->mlt_size);
 | |
|     for(j=0 ; j<q->mlt_size ; j++) {
 | |
|         q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
 | |
|     }
 | |
| 
 | |
|     /* pre/post twiddle factors */
 | |
|     for (j=0 ; j<q->mlt_size/2 ; j++){
 | |
|         q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
 | |
|         q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
 | |
|         q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
 | |
|     }
 | |
| 
 | |
|     /* Initialize the FFT. */
 | |
|     ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
 | |
|     av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
 | |
|            av_log2(q->samples_per_channel)-1);
 | |
| 
 | |
|     return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
 | |
| }
 | |
| 
 | |
| /*************** init functions end ***********/
 | |
| 
 | |
| /**
 | |
|  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
 | |
|  * Why? No idea, some checksum/error detection method maybe.
 | |
|  * Nice way to waste CPU cycles.
 | |
|  *
 | |
|  * @param in        pointer to 32bit array of indata
 | |
|  * @param bits      amount of bits
 | |
|  * @param out       pointer to 32bit array of outdata
 | |
|  */
 | |
| 
 | |
| static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
 | |
|     int i;
 | |
|     uint32_t* buf = (uint32_t*) inbuffer;
 | |
|     uint32_t* obuf = (uint32_t*) out;
 | |
|     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
 | |
|      * I'm too lazy though, should be something like
 | |
|      * for(i=0 ; i<bitamount/64 ; i++)
 | |
|      *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
 | |
|      * Buffer alignment needs to be checked. */
 | |
| 
 | |
| 
 | |
|     for(i=0 ; i<bytes/4 ; i++){
 | |
| #ifdef WORDS_BIGENDIAN
 | |
|         obuf[i] = 0x37c511f2^buf[i];
 | |
| #else
 | |
|         obuf[i] = 0xf211c537^buf[i];
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Cook uninit
 | |
|  */
 | |
| 
 | |
| static int cook_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     int i;
 | |
|     COOKContext *q = avctx->priv_data;
 | |
|     av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
 | |
| 
 | |
|     /* Free allocated memory buffers. */
 | |
|     av_free(q->mlt_window);
 | |
|     av_free(q->mlt_precos);
 | |
|     av_free(q->mlt_presin);
 | |
|     av_free(q->mlt_postcos);
 | |
|     av_free(q->decoded_bytes_buffer);
 | |
| 
 | |
|     /* Free the transform. */
 | |
|     ff_fft_end(&q->fft_ctx);
 | |
| 
 | |
|     /* Free the VLC tables. */
 | |
|     for (i=0 ; i<13 ; i++) {
 | |
|         free_vlc(&q->envelope_quant_index[i]);
 | |
|     }
 | |
|     for (i=0 ; i<7 ; i++) {
 | |
|         free_vlc(&q->sqvh[i]);
 | |
|     }
 | |
|     if(q->nb_channels==2 && q->joint_stereo==1 ){
 | |
|         free_vlc(&q->ccpl);
 | |
|     }
 | |
| 
 | |
|     av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Fill the COOKgain structure for the timedomain quantization.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param gaininfo          pointer to the COOKgain
 | |
|  */
 | |
| 
 | |
| static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
 | |
|     int i;
 | |
| 
 | |
|     while (get_bits1(gb)) {}
 | |
| 
 | |
|     gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
 | |
| 
 | |
|     if (get_bits_count(gb) - 1 <= 0) return;
 | |
| 
 | |
|     for (i=0 ; i<gaininfo->size ; i++){
 | |
|         gaininfo->qidx_table1[i] = get_bits(gb,3);
 | |
|         if (get_bits1(gb)) {
 | |
|             gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
 | |
|         } else {
 | |
|             gaininfo->qidx_table2[i] = -1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create the quant index table needed for the envelope.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param quant_index_table pointer to the array
 | |
|  */
 | |
| 
 | |
| static void decode_envelope(COOKContext *q, int* quant_index_table) {
 | |
|     int i,j, vlc_index;
 | |
|     int bitbias;
 | |
| 
 | |
|     bitbias = get_bits_count(&q->gb);
 | |
|     quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
 | |
| 
 | |
|     for (i=1 ; i < q->total_subbands ; i++){
 | |
|         vlc_index=i;
 | |
|         if (i >= q->js_subband_start * 2) {
 | |
|             vlc_index-=q->js_subband_start;
 | |
|         } else {
 | |
|             vlc_index/=2;
 | |
|             if(vlc_index < 1) vlc_index = 1;
 | |
|         }
 | |
|         if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
 | |
| 
 | |
|         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
 | |
|                      q->envelope_quant_index[vlc_index-1].bits,2);
 | |
|         quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create the quant value table.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param quant_value_table pointer to the array
 | |
|  */
 | |
| 
 | |
| static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
 | |
|                                     float* quant_value_table){
 | |
| 
 | |
|     int i;
 | |
|     for(i=0 ; i < q->total_subbands ; i++){
 | |
|         quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate the category and category_index vector.
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param quant_index_table     pointer to the array
 | |
|  * @param category              pointer to the category array
 | |
|  * @param category_index        pointer to the category_index array
 | |
|  */
 | |
| 
 | |
| static void categorize(COOKContext *q, int* quant_index_table,
 | |
|                        int* category, int* category_index){
 | |
|     int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
 | |
|     int exp_index2[102];
 | |
|     int exp_index1[102];
 | |
| 
 | |
|     int tmp_categorize_array1[128];
 | |
|     int tmp_categorize_array1_idx=0;
 | |
|     int tmp_categorize_array2[128];
 | |
|     int tmp_categorize_array2_idx=0;
 | |
|     int category_index_size=0;
 | |
| 
 | |
|     bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
 | |
| 
 | |
|     if(bits_left > q->samples_per_channel) {
 | |
|         bits_left = q->samples_per_channel +
 | |
|                     ((bits_left - q->samples_per_channel)*5)/8;
 | |
|         //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
 | |
|     }
 | |
| 
 | |
|     memset(&exp_index1,0,102*sizeof(int));
 | |
|     memset(&exp_index2,0,102*sizeof(int));
 | |
|     memset(&tmp_categorize_array1,0,128*sizeof(int));
 | |
|     memset(&tmp_categorize_array2,0,128*sizeof(int));
 | |
| 
 | |
|     bias=-32;
 | |
| 
 | |
|     /* Estimate bias. */
 | |
|     for (i=32 ; i>0 ; i=i/2){
 | |
|         num_bits = 0;
 | |
|         index = 0;
 | |
|         for (j=q->total_subbands ; j>0 ; j--){
 | |
|             exp_idx = (i - quant_index_table[index] + bias) / 2;
 | |
|             if (exp_idx<0){
 | |
|                 exp_idx=0;
 | |
|             } else if(exp_idx >7) {
 | |
|                 exp_idx=7;
 | |
|             }
 | |
|             index++;
 | |
|             num_bits+=expbits_tab[exp_idx];
 | |
|         }
 | |
|         if(num_bits >= bits_left - 32){
 | |
|             bias+=i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Calculate total number of bits. */
 | |
|     num_bits=0;
 | |
|     for (i=0 ; i<q->total_subbands ; i++) {
 | |
|         exp_idx = (bias - quant_index_table[i]) / 2;
 | |
|         if (exp_idx<0) {
 | |
|             exp_idx=0;
 | |
|         } else if(exp_idx >7) {
 | |
|             exp_idx=7;
 | |
|         }
 | |
|         num_bits += expbits_tab[exp_idx];
 | |
|         exp_index1[i] = exp_idx;
 | |
|         exp_index2[i] = exp_idx;
 | |
|     }
 | |
|     tmpbias = bias = num_bits;
 | |
| 
 | |
|     for (j = 1 ; j < q->numvector_size ; j++) {
 | |
|         if (tmpbias + bias > 2*bits_left) {  /* ---> */
 | |
|             int max = -999999;
 | |
|             index=-1;
 | |
|             for (i=0 ; i<q->total_subbands ; i++){
 | |
|                 if (exp_index1[i] < 7) {
 | |
|                     v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
 | |
|                     if ( v >= max) {
 | |
|                         max = v;
 | |
|                         index = i;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if(index==-1)break;
 | |
|             tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
 | |
|             tmpbias -= expbits_tab[exp_index1[index]] -
 | |
|                        expbits_tab[exp_index1[index]+1];
 | |
|             ++exp_index1[index];
 | |
|         } else {  /* <--- */
 | |
|             int min = 999999;
 | |
|             index=-1;
 | |
|             for (i=0 ; i<q->total_subbands ; i++){
 | |
|                 if(exp_index2[i] > 0){
 | |
|                     v = (-2*exp_index2[i])-quant_index_table[i];
 | |
|                     if ( v < min) {
 | |
|                         min = v;
 | |
|                         index = i;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if(index == -1)break;
 | |
|             tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
 | |
|             tmpbias -= expbits_tab[exp_index2[index]] -
 | |
|                        expbits_tab[exp_index2[index]-1];
 | |
|             --exp_index2[index];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(i=0 ; i<q->total_subbands ; i++)
 | |
|         category[i] = exp_index2[i];
 | |
| 
 | |
|     /* Concatenate the two arrays. */
 | |
|     for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
 | |
|         category_index[category_index_size++] =  tmp_categorize_array2[i];
 | |
| 
 | |
|     for(i=0;i<tmp_categorize_array1_idx;i++)
 | |
|         category_index[category_index_size++ ] =  tmp_categorize_array1[i];
 | |
| 
 | |
|     /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
 | |
|        should fill the remaining bytes. */
 | |
|     for(i=category_index_size;i<q->numvector_size;i++)
 | |
|         category_index[i]=0;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Expand the category vector.
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param category              pointer to the category array
 | |
|  * @param category_index        pointer to the category_index array
 | |
|  */
 | |
| 
 | |
| static void inline expand_category(COOKContext *q, int* category,
 | |
|                                    int* category_index){
 | |
|     int i;
 | |
|     for(i=0 ; i<q->num_vectors ; i++){
 | |
|         ++category[category_index[i]];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The real requantization of the mltcoefs
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param index                 index
 | |
|  * @param band                  current subband
 | |
|  * @param quant_value_table     pointer to the array
 | |
|  * @param subband_coef_index    array of indexes to quant_centroid_tab
 | |
|  * @param subband_coef_noise    use random noise instead of predetermined value
 | |
|  * @param mlt_buffer            pointer to the mlt buffer
 | |
|  */
 | |
| 
 | |
| 
 | |
| static void scalar_dequant(COOKContext *q, int index, int band,
 | |
|                            float* quant_value_table, int* subband_coef_index,
 | |
|                            int* subband_coef_noise, float* mlt_buffer){
 | |
|     int i;
 | |
|     float f1;
 | |
| 
 | |
|     for(i=0 ; i<SUBBAND_SIZE ; i++) {
 | |
|         if (subband_coef_index[i]) {
 | |
|             if (subband_coef_noise[i]) {
 | |
|                 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
 | |
|             } else {
 | |
|                 f1 = quant_centroid_tab[index][subband_coef_index[i]];
 | |
|             }
 | |
|         } else {
 | |
|             /* noise coding if subband_coef_noise[i] == 0 */
 | |
|             q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
 | |
|             f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
 | |
|         }
 | |
|         mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
 | |
|     }
 | |
| }
 | |
| /**
 | |
|  * Unpack the subband_coef_index and subband_coef_noise vectors.
 | |
|  *
 | |
|  * @param q                     pointer to the COOKContext
 | |
|  * @param category              pointer to the category array
 | |
|  * @param subband_coef_index    array of indexes to quant_centroid_tab
 | |
|  * @param subband_coef_noise    use random noise instead of predetermined value
 | |
|  */
 | |
| 
 | |
| static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
 | |
|                        int* subband_coef_noise) {
 | |
|     int i,j;
 | |
|     int vlc, vd ,tmp, result;
 | |
|     int ub;
 | |
|     int cb;
 | |
| 
 | |
|     vd = vd_tab[category];
 | |
|     result = 0;
 | |
|     for(i=0 ; i<vpr_tab[category] ; i++){
 | |
|         ub = get_bits_count(&q->gb);
 | |
|         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
 | |
|         cb = get_bits_count(&q->gb);
 | |
|         if (q->bits_per_subpacket < get_bits_count(&q->gb)){
 | |
|             vlc = 0;
 | |
|             result = 1;
 | |
|         }
 | |
|         for(j=vd-1 ; j>=0 ; j--){
 | |
|             tmp = (vlc * invradix_tab[category])/0x100000;
 | |
|             subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
 | |
|             vlc = tmp;
 | |
|         }
 | |
|         for(j=0 ; j<vd ; j++){
 | |
|             if (subband_coef_index[i*vd + j]) {
 | |
|                 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
 | |
|                     subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
 | |
|                 } else {
 | |
|                     result=1;
 | |
|                     subband_coef_noise[i*vd+j]=0;
 | |
|                 }
 | |
|             } else {
 | |
|                 subband_coef_noise[i*vd+j]=0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Fill the mlt_buffer with mlt coefficients.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param category          pointer to the category array
 | |
|  * @param quant_value_table pointer to the array
 | |
|  * @param mlt_buffer        pointer to mlt coefficients
 | |
|  */
 | |
| 
 | |
| 
 | |
| static void decode_vectors(COOKContext* q, int* category,
 | |
|                            float* quant_value_table, float* mlt_buffer){
 | |
|     /* A zero in this table means that the subband coefficient is
 | |
|        random noise coded. */
 | |
|     int subband_coef_noise[SUBBAND_SIZE];
 | |
|     /* A zero in this table means that the subband coefficient is a
 | |
|        positive multiplicator. */
 | |
|     int subband_coef_index[SUBBAND_SIZE];
 | |
|     int band, j;
 | |
|     int index=0;
 | |
| 
 | |
|     for(band=0 ; band<q->total_subbands ; band++){
 | |
|         index = category[band];
 | |
|         if(category[band] < 7){
 | |
|             if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
 | |
|                 index=7;
 | |
|                 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
 | |
|             }
 | |
|         }
 | |
|         if(index==7) {
 | |
|             memset(subband_coef_index, 0, sizeof(subband_coef_index));
 | |
|             memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
 | |
|         }
 | |
|         scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
 | |
|                        subband_coef_noise, mlt_buffer);
 | |
|     }
 | |
| 
 | |
|     if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * function for decoding mono data
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param mlt_buffer1       pointer to left channel mlt coefficients
 | |
|  * @param mlt_buffer2       pointer to right channel mlt coefficients
 | |
|  */
 | |
| 
 | |
| static void mono_decode(COOKContext *q, float* mlt_buffer) {
 | |
| 
 | |
|     int category_index[128];
 | |
|     float quant_value_table[102];
 | |
|     int quant_index_table[102];
 | |
|     int category[128];
 | |
| 
 | |
|     memset(&category, 0, 128*sizeof(int));
 | |
|     memset(&quant_value_table, 0, 102*sizeof(int));
 | |
|     memset(&category_index, 0, 128*sizeof(int));
 | |
| 
 | |
|     decode_envelope(q, quant_index_table);
 | |
|     q->num_vectors = get_bits(&q->gb,q->numvector_bits);
 | |
|     dequant_envelope(q, quant_index_table, quant_value_table);
 | |
|     categorize(q, quant_index_table, category, category_index);
 | |
|     expand_category(q, category, category_index);
 | |
|     decode_vectors(q, category, quant_value_table, mlt_buffer);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * The modulated lapped transform, this takes transform coefficients
 | |
|  * and transforms them into timedomain samples. This is done through
 | |
|  * an FFT-based algorithm with pre- and postrotation steps.
 | |
|  * A window and reorder step is also included.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param inbuffer          pointer to the mltcoefficients
 | |
|  * @param outbuffer         pointer to the timedomain buffer
 | |
|  * @param mlt_tmp           pointer to temporary storage space
 | |
|  */
 | |
| 
 | |
| static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
 | |
|                       float* mlt_tmp){
 | |
|     int i;
 | |
| 
 | |
|     /* prerotation */
 | |
|     for(i=0 ; i<q->mlt_size ; i+=2){
 | |
|         outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
 | |
|                        (q->mlt_precos[i/2] * inbuffer[i]);
 | |
|         outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
 | |
|                          (q->mlt_presin[i/2] * inbuffer[i]);
 | |
|     }
 | |
| 
 | |
|     /* FFT */
 | |
|     ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
 | |
|     ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
 | |
| 
 | |
|     /* postrotation */
 | |
|     for(i=0 ; i<q->mlt_size ; i+=2){
 | |
|         mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
 | |
|                                    (q->mlt_postcos[i/2] * outbuffer[i]);
 | |
|         mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
 | |
|                                    (q->mlt_postcos[i/2] * outbuffer[i+1]);
 | |
|     }
 | |
| 
 | |
|     /* window and reorder */
 | |
|     for(i=0 ; i<q->mlt_size/2 ; i++){
 | |
|         outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
 | |
|         outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
 | |
|                                     q->mlt_window[q->mlt_size-1-i];
 | |
|         outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
 | |
|                                   q->mlt_window[q->mlt_size-1-i];
 | |
|         outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
 | |
|                                       q->mlt_window[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * the actual requantization of the timedomain samples
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param buffer            pointer to the timedomain buffer
 | |
|  * @param gain_index        index for the block multiplier
 | |
|  * @param gain_index_next   index for the next block multiplier
 | |
|  */
 | |
| 
 | |
| static void interpolate(COOKContext *q, float* buffer,
 | |
|                         int gain_index, int gain_index_next){
 | |
|     int i;
 | |
|     float fc1, fc2;
 | |
|     fc1 = q->pow2tab[gain_index+63];
 | |
| 
 | |
|     if(gain_index == gain_index_next){              //static gain
 | |
|         for(i=0 ; i<q->gain_size_factor ; i++){
 | |
|             buffer[i]*=fc1;
 | |
|         }
 | |
|         return;
 | |
|     } else {                                        //smooth gain
 | |
|         fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
 | |
|         for(i=0 ; i<q->gain_size_factor ; i++){
 | |
|             buffer[i]*=fc1;
 | |
|             fc1*=fc2;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timedomain requantization of the timedomain samples
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param buffer            pointer to the timedomain buffer
 | |
|  * @param gain_now          current gain structure
 | |
|  * @param gain_previous     previous gain structure
 | |
|  */
 | |
| 
 | |
| static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
 | |
|                         COOKgain* gain_previous){
 | |
|     int i, index;
 | |
|     int gain_index[9];
 | |
|     int tmp_gain_index;
 | |
| 
 | |
|     gain_index[8]=0;
 | |
|     index = gain_previous->size;
 | |
|     for (i=7 ; i>=0 ; i--) {
 | |
|         if(index && gain_previous->qidx_table1[index-1]==i) {
 | |
|             gain_index[i] = gain_previous->qidx_table2[index-1];
 | |
|             index--;
 | |
|         } else {
 | |
|             gain_index[i]=gain_index[i+1];
 | |
|         }
 | |
|     }
 | |
|     /* This is applied to the to be previous data buffer. */
 | |
|     for(i=0;i<8;i++){
 | |
|         interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
 | |
|                     gain_index[i], gain_index[i+1]);
 | |
|     }
 | |
| 
 | |
|     tmp_gain_index = gain_index[0];
 | |
|     index = gain_now->size;
 | |
|     for (i=7 ; i>=0 ; i--) {
 | |
|         if(index && gain_now->qidx_table1[index-1]==i) {
 | |
|             gain_index[i]= gain_now->qidx_table2[index-1];
 | |
|             index--;
 | |
|         } else {
 | |
|             gain_index[i]=gain_index[i+1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* This is applied to the to be current block. */
 | |
|     for(i=0;i<8;i++){
 | |
|         interpolate(q, &buffer[i*q->gain_size_factor],
 | |
|                     tmp_gain_index+gain_index[i],
 | |
|                     tmp_gain_index+gain_index[i+1]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * mlt overlapping and buffer management
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param buffer            pointer to the timedomain buffer
 | |
|  * @param gain_now          current gain structure
 | |
|  * @param gain_previous     previous gain structure
 | |
|  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
 | |
|                             COOKgain* gain_previous, float* previous_buffer) {
 | |
|     int i;
 | |
|     if((gain_now->size  || gain_previous->size)) {
 | |
|         gain_window(q, buffer, gain_now, gain_previous);
 | |
|     }
 | |
| 
 | |
|     /* Overlap with the previous block. */
 | |
|     for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
 | |
| 
 | |
|     /* Save away the current to be previous block. */
 | |
|     memcpy(previous_buffer, buffer+q->samples_per_channel,
 | |
|            sizeof(float)*q->samples_per_channel);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * function for getting the jointstereo coupling information
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param decouple_tab      decoupling array
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void decouple_info(COOKContext *q, int* decouple_tab){
 | |
|     int length, i;
 | |
| 
 | |
|     if(get_bits1(&q->gb)) {
 | |
|         if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
 | |
| 
 | |
|         length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
 | |
|         for (i=0 ; i<length ; i++) {
 | |
|             decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
 | |
| 
 | |
|     length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
 | |
|     for (i=0 ; i<length ; i++) {
 | |
|        decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * function for decoding joint stereo data
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param mlt_buffer1       pointer to left channel mlt coefficients
 | |
|  * @param mlt_buffer2       pointer to right channel mlt coefficients
 | |
|  */
 | |
| 
 | |
| static void joint_decode(COOKContext *q, float* mlt_buffer1,
 | |
|                          float* mlt_buffer2) {
 | |
|     int i,j;
 | |
|     int decouple_tab[SUBBAND_SIZE];
 | |
|     float decode_buffer[1060];
 | |
|     int idx, cpl_tmp,tmp_idx;
 | |
|     float f1,f2;
 | |
|     float* cplscale;
 | |
| 
 | |
|     memset(decouple_tab, 0, sizeof(decouple_tab));
 | |
|     memset(decode_buffer, 0, sizeof(decode_buffer));
 | |
| 
 | |
|     /* Make sure the buffers are zeroed out. */
 | |
|     memset(mlt_buffer1,0, 1024*sizeof(float));
 | |
|     memset(mlt_buffer2,0, 1024*sizeof(float));
 | |
|     decouple_info(q, decouple_tab);
 | |
|     mono_decode(q, decode_buffer);
 | |
| 
 | |
|     /* The two channels are stored interleaved in decode_buffer. */
 | |
|     for (i=0 ; i<q->js_subband_start ; i++) {
 | |
|         for (j=0 ; j<SUBBAND_SIZE ; j++) {
 | |
|             mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
 | |
|             mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* When we reach js_subband_start (the higher frequencies)
 | |
|        the coefficients are stored in a coupling scheme. */
 | |
|     idx = (1 << q->js_vlc_bits) - 1;
 | |
|     for (i=q->js_subband_start ; i<q->subbands ; i++) {
 | |
|         cpl_tmp = cplband[i];
 | |
|         idx -=decouple_tab[cpl_tmp];
 | |
|         cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
 | |
|         f1 = cplscale[decouple_tab[cpl_tmp]];
 | |
|         f2 = cplscale[idx-1];
 | |
|         for (j=0 ; j<SUBBAND_SIZE ; j++) {
 | |
|             tmp_idx = ((q->js_subband_start + i)*20)+j;
 | |
|             mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
 | |
|             mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
 | |
|         }
 | |
|         idx = (1 << q->js_vlc_bits) - 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Cook subpacket decoding. This function returns one decoded subpacket,
 | |
|  * usually 1024 samples per channel.
 | |
|  *
 | |
|  * @param q                 pointer to the COOKContext
 | |
|  * @param inbuffer          pointer to the inbuffer
 | |
|  * @param sub_packet_size   subpacket size
 | |
|  * @param outbuffer         pointer to the outbuffer
 | |
|  * @param pos               the subpacket number in the frame
 | |
|  */
 | |
| 
 | |
| 
 | |
| static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
 | |
|                             int sub_packet_size, int16_t *outbuffer) {
 | |
|     int i,j;
 | |
|     int value;
 | |
|     float* tmp_ptr;
 | |
| 
 | |
|     /* packet dump */
 | |
| //    for (i=0 ; i<sub_packet_size ; i++) {
 | |
| //        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
 | |
| //    }
 | |
| //    av_log(NULL, AV_LOG_ERROR, "\n");
 | |
| 
 | |
|     decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
 | |
|     init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
 | |
|     decode_gain_info(&q->gb, &q->gain_current);
 | |
| 
 | |
|     if(q->nb_channels==2 && q->joint_stereo==1){
 | |
|         joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
 | |
| 
 | |
|         /* Swap buffer pointers. */
 | |
|         tmp_ptr = q->decode_buf_ptr[1];
 | |
|         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
 | |
|         q->decode_buf_ptr[0] = tmp_ptr;
 | |
|         tmp_ptr = q->decode_buf_ptr[3];
 | |
|         q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
 | |
|         q->decode_buf_ptr[2] = tmp_ptr;
 | |
| 
 | |
|         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
 | |
|            now/previous swap */
 | |
|         q->gain_now_ptr = &q->gain_now;
 | |
|         q->gain_previous_ptr = &q->gain_previous;
 | |
|         for (i=0 ; i<q->nb_channels ; i++){
 | |
| 
 | |
|             cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
 | |
|             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
 | |
|                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
 | |
| 
 | |
|             /* Swap out the previous buffer. */
 | |
|             tmp_ptr = q->previous_buffer_ptr[0];
 | |
|             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
 | |
|             q->previous_buffer_ptr[1] = tmp_ptr;
 | |
| 
 | |
|             /* Clip and convert the floats to 16 bits. */
 | |
|             for (j=0 ; j<q->samples_per_frame ; j++){
 | |
|                 value = lrintf(q->mono_mdct_output[j]);
 | |
|                 if(value < -32768) value = -32768;
 | |
|                 else if(value > 32767) value = 32767;
 | |
|                 outbuffer[2*j+i] = value;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
 | |
|         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
 | |
| 
 | |
|     } else if (q->nb_channels==2 && q->joint_stereo==0) {
 | |
|             /* channel 0 */
 | |
|             mono_decode(q, q->decode_buf_ptr2[0]);
 | |
| 
 | |
|             tmp_ptr = q->decode_buf_ptr2[0];
 | |
|             q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
 | |
|             q->decode_buf_ptr2[1] = tmp_ptr;
 | |
| 
 | |
|             memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
 | |
|             q->gain_now_ptr = &q->gain_channel1[0];
 | |
|             q->gain_previous_ptr = &q->gain_channel1[1];
 | |
| 
 | |
|             cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
 | |
|             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
 | |
|                             q->gain_previous_ptr, q->mono_previous_buffer1);
 | |
| 
 | |
|             memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));
 | |
| 
 | |
| 
 | |
|             for (j=0 ; j<q->samples_per_frame ; j++){
 | |
|                 value = lrintf(q->mono_mdct_output[j]);
 | |
|                 if(value < -32768) value = -32768;
 | |
|                 else if(value > 32767) value = 32767;
 | |
|                 outbuffer[2*j+1] = value;
 | |
|             }
 | |
| 
 | |
|             /* channel 1 */
 | |
|             //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
 | |
|             init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
 | |
| 
 | |
|             q->gain_now_ptr = &q->gain_channel2[0];
 | |
|             q->gain_previous_ptr = &q->gain_channel2[1];
 | |
| 
 | |
|             decode_gain_info(&q->gb, &q->gain_channel2[0]);
 | |
|             mono_decode(q, q->decode_buf_ptr[0]);
 | |
| 
 | |
|             tmp_ptr = q->decode_buf_ptr[0];
 | |
|             q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
 | |
|             q->decode_buf_ptr[1] = tmp_ptr;
 | |
| 
 | |
|             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
 | |
|             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
 | |
|                             q->gain_previous_ptr, q->mono_previous_buffer2);
 | |
| 
 | |
|             /* Swap out the previous buffer. */
 | |
|             tmp_ptr = q->previous_buffer_ptr[0];
 | |
|             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
 | |
|             q->previous_buffer_ptr[1] = tmp_ptr;
 | |
| 
 | |
|             memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));
 | |
| 
 | |
|             for (j=0 ; j<q->samples_per_frame ; j++){
 | |
|                 value = lrintf(q->mono_mdct_output[j]);
 | |
|                 if(value < -32768) value = -32768;
 | |
|                 else if(value > 32767) value = 32767;
 | |
|                 outbuffer[2*j] = value;
 | |
|             }
 | |
| 
 | |
|     } else {
 | |
|         mono_decode(q, q->decode_buf_ptr[0]);
 | |
| 
 | |
|         /* Swap buffer pointers. */
 | |
|         tmp_ptr = q->decode_buf_ptr[1];
 | |
|         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
 | |
|         q->decode_buf_ptr[0] = tmp_ptr;
 | |
| 
 | |
|         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
 | |
|            now/previous swap */
 | |
|         q->gain_now_ptr = &q->gain_now;
 | |
|         q->gain_previous_ptr = &q->gain_previous;
 | |
| 
 | |
|         cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
 | |
|         gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
 | |
|                         q->gain_previous_ptr, q->mono_previous_buffer1);
 | |
| 
 | |
|         /* Clip and convert the floats to 16 bits */
 | |
|         for (j=0 ; j<q->samples_per_frame ; j++){
 | |
|             value = lrintf(q->mono_mdct_output[j]);
 | |
|             if(value < -32768) value = -32768;
 | |
|             else if(value > 32767) value = 32767;
 | |
|             outbuffer[j] = value;
 | |
|         }
 | |
|         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
 | |
|         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
 | |
|     }
 | |
|     return q->samples_per_frame * sizeof(int16_t);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Cook frame decoding
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static int cook_decode_frame(AVCodecContext *avctx,
 | |
|             void *data, int *data_size,
 | |
|             uint8_t *buf, int buf_size) {
 | |
|     COOKContext *q = avctx->priv_data;
 | |
| 
 | |
|     if (buf_size < avctx->block_align)
 | |
|         return buf_size;
 | |
| 
 | |
|     *data_size = decode_subpacket(q, buf, avctx->block_align, data);
 | |
| 
 | |
|     return avctx->block_align;
 | |
| }
 | |
| #ifdef COOKDEBUG
 | |
| static void dump_cook_context(COOKContext *q, COOKextradata *e)
 | |
| {
 | |
|     //int i=0;
 | |
| #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
 | |
|     av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
 | |
|     av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
 | |
|     if (e->cookversion > MONO_COOK2) {
 | |
|         PRINT("js_subband_start",e->js_subband_start);
 | |
|         PRINT("js_vlc_bits",e->js_vlc_bits);
 | |
|     }
 | |
|     av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
 | |
|     PRINT("nb_channels",q->nb_channels);
 | |
|     PRINT("bit_rate",q->bit_rate);
 | |
|     PRINT("sample_rate",q->sample_rate);
 | |
|     PRINT("samples_per_channel",q->samples_per_channel);
 | |
|     PRINT("samples_per_frame",q->samples_per_frame);
 | |
|     PRINT("subbands",q->subbands);
 | |
|     PRINT("random_state",q->random_state);
 | |
|     PRINT("mlt_size",q->mlt_size);
 | |
|     PRINT("js_subband_start",q->js_subband_start);
 | |
|     PRINT("numvector_bits",q->numvector_bits);
 | |
|     PRINT("numvector_size",q->numvector_size);
 | |
|     PRINT("total_subbands",q->total_subbands);
 | |
| }
 | |
| #endif
 | |
| /**
 | |
|  * Cook initialization
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static int cook_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     COOKextradata *e = avctx->extradata;
 | |
|     COOKContext *q = avctx->priv_data;
 | |
| 
 | |
|     /* Take care of the codec specific extradata. */
 | |
|     if (avctx->extradata_size <= 0) {
 | |
|         av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
 | |
|         return -1;
 | |
|     } else {
 | |
|         /* 8 for mono, 16 for stereo, ? for multichannel
 | |
|            Swap to right endianness so we don't need to care later on. */
 | |
|         av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
 | |
|         if (avctx->extradata_size >= 8){
 | |
|             e->cookversion = be2me_32(e->cookversion);
 | |
|             e->samples_per_frame = be2me_16(e->samples_per_frame);
 | |
|             e->subbands = be2me_16(e->subbands);
 | |
|         }
 | |
|         if (avctx->extradata_size >= 16){
 | |
|             e->js_subband_start = be2me_16(e->js_subband_start);
 | |
|             e->js_vlc_bits = be2me_16(e->js_vlc_bits);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Take data from the AVCodecContext (RM container). */
 | |
|     q->sample_rate = avctx->sample_rate;
 | |
|     q->nb_channels = avctx->channels;
 | |
|     q->bit_rate = avctx->bit_rate;
 | |
| 
 | |
|     /* Initialize state. */
 | |
|     q->random_state = 1;
 | |
| 
 | |
|     /* Initialize extradata related variables. */
 | |
|     q->samples_per_channel = e->samples_per_frame / q->nb_channels;
 | |
|     q->samples_per_frame = e->samples_per_frame;
 | |
|     q->subbands = e->subbands;
 | |
|     q->bits_per_subpacket = avctx->block_align * 8;
 | |
| 
 | |
|     /* Initialize default data states. */
 | |
|     q->js_subband_start = 0;
 | |
|     q->numvector_bits = 5;
 | |
|     q->total_subbands = q->subbands;
 | |
| 
 | |
|     /* Initialize version-dependent variables */
 | |
|     av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
 | |
|     switch (e->cookversion) {
 | |
|         case MONO_COOK1:
 | |
|             if (q->nb_channels != 1) {
 | |
|                 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
 | |
|             break;
 | |
|         case MONO_COOK2:
 | |
|             if (q->nb_channels != 1) {
 | |
|                 q->joint_stereo = 0;
 | |
|                 q->bits_per_subpacket = q->bits_per_subpacket/2;
 | |
|             }
 | |
|             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
 | |
|             break;
 | |
|         case JOINT_STEREO:
 | |
|             if (q->nb_channels != 2) {
 | |
|                 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
 | |
|             if (avctx->extradata_size >= 16){
 | |
|                 q->total_subbands = q->subbands + e->js_subband_start;
 | |
|                 q->js_subband_start = e->js_subband_start;
 | |
|                 q->joint_stereo = 1;
 | |
|                 q->js_vlc_bits = e->js_vlc_bits;
 | |
|             }
 | |
|             if (q->samples_per_channel > 256) {
 | |
|                 q->numvector_bits++;   // q->numvector_bits  = 6
 | |
|             }
 | |
|             if (q->samples_per_channel > 512) {
 | |
|                 q->numvector_bits++;   // q->numvector_bits  = 7
 | |
|             }
 | |
|             break;
 | |
|         case MC_COOK:
 | |
|             av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
 | |
|             return -1;
 | |
|             break;
 | |
|         default:
 | |
|             av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
 | |
|             return -1;
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     /* Initialize variable relations */
 | |
|     q->mlt_size = q->samples_per_channel;
 | |
|     q->numvector_size = (1 << q->numvector_bits);
 | |
| 
 | |
|     /* Generate tables */
 | |
|     init_rootpow2table(q);
 | |
|     init_pow2table(q);
 | |
|     init_gain_table(q);
 | |
| 
 | |
|     if (init_cook_vlc_tables(q) != 0)
 | |
|         return -1;
 | |
| 
 | |
|     /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
 | |
|        this is for the bitstreamreader. */
 | |
|     if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
 | |
|         return -1;
 | |
| 
 | |
|     q->decode_buf_ptr[0] = q->decode_buffer_1;
 | |
|     q->decode_buf_ptr[1] = q->decode_buffer_2;
 | |
|     q->decode_buf_ptr[2] = q->decode_buffer_3;
 | |
|     q->decode_buf_ptr[3] = q->decode_buffer_4;
 | |
| 
 | |
|     q->decode_buf_ptr2[0] = q->decode_buffer_3;
 | |
|     q->decode_buf_ptr2[1] = q->decode_buffer_4;
 | |
| 
 | |
|     q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
 | |
|     q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
 | |
| 
 | |
|     /* Initialize transform. */
 | |
|     if ( init_cook_mlt(q) == 0 )
 | |
|         return -1;
 | |
| 
 | |
|     /* Try to catch some obviously faulty streams, othervise it might be exploitable */
 | |
|     if (q->total_subbands > 53) {
 | |
|         av_log(NULL,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
 | |
|         return -1;
 | |
|     }
 | |
|     if (q->subbands > 50) {
 | |
|         av_log(NULL,AV_LOG_ERROR,"subbands > 50, report sample!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| #ifdef COOKDEBUG
 | |
|     dump_cook_context(q,e);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| AVCodec cook_decoder =
 | |
| {
 | |
|     .name = "cook",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_COOK,
 | |
|     .priv_data_size = sizeof(COOKContext),
 | |
|     .init = cook_decode_init,
 | |
|     .close = cook_decode_close,
 | |
|     .decode = cook_decode_frame,
 | |
| };
 | 
