mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-28 19:22:02 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1689 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1689 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * VP8 compatible video decoder
 | |
|  *
 | |
|  * Copyright (C) 2010 David Conrad
 | |
|  * Copyright (C) 2010 Ronald S. Bultje
 | |
|  * Copyright (C) 2010 Jason Garrett-Glaser
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavcore/imgutils.h"
 | |
| #include "avcodec.h"
 | |
| #include "vp56.h"
 | |
| #include "vp8data.h"
 | |
| #include "vp8dsp.h"
 | |
| #include "h264pred.h"
 | |
| #include "rectangle.h"
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t filter_level;
 | |
|     uint8_t inner_limit;
 | |
|     uint8_t inner_filter;
 | |
| } VP8FilterStrength;
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t skip;
 | |
|     // todo: make it possible to check for at least (i4x4 or split_mv)
 | |
|     // in one op. are others needed?
 | |
|     uint8_t mode;
 | |
|     uint8_t ref_frame;
 | |
|     uint8_t partitioning;
 | |
|     VP56mv mv;
 | |
|     VP56mv bmv[16];
 | |
| } VP8Macroblock;
 | |
| 
 | |
| typedef struct {
 | |
|     AVCodecContext *avctx;
 | |
|     DSPContext dsp;
 | |
|     VP8DSPContext vp8dsp;
 | |
|     H264PredContext hpc;
 | |
|     vp8_mc_func put_pixels_tab[3][3][3];
 | |
|     AVFrame frames[4];
 | |
|     AVFrame *framep[4];
 | |
|     uint8_t *edge_emu_buffer;
 | |
|     VP56RangeCoder c;   ///< header context, includes mb modes and motion vectors
 | |
|     int profile;
 | |
| 
 | |
|     int mb_width;   /* number of horizontal MB */
 | |
|     int mb_height;  /* number of vertical MB */
 | |
|     int linesize;
 | |
|     int uvlinesize;
 | |
| 
 | |
|     int keyframe;
 | |
|     int invisible;
 | |
|     int update_last;    ///< update VP56_FRAME_PREVIOUS with the current one
 | |
|     int update_golden;  ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
 | |
|     int update_altref;
 | |
|     int deblock_filter;
 | |
| 
 | |
|     /**
 | |
|      * If this flag is not set, all the probability updates
 | |
|      * are discarded after this frame is decoded.
 | |
|      */
 | |
|     int update_probabilities;
 | |
| 
 | |
|     /**
 | |
|      * All coefficients are contained in separate arith coding contexts.
 | |
|      * There can be 1, 2, 4, or 8 of these after the header context.
 | |
|      */
 | |
|     int num_coeff_partitions;
 | |
|     VP56RangeCoder coeff_partition[8];
 | |
| 
 | |
|     VP8Macroblock *macroblocks;
 | |
|     VP8Macroblock *macroblocks_base;
 | |
|     VP8FilterStrength *filter_strength;
 | |
| 
 | |
|     uint8_t *intra4x4_pred_mode_top;
 | |
|     uint8_t intra4x4_pred_mode_left[4];
 | |
|     uint8_t *segmentation_map;
 | |
| 
 | |
|     /**
 | |
|      * Cache of the top row needed for intra prediction
 | |
|      * 16 for luma, 8 for each chroma plane
 | |
|      */
 | |
|     uint8_t (*top_border)[16+8+8];
 | |
| 
 | |
|     /**
 | |
|      * For coeff decode, we need to know whether the above block had non-zero
 | |
|      * coefficients. This means for each macroblock, we need data for 4 luma
 | |
|      * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
 | |
|      * per macroblock. We keep the last row in top_nnz.
 | |
|      */
 | |
|     uint8_t (*top_nnz)[9];
 | |
|     DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
 | |
| 
 | |
|     /**
 | |
|      * This is the index plus one of the last non-zero coeff
 | |
|      * for each of the blocks in the current macroblock.
 | |
|      * So, 0 -> no coeffs
 | |
|      *     1 -> dc-only (special transform)
 | |
|      *     2+-> full transform
 | |
|      */
 | |
|     DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
 | |
|     DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
 | |
|     DECLARE_ALIGNED(16, DCTELEM, block_dc)[16];
 | |
|     uint8_t intra4x4_pred_mode_mb[16];
 | |
| 
 | |
|     int chroma_pred_mode;    ///< 8x8c pred mode of the current macroblock
 | |
|     int segment;             ///< segment of the current macroblock
 | |
| 
 | |
|     int mbskip_enabled;
 | |
|     int sign_bias[4]; ///< one state [0, 1] per ref frame type
 | |
|     int ref_count[3];
 | |
| 
 | |
|     /**
 | |
|      * Base parameters for segmentation, i.e. per-macroblock parameters.
 | |
|      * These must be kept unchanged even if segmentation is not used for
 | |
|      * a frame, since the values persist between interframes.
 | |
|      */
 | |
|     struct {
 | |
|         int enabled;
 | |
|         int absolute_vals;
 | |
|         int update_map;
 | |
|         int8_t base_quant[4];
 | |
|         int8_t filter_level[4];     ///< base loop filter level
 | |
|     } segmentation;
 | |
| 
 | |
|     /**
 | |
|      * Macroblocks can have one of 4 different quants in a frame when
 | |
|      * segmentation is enabled.
 | |
|      * If segmentation is disabled, only the first segment's values are used.
 | |
|      */
 | |
|     struct {
 | |
|         // [0] - DC qmul  [1] - AC qmul
 | |
|         int16_t luma_qmul[2];
 | |
|         int16_t luma_dc_qmul[2];    ///< luma dc-only block quant
 | |
|         int16_t chroma_qmul[2];
 | |
|     } qmat[4];
 | |
| 
 | |
|     struct {
 | |
|         int simple;
 | |
|         int level;
 | |
|         int sharpness;
 | |
|     } filter;
 | |
| 
 | |
|     struct {
 | |
|         int enabled;    ///< whether each mb can have a different strength based on mode/ref
 | |
| 
 | |
|         /**
 | |
|          * filter strength adjustment for the following macroblock modes:
 | |
|          * [0] - i4x4
 | |
|          * [1] - zero mv
 | |
|          * [2] - inter modes except for zero or split mv
 | |
|          * [3] - split mv
 | |
|          *  i16x16 modes never have any adjustment
 | |
|          */
 | |
|         int8_t mode[4];
 | |
| 
 | |
|         /**
 | |
|          * filter strength adjustment for macroblocks that reference:
 | |
|          * [0] - intra / VP56_FRAME_CURRENT
 | |
|          * [1] - VP56_FRAME_PREVIOUS
 | |
|          * [2] - VP56_FRAME_GOLDEN
 | |
|          * [3] - altref / VP56_FRAME_GOLDEN2
 | |
|          */
 | |
|         int8_t ref[4];
 | |
|     } lf_delta;
 | |
| 
 | |
|     /**
 | |
|      * These are all of the updatable probabilities for binary decisions.
 | |
|      * They are only implictly reset on keyframes, making it quite likely
 | |
|      * for an interframe to desync if a prior frame's header was corrupt
 | |
|      * or missing outright!
 | |
|      */
 | |
|     struct {
 | |
|         uint8_t segmentid[3];
 | |
|         uint8_t mbskip;
 | |
|         uint8_t intra;
 | |
|         uint8_t last;
 | |
|         uint8_t golden;
 | |
|         uint8_t pred16x16[4];
 | |
|         uint8_t pred8x8c[3];
 | |
|         /* Padded to allow overreads */
 | |
|         uint8_t token[4][17][3][NUM_DCT_TOKENS-1];
 | |
|         uint8_t mvc[2][19];
 | |
|     } prob[2];
 | |
| } VP8Context;
 | |
| 
 | |
| static void vp8_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         if (s->frames[i].data[0])
 | |
|             avctx->release_buffer(avctx, &s->frames[i]);
 | |
|     memset(s->framep, 0, sizeof(s->framep));
 | |
| 
 | |
|     av_freep(&s->macroblocks_base);
 | |
|     av_freep(&s->filter_strength);
 | |
|     av_freep(&s->intra4x4_pred_mode_top);
 | |
|     av_freep(&s->top_nnz);
 | |
|     av_freep(&s->edge_emu_buffer);
 | |
|     av_freep(&s->top_border);
 | |
|     av_freep(&s->segmentation_map);
 | |
| 
 | |
|     s->macroblocks        = NULL;
 | |
| }
 | |
| 
 | |
| static int update_dimensions(VP8Context *s, int width, int height)
 | |
| {
 | |
|     if (av_check_image_size(width, height, 0, s->avctx))
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     vp8_decode_flush(s->avctx);
 | |
| 
 | |
|     avcodec_set_dimensions(s->avctx, width, height);
 | |
| 
 | |
|     s->mb_width  = (s->avctx->coded_width +15) / 16;
 | |
|     s->mb_height = (s->avctx->coded_height+15) / 16;
 | |
| 
 | |
|     s->macroblocks_base        = av_mallocz((s->mb_width+s->mb_height*2+1)*sizeof(*s->macroblocks));
 | |
|     s->filter_strength         = av_mallocz(s->mb_width*sizeof(*s->filter_strength));
 | |
|     s->intra4x4_pred_mode_top  = av_mallocz(s->mb_width*4);
 | |
|     s->top_nnz                 = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
 | |
|     s->top_border              = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
 | |
|     s->segmentation_map        = av_mallocz(s->mb_width*s->mb_height);
 | |
| 
 | |
|     if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_top ||
 | |
|         !s->top_nnz || !s->top_border || !s->segmentation_map)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->macroblocks        = s->macroblocks_base + 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void parse_segment_info(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int i;
 | |
| 
 | |
|     s->segmentation.update_map = vp8_rac_get(c);
 | |
| 
 | |
|     if (vp8_rac_get(c)) { // update segment feature data
 | |
|         s->segmentation.absolute_vals = vp8_rac_get(c);
 | |
| 
 | |
|         for (i = 0; i < 4; i++)
 | |
|             s->segmentation.base_quant[i]   = vp8_rac_get_sint(c, 7);
 | |
| 
 | |
|         for (i = 0; i < 4; i++)
 | |
|             s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
 | |
|     }
 | |
|     if (s->segmentation.update_map)
 | |
|         for (i = 0; i < 3; i++)
 | |
|             s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
 | |
| }
 | |
| 
 | |
| static void update_lf_deltas(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         s->lf_delta.ref[i]  = vp8_rac_get_sint(c, 6);
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
 | |
| }
 | |
| 
 | |
| static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     const uint8_t *sizes = buf;
 | |
|     int i;
 | |
| 
 | |
|     s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
 | |
| 
 | |
|     buf      += 3*(s->num_coeff_partitions-1);
 | |
|     buf_size -= 3*(s->num_coeff_partitions-1);
 | |
|     if (buf_size < 0)
 | |
|         return -1;
 | |
| 
 | |
|     for (i = 0; i < s->num_coeff_partitions-1; i++) {
 | |
|         int size = AV_RL24(sizes + 3*i);
 | |
|         if (buf_size - size < 0)
 | |
|             return -1;
 | |
| 
 | |
|         ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
 | |
|         buf      += size;
 | |
|         buf_size -= size;
 | |
|     }
 | |
|     ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void get_quants(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int i, base_qi;
 | |
| 
 | |
|     int yac_qi     = vp8_rac_get_uint(c, 7);
 | |
|     int ydc_delta  = vp8_rac_get_sint(c, 4);
 | |
|     int y2dc_delta = vp8_rac_get_sint(c, 4);
 | |
|     int y2ac_delta = vp8_rac_get_sint(c, 4);
 | |
|     int uvdc_delta = vp8_rac_get_sint(c, 4);
 | |
|     int uvac_delta = vp8_rac_get_sint(c, 4);
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         if (s->segmentation.enabled) {
 | |
|             base_qi = s->segmentation.base_quant[i];
 | |
|             if (!s->segmentation.absolute_vals)
 | |
|                 base_qi += yac_qi;
 | |
|         } else
 | |
|             base_qi = yac_qi;
 | |
| 
 | |
|         s->qmat[i].luma_qmul[0]    =       vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
 | |
|         s->qmat[i].luma_qmul[1]    =       vp8_ac_qlookup[av_clip(base_qi             , 0, 127)];
 | |
|         s->qmat[i].luma_dc_qmul[0] =   2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
 | |
|         s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
 | |
|         s->qmat[i].chroma_qmul[0]  =       vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
 | |
|         s->qmat[i].chroma_qmul[1]  =       vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
 | |
| 
 | |
|         s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
 | |
|         s->qmat[i].chroma_qmul[0]  = FFMIN(s->qmat[i].chroma_qmul[0], 132);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Determine which buffers golden and altref should be updated with after this frame.
 | |
|  * The spec isn't clear here, so I'm going by my understanding of what libvpx does
 | |
|  *
 | |
|  * Intra frames update all 3 references
 | |
|  * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
 | |
|  * If the update (golden|altref) flag is set, it's updated with the current frame
 | |
|  *      if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
 | |
|  * If the flag is not set, the number read means:
 | |
|  *      0: no update
 | |
|  *      1: VP56_FRAME_PREVIOUS
 | |
|  *      2: update golden with altref, or update altref with golden
 | |
|  */
 | |
| static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     if (update)
 | |
|         return VP56_FRAME_CURRENT;
 | |
| 
 | |
|     switch (vp8_rac_get_uint(c, 2)) {
 | |
|     case 1:
 | |
|         return VP56_FRAME_PREVIOUS;
 | |
|     case 2:
 | |
|         return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
 | |
|     }
 | |
|     return VP56_FRAME_NONE;
 | |
| }
 | |
| 
 | |
| static void update_refs(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     int update_golden = vp8_rac_get(c);
 | |
|     int update_altref = vp8_rac_get(c);
 | |
| 
 | |
|     s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
 | |
|     s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
 | |
| }
 | |
| 
 | |
| static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int header_size, hscale, vscale, i, j, k, l, m, ret;
 | |
|     int width  = s->avctx->width;
 | |
|     int height = s->avctx->height;
 | |
| 
 | |
|     s->keyframe  = !(buf[0] & 1);
 | |
|     s->profile   =  (buf[0]>>1) & 7;
 | |
|     s->invisible = !(buf[0] & 0x10);
 | |
|     header_size  = AV_RL24(buf) >> 5;
 | |
|     buf      += 3;
 | |
|     buf_size -= 3;
 | |
| 
 | |
|     if (s->profile > 3)
 | |
|         av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
 | |
| 
 | |
|     if (!s->profile)
 | |
|         memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
 | |
|     else    // profile 1-3 use bilinear, 4+ aren't defined so whatever
 | |
|         memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
 | |
| 
 | |
|     if (header_size > buf_size - 7*s->keyframe) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (AV_RL24(buf) != 0x2a019d) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         width  = AV_RL16(buf+3) & 0x3fff;
 | |
|         height = AV_RL16(buf+5) & 0x3fff;
 | |
|         hscale = buf[4] >> 6;
 | |
|         vscale = buf[6] >> 6;
 | |
|         buf      += 7;
 | |
|         buf_size -= 7;
 | |
| 
 | |
|         if (hscale || vscale)
 | |
|             av_log_missing_feature(s->avctx, "Upscaling", 1);
 | |
| 
 | |
|         s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
 | |
|         for (i = 0; i < 4; i++)
 | |
|             for (j = 0; j < 16; j++)
 | |
|                 memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
 | |
|                        sizeof(s->prob->token[i][j]));
 | |
|         memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
 | |
|         memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
 | |
|         memcpy(s->prob->mvc      , vp8_mv_default_prob     , sizeof(s->prob->mvc));
 | |
|         memset(&s->segmentation, 0, sizeof(s->segmentation));
 | |
|     }
 | |
| 
 | |
|     if (!s->macroblocks_base || /* first frame */
 | |
|         width != s->avctx->width || height != s->avctx->height) {
 | |
|         if ((ret = update_dimensions(s, width, height) < 0))
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     ff_vp56_init_range_decoder(c, buf, header_size);
 | |
|     buf      += header_size;
 | |
|     buf_size -= header_size;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (vp8_rac_get(c))
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
 | |
|         vp8_rac_get(c); // whether we can skip clamping in dsp functions
 | |
|     }
 | |
| 
 | |
|     if ((s->segmentation.enabled = vp8_rac_get(c)))
 | |
|         parse_segment_info(s);
 | |
|     else
 | |
|         s->segmentation.update_map = 0; // FIXME: move this to some init function?
 | |
| 
 | |
|     s->filter.simple    = vp8_rac_get(c);
 | |
|     s->filter.level     = vp8_rac_get_uint(c, 6);
 | |
|     s->filter.sharpness = vp8_rac_get_uint(c, 3);
 | |
| 
 | |
|     if ((s->lf_delta.enabled = vp8_rac_get(c)))
 | |
|         if (vp8_rac_get(c))
 | |
|             update_lf_deltas(s);
 | |
| 
 | |
|     if (setup_partitions(s, buf, buf_size)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     get_quants(s);
 | |
| 
 | |
|     if (!s->keyframe) {
 | |
|         update_refs(s);
 | |
|         s->sign_bias[VP56_FRAME_GOLDEN]               = vp8_rac_get(c);
 | |
|         s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
 | |
|     }
 | |
| 
 | |
|     // if we aren't saving this frame's probabilities for future frames,
 | |
|     // make a copy of the current probabilities
 | |
|     if (!(s->update_probabilities = vp8_rac_get(c)))
 | |
|         s->prob[1] = s->prob[0];
 | |
| 
 | |
|     s->update_last = s->keyframe || vp8_rac_get(c);
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         for (j = 0; j < 8; j++)
 | |
|             for (k = 0; k < 3; k++)
 | |
|                 for (l = 0; l < NUM_DCT_TOKENS-1; l++)
 | |
|                     if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
 | |
|                         int prob = vp8_rac_get_uint(c, 8);
 | |
|                         for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
 | |
|                             s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
 | |
|                     }
 | |
| 
 | |
|     if ((s->mbskip_enabled = vp8_rac_get(c)))
 | |
|         s->prob->mbskip = vp8_rac_get_uint(c, 8);
 | |
| 
 | |
|     if (!s->keyframe) {
 | |
|         s->prob->intra  = vp8_rac_get_uint(c, 8);
 | |
|         s->prob->last   = vp8_rac_get_uint(c, 8);
 | |
|         s->prob->golden = vp8_rac_get_uint(c, 8);
 | |
| 
 | |
|         if (vp8_rac_get(c))
 | |
|             for (i = 0; i < 4; i++)
 | |
|                 s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
 | |
|         if (vp8_rac_get(c))
 | |
|             for (i = 0; i < 3; i++)
 | |
|                 s->prob->pred8x8c[i]  = vp8_rac_get_uint(c, 8);
 | |
| 
 | |
|         // 17.2 MV probability update
 | |
|         for (i = 0; i < 2; i++)
 | |
|             for (j = 0; j < 19; j++)
 | |
|                 if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
 | |
|                     s->prob->mvc[i][j] = vp8_rac_get_nn(c);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, int mb_x, int mb_y)
 | |
| {
 | |
| #define MARGIN (16 << 2)
 | |
|     dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
 | |
|                      ((s->mb_width  - 1 - mb_x) << 6) + MARGIN);
 | |
|     dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
 | |
|                      ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void find_near_mvs(VP8Context *s, VP8Macroblock *mb,
 | |
|                    VP56mv near[2], VP56mv *best, uint8_t cnt[4])
 | |
| {
 | |
|     VP8Macroblock *mb_edge[3] = { mb + 2 /* top */,
 | |
|                                   mb - 1 /* left */,
 | |
|                                   mb + 1 /* top-left */ };
 | |
|     enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
 | |
|     VP56mv near_mv[4]  = {{ 0 }};
 | |
|     enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
 | |
|     int idx = CNT_ZERO;
 | |
|     int best_idx = CNT_ZERO;
 | |
|     int cur_sign_bias = s->sign_bias[mb->ref_frame];
 | |
|     int *sign_bias = s->sign_bias;
 | |
| 
 | |
|     /* Process MB on top, left and top-left */
 | |
|     #define MV_EDGE_CHECK(n)\
 | |
|     {\
 | |
|         VP8Macroblock *edge = mb_edge[n];\
 | |
|         int edge_ref = edge->ref_frame;\
 | |
|         if (edge_ref != VP56_FRAME_CURRENT) {\
 | |
|             uint32_t mv = AV_RN32A(&edge->mv);\
 | |
|             if (mv) {\
 | |
|                 if (cur_sign_bias != sign_bias[edge_ref]) {\
 | |
|                     /* SWAR negate of the values in mv. */\
 | |
|                     mv = ~mv;\
 | |
|                     mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\
 | |
|                 }\
 | |
|                 if (!n || mv != AV_RN32A(&near_mv[idx]))\
 | |
|                     AV_WN32A(&near_mv[++idx], mv);\
 | |
|                 cnt[idx]      += 1 + (n != 2);\
 | |
|             } else\
 | |
|                 cnt[CNT_ZERO] += 1 + (n != 2);\
 | |
|         }\
 | |
|     }
 | |
|     MV_EDGE_CHECK(0)
 | |
|     MV_EDGE_CHECK(1)
 | |
|     MV_EDGE_CHECK(2)
 | |
| 
 | |
|     /* If we have three distinct MVs, merge first and last if they're the same */
 | |
|     if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT]))
 | |
|         cnt[CNT_NEAREST] += 1;
 | |
| 
 | |
|     cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode   == VP8_MVMODE_SPLIT) +
 | |
|                         (mb_edge[EDGE_TOP]->mode    == VP8_MVMODE_SPLIT)) * 2 +
 | |
|                        (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
 | |
| 
 | |
|     /* Swap near and nearest if necessary */
 | |
|     if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
 | |
|         FFSWAP(uint8_t,     cnt[CNT_NEAREST],     cnt[CNT_NEAR]);
 | |
|         FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
 | |
|     }
 | |
| 
 | |
|     /* Choose the best mv out of 0,0 and the nearest mv */
 | |
|     if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
 | |
|         best_idx = CNT_NEAREST;
 | |
| 
 | |
|     mb->mv  = near_mv[best_idx];
 | |
|     near[0] = near_mv[CNT_NEAREST];
 | |
|     near[1] = near_mv[CNT_NEAR];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Motion vector coding, 17.1.
 | |
|  */
 | |
| static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
 | |
| {
 | |
|     int bit, x = 0;
 | |
| 
 | |
|     if (vp56_rac_get_prob_branchy(c, p[0])) {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < 3; i++)
 | |
|             x += vp56_rac_get_prob(c, p[9 + i]) << i;
 | |
|         for (i = 9; i > 3; i--)
 | |
|             x += vp56_rac_get_prob(c, p[9 + i]) << i;
 | |
|         if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
 | |
|             x += 8;
 | |
|     } else {
 | |
|         // small_mvtree
 | |
|         const uint8_t *ps = p+2;
 | |
|         bit = vp56_rac_get_prob(c, *ps);
 | |
|         ps += 1 + 3*bit;
 | |
|         x  += 4*bit;
 | |
|         bit = vp56_rac_get_prob(c, *ps);
 | |
|         ps += 1 + bit;
 | |
|         x  += 2*bit;
 | |
|         x  += vp56_rac_get_prob(c, *ps);
 | |
|     }
 | |
| 
 | |
|     return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
 | |
| {
 | |
|     if (left == top)
 | |
|         return vp8_submv_prob[4-!!left];
 | |
|     if (!top)
 | |
|         return vp8_submv_prob[2];
 | |
|     return vp8_submv_prob[1-!!left];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Split motion vector prediction, 16.4.
 | |
|  * @returns the number of motion vectors parsed (2, 4 or 16)
 | |
|  */
 | |
| static av_always_inline
 | |
| int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb)
 | |
| {
 | |
|     int part_idx;
 | |
|     int n, num;
 | |
|     VP8Macroblock *top_mb  = &mb[2];
 | |
|     VP8Macroblock *left_mb = &mb[-1];
 | |
|     const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
 | |
|                   *mbsplits_top = vp8_mbsplits[top_mb->partitioning],
 | |
|                   *mbsplits_cur, *firstidx;
 | |
|     VP56mv *top_mv  = top_mb->bmv;
 | |
|     VP56mv *left_mv = left_mb->bmv;
 | |
|     VP56mv *cur_mv  = mb->bmv;
 | |
| 
 | |
|     if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
 | |
|         if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) {
 | |
|             part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
 | |
|         } else {
 | |
|             part_idx = VP8_SPLITMVMODE_8x8;
 | |
|         }
 | |
|     } else {
 | |
|         part_idx = VP8_SPLITMVMODE_4x4;
 | |
|     }
 | |
| 
 | |
|     num = vp8_mbsplit_count[part_idx];
 | |
|     mbsplits_cur = vp8_mbsplits[part_idx],
 | |
|     firstidx = vp8_mbfirstidx[part_idx];
 | |
|     mb->partitioning = part_idx;
 | |
| 
 | |
|     for (n = 0; n < num; n++) {
 | |
|         int k = firstidx[n];
 | |
|         uint32_t left, above;
 | |
|         const uint8_t *submv_prob;
 | |
| 
 | |
|         if (!(k & 3))
 | |
|             left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
 | |
|         else
 | |
|             left  = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
 | |
|         if (k <= 3)
 | |
|             above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
 | |
|         else
 | |
|             above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
 | |
| 
 | |
|         submv_prob = get_submv_prob(left, above);
 | |
| 
 | |
|         if (vp56_rac_get_prob_branchy(c, submv_prob[0])) {
 | |
|             if (vp56_rac_get_prob_branchy(c, submv_prob[1])) {
 | |
|                 if (vp56_rac_get_prob_branchy(c, submv_prob[2])) {
 | |
|                     mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
 | |
|                     mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
 | |
|                 } else {
 | |
|                     AV_ZERO32(&mb->bmv[n]);
 | |
|                 }
 | |
|             } else {
 | |
|                 AV_WN32A(&mb->bmv[n], above);
 | |
|             }
 | |
|         } else {
 | |
|             AV_WN32A(&mb->bmv[n], left);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c,
 | |
|                            int mb_x, int keyframe)
 | |
| {
 | |
|     uint8_t *intra4x4 = s->intra4x4_pred_mode_mb;
 | |
|     if (keyframe) {
 | |
|         int x, y;
 | |
|         uint8_t* const top = s->intra4x4_pred_mode_top + 4 * mb_x;
 | |
|         uint8_t* const left = s->intra4x4_pred_mode_left;
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             for (x = 0; x < 4; x++) {
 | |
|                 const uint8_t *ctx;
 | |
|                 ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
 | |
|                 *intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
 | |
|                 left[y] = top[x] = *intra4x4;
 | |
|                 intra4x4++;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         int i;
 | |
|         for (i = 0; i < 16; i++)
 | |
|             intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     if (s->segmentation.update_map)
 | |
|         *segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
 | |
|     s->segment = *segment;
 | |
| 
 | |
|     mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
 | |
| 
 | |
|         if (mb->mode == MODE_I4x4) {
 | |
|             decode_intra4x4_modes(s, c, mb_x, 1);
 | |
|         } else {
 | |
|             const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u;
 | |
|             AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
 | |
|             AV_WN32A(s->intra4x4_pred_mode_left, modes);
 | |
|         }
 | |
| 
 | |
|         s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
 | |
|         mb->ref_frame = VP56_FRAME_CURRENT;
 | |
|     } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
 | |
|         VP56mv near[2], best;
 | |
|         uint8_t cnt[4] = { 0 };
 | |
| 
 | |
|         // inter MB, 16.2
 | |
|         if (vp56_rac_get_prob_branchy(c, s->prob->last))
 | |
|             mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
 | |
|                 VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
 | |
|         else
 | |
|             mb->ref_frame = VP56_FRAME_PREVIOUS;
 | |
|         s->ref_count[mb->ref_frame-1]++;
 | |
| 
 | |
|         // motion vectors, 16.3
 | |
|         find_near_mvs(s, mb, near, &best, cnt);
 | |
|         if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[0]][0])) {
 | |
|             if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[1]][1])) {
 | |
|                 if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[2]][2])) {
 | |
|                     if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[3]][3])) {
 | |
|                         mb->mode = VP8_MVMODE_SPLIT;
 | |
|                         clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
 | |
|                         mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1];
 | |
|                     } else {
 | |
|                         mb->mode = VP8_MVMODE_NEW;
 | |
|                         clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
 | |
|                         mb->mv.y += read_mv_component(c, s->prob->mvc[0]);
 | |
|                         mb->mv.x += read_mv_component(c, s->prob->mvc[1]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     mb->mode = VP8_MVMODE_NEAR;
 | |
|                     clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
 | |
|                 }
 | |
|             } else {
 | |
|                 mb->mode = VP8_MVMODE_NEAREST;
 | |
|                 clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
 | |
|             }
 | |
|         } else {
 | |
|             mb->mode = VP8_MVMODE_ZERO;
 | |
|             AV_ZERO32(&mb->mv);
 | |
|         }
 | |
|         if (mb->mode != VP8_MVMODE_SPLIT) {
 | |
|             mb->partitioning = VP8_SPLITMVMODE_NONE;
 | |
|             mb->bmv[0] = mb->mv;
 | |
|         }
 | |
|     } else {
 | |
|         // intra MB, 16.1
 | |
|         mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
 | |
| 
 | |
|         if (mb->mode == MODE_I4x4)
 | |
|             decode_intra4x4_modes(s, c, mb_x, 0);
 | |
| 
 | |
|         s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
 | |
|         mb->ref_frame = VP56_FRAME_CURRENT;
 | |
|         mb->partitioning = VP8_SPLITMVMODE_NONE;
 | |
|         AV_ZERO32(&mb->bmv[0]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @param c arithmetic bitstream reader context
 | |
|  * @param block destination for block coefficients
 | |
|  * @param probs probabilities to use when reading trees from the bitstream
 | |
|  * @param i initial coeff index, 0 unless a separate DC block is coded
 | |
|  * @param zero_nhood the initial prediction context for number of surrounding
 | |
|  *                   all-zero blocks (only left/top, so 0-2)
 | |
|  * @param qmul array holding the dc/ac dequant factor at position 0/1
 | |
|  * @return 0 if no coeffs were decoded
 | |
|  *         otherwise, the index of the last coeff decoded plus one
 | |
|  */
 | |
| static int decode_block_coeffs_internal(VP56RangeCoder *c, DCTELEM block[16],
 | |
|                                         uint8_t probs[8][3][NUM_DCT_TOKENS-1],
 | |
|                                         int i, uint8_t *token_prob, int16_t qmul[2])
 | |
| {
 | |
|     goto skip_eob;
 | |
|     do {
 | |
|         int coeff;
 | |
|         if (!vp56_rac_get_prob_branchy(c, token_prob[0]))   // DCT_EOB
 | |
|             return i;
 | |
| 
 | |
| skip_eob:
 | |
|         if (!vp56_rac_get_prob_branchy(c, token_prob[1])) { // DCT_0
 | |
|             if (++i == 16)
 | |
|                 return i; // invalid input; blocks should end with EOB
 | |
|             token_prob = probs[i][0];
 | |
|             goto skip_eob;
 | |
|         }
 | |
| 
 | |
|         if (!vp56_rac_get_prob_branchy(c, token_prob[2])) { // DCT_1
 | |
|             coeff = 1;
 | |
|             token_prob = probs[i+1][1];
 | |
|         } else {
 | |
|             if (!vp56_rac_get_prob_branchy(c, token_prob[3])) { // DCT 2,3,4
 | |
|                 coeff = vp56_rac_get_prob_branchy(c, token_prob[4]);
 | |
|                 if (coeff)
 | |
|                     coeff += vp56_rac_get_prob(c, token_prob[5]);
 | |
|                 coeff += 2;
 | |
|             } else {
 | |
|                 // DCT_CAT*
 | |
|                 if (!vp56_rac_get_prob_branchy(c, token_prob[6])) {
 | |
|                     if (!vp56_rac_get_prob_branchy(c, token_prob[7])) { // DCT_CAT1
 | |
|                         coeff  = 5 + vp56_rac_get_prob(c, vp8_dct_cat1_prob[0]);
 | |
|                     } else {                                    // DCT_CAT2
 | |
|                         coeff  = 7;
 | |
|                         coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[0]) << 1;
 | |
|                         coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[1]);
 | |
|                     }
 | |
|                 } else {    // DCT_CAT3 and up
 | |
|                     int a = vp56_rac_get_prob(c, token_prob[8]);
 | |
|                     int b = vp56_rac_get_prob(c, token_prob[9+a]);
 | |
|                     int cat = (a<<1) + b;
 | |
|                     coeff  = 3 + (8<<cat);
 | |
|                     coeff += vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
 | |
|                 }
 | |
|             }
 | |
|             token_prob = probs[i+1][2];
 | |
|         }
 | |
|         block[zigzag_scan[i]] = (vp8_rac_get(c) ? -coeff : coeff) * qmul[!!i];
 | |
|     } while (++i < 16);
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
 | |
|                         uint8_t probs[8][3][NUM_DCT_TOKENS-1],
 | |
|                         int i, int zero_nhood, int16_t qmul[2])
 | |
| {
 | |
|     uint8_t *token_prob = probs[i][zero_nhood];
 | |
|     if (!vp56_rac_get_prob_branchy(c, token_prob[0]))   // DCT_EOB
 | |
|         return 0;
 | |
|     return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul);
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
 | |
|                       uint8_t t_nnz[9], uint8_t l_nnz[9])
 | |
| {
 | |
|     int i, x, y, luma_start = 0, luma_ctx = 3;
 | |
|     int nnz_pred, nnz, nnz_total = 0;
 | |
|     int segment = s->segment;
 | |
|     int block_dc = 0;
 | |
| 
 | |
|     if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
 | |
|         nnz_pred = t_nnz[8] + l_nnz[8];
 | |
| 
 | |
|         // decode DC values and do hadamard
 | |
|         nnz = decode_block_coeffs(c, s->block_dc, s->prob->token[1], 0, nnz_pred,
 | |
|                                   s->qmat[segment].luma_dc_qmul);
 | |
|         l_nnz[8] = t_nnz[8] = !!nnz;
 | |
|         if (nnz) {
 | |
|             nnz_total += nnz;
 | |
|             block_dc = 1;
 | |
|             if (nnz == 1)
 | |
|                 s->vp8dsp.vp8_luma_dc_wht_dc(s->block, s->block_dc);
 | |
|             else
 | |
|                 s->vp8dsp.vp8_luma_dc_wht(s->block, s->block_dc);
 | |
|         }
 | |
|         luma_start = 1;
 | |
|         luma_ctx = 0;
 | |
|     }
 | |
| 
 | |
|     // luma blocks
 | |
|     for (y = 0; y < 4; y++)
 | |
|         for (x = 0; x < 4; x++) {
 | |
|             nnz_pred = l_nnz[y] + t_nnz[x];
 | |
|             nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
 | |
|                                       nnz_pred, s->qmat[segment].luma_qmul);
 | |
|             // nnz+block_dc may be one more than the actual last index, but we don't care
 | |
|             s->non_zero_count_cache[y][x] = nnz + block_dc;
 | |
|             t_nnz[x] = l_nnz[y] = !!nnz;
 | |
|             nnz_total += nnz;
 | |
|         }
 | |
| 
 | |
|     // chroma blocks
 | |
|     // TODO: what to do about dimensions? 2nd dim for luma is x,
 | |
|     // but for chroma it's (y<<1)|x
 | |
|     for (i = 4; i < 6; i++)
 | |
|         for (y = 0; y < 2; y++)
 | |
|             for (x = 0; x < 2; x++) {
 | |
|                 nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
 | |
|                 nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
 | |
|                                           nnz_pred, s->qmat[segment].chroma_qmul);
 | |
|                 s->non_zero_count_cache[i][(y<<1)+x] = nnz;
 | |
|                 t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
 | |
|                 nnz_total += nnz;
 | |
|             }
 | |
| 
 | |
|     // if there were no coded coeffs despite the macroblock not being marked skip,
 | |
|     // we MUST not do the inner loop filter and should not do IDCT
 | |
|     // Since skip isn't used for bitstream prediction, just manually set it.
 | |
|     if (!nnz_total)
 | |
|         mb->skip = 1;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
 | |
|                       int linesize, int uvlinesize, int simple)
 | |
| {
 | |
|     AV_COPY128(top_border, src_y + 15*linesize);
 | |
|     if (!simple) {
 | |
|         AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
 | |
|         AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
 | |
|                     int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
 | |
|                     int simple, int xchg)
 | |
| {
 | |
|     uint8_t *top_border_m1 = top_border-32;     // for TL prediction
 | |
|     src_y  -=   linesize;
 | |
|     src_cb -= uvlinesize;
 | |
|     src_cr -= uvlinesize;
 | |
| 
 | |
| #define XCHG(a,b,xchg) do {                     \
 | |
|         if (xchg) AV_SWAP64(b,a);               \
 | |
|         else      AV_COPY64(b,a);               \
 | |
|     } while (0)
 | |
| 
 | |
|     XCHG(top_border_m1+8, src_y-8, xchg);
 | |
|     XCHG(top_border,      src_y,   xchg);
 | |
|     XCHG(top_border+8,    src_y+8, 1);
 | |
|     if (mb_x < mb_width-1)
 | |
|         XCHG(top_border+32, src_y+16, 1);
 | |
| 
 | |
|     // only copy chroma for normal loop filter
 | |
|     // or to initialize the top row to 127
 | |
|     if (!simple || !mb_y) {
 | |
|         XCHG(top_border_m1+16, src_cb-8, xchg);
 | |
|         XCHG(top_border_m1+24, src_cr-8, xchg);
 | |
|         XCHG(top_border+16,    src_cb, 1);
 | |
|         XCHG(top_border+24,    src_cr, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_intra_pred_mode(int mode, int mb_x, int mb_y)
 | |
| {
 | |
|     if (mode == DC_PRED8x8) {
 | |
|         if (!mb_x) {
 | |
|             mode = mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
 | |
|         } else if (!mb_y) {
 | |
|             mode = LEFT_DC_PRED8x8;
 | |
|         }
 | |
|     }
 | |
|     return mode;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
 | |
|                    int mb_x, int mb_y)
 | |
| {
 | |
|     int x, y, mode, nnz, tr;
 | |
| 
 | |
|     // for the first row, we need to run xchg_mb_border to init the top edge to 127
 | |
|     // otherwise, skip it if we aren't going to deblock
 | |
|     if (s->deblock_filter || !mb_y)
 | |
|         xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
 | |
|                        s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
 | |
|                        s->filter.simple, 1);
 | |
| 
 | |
|     if (mb->mode < MODE_I4x4) {
 | |
|         mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
 | |
|         s->hpc.pred16x16[mode](dst[0], s->linesize);
 | |
|     } else {
 | |
|         uint8_t *ptr = dst[0];
 | |
|         uint8_t *intra4x4 = s->intra4x4_pred_mode_mb;
 | |
| 
 | |
|         // all blocks on the right edge of the macroblock use bottom edge
 | |
|         // the top macroblock for their topright edge
 | |
|         uint8_t *tr_right = ptr - s->linesize + 16;
 | |
| 
 | |
|         // if we're on the right edge of the frame, said edge is extended
 | |
|         // from the top macroblock
 | |
|         if (mb_x == s->mb_width-1) {
 | |
|             tr = tr_right[-1]*0x01010101;
 | |
|             tr_right = (uint8_t *)&tr;
 | |
|         }
 | |
| 
 | |
|         if (mb->skip)
 | |
|             AV_ZERO128(s->non_zero_count_cache);
 | |
| 
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             uint8_t *topright = ptr + 4 - s->linesize;
 | |
|             for (x = 0; x < 4; x++) {
 | |
|                 if (x == 3)
 | |
|                     topright = tr_right;
 | |
| 
 | |
|                 s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
 | |
| 
 | |
|                 nnz = s->non_zero_count_cache[y][x];
 | |
|                 if (nnz) {
 | |
|                     if (nnz == 1)
 | |
|                         s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
 | |
|                     else
 | |
|                         s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
 | |
|                 }
 | |
|                 topright += 4;
 | |
|             }
 | |
| 
 | |
|             ptr   += 4*s->linesize;
 | |
|             intra4x4 += 4;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
 | |
|     s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
 | |
|     s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
 | |
| 
 | |
|     if (s->deblock_filter || !mb_y)
 | |
|         xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
 | |
|                        s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
 | |
|                        s->filter.simple, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generic MC function.
 | |
|  *
 | |
|  * @param s VP8 decoding context
 | |
|  * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
 | |
|  * @param dst target buffer for block data at block position
 | |
|  * @param src reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block (16, 8 or 4)
 | |
|  * @param block_h height of block (always same as block_w)
 | |
|  * @param width width of src/dst plane data
 | |
|  * @param height height of src/dst plane data
 | |
|  * @param linesize size of a single line of plane data, including padding
 | |
|  * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
 | |
|  */
 | |
| static av_always_inline
 | |
| void vp8_mc(VP8Context *s, int luma,
 | |
|             uint8_t *dst, uint8_t *src, const VP56mv *mv,
 | |
|             int x_off, int y_off, int block_w, int block_h,
 | |
|             int width, int height, int linesize,
 | |
|             vp8_mc_func mc_func[3][3])
 | |
| {
 | |
|     if (AV_RN32A(mv)) {
 | |
|         static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
 | |
|         int mx = (mv->x << luma)&7, mx_idx = idx[mx];
 | |
|         int my = (mv->y << luma)&7, my_idx = idx[my];
 | |
| 
 | |
|         x_off += mv->x >> (3 - luma);
 | |
|         y_off += mv->y >> (3 - luma);
 | |
| 
 | |
|         // edge emulation
 | |
|         src += y_off * linesize + x_off;
 | |
|         if (x_off < 2 || x_off >= width  - block_w - 3 ||
 | |
|             y_off < 2 || y_off >= height - block_h - 3) {
 | |
|             ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
 | |
|                                 block_w + 5, block_h + 5,
 | |
|                                 x_off - 2, y_off - 2, width, height);
 | |
|             src = s->edge_emu_buffer + 2 + linesize * 2;
 | |
|         }
 | |
|         mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
 | |
|     } else
 | |
|         mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
 | |
|                  AVFrame *ref_frame, int x_off, int y_off,
 | |
|                  int bx_off, int by_off,
 | |
|                  int block_w, int block_h,
 | |
|                  int width, int height, VP56mv *mv)
 | |
| {
 | |
|     VP56mv uvmv = *mv;
 | |
| 
 | |
|     /* Y */
 | |
|     vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
 | |
|            ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
 | |
|            block_w, block_h, width, height, s->linesize,
 | |
|            s->put_pixels_tab[block_w == 8]);
 | |
| 
 | |
|     /* U/V */
 | |
|     if (s->profile == 3) {
 | |
|         uvmv.x &= ~7;
 | |
|         uvmv.y &= ~7;
 | |
|     }
 | |
|     x_off   >>= 1; y_off   >>= 1;
 | |
|     bx_off  >>= 1; by_off  >>= 1;
 | |
|     width   >>= 1; height  >>= 1;
 | |
|     block_w >>= 1; block_h >>= 1;
 | |
|     vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
 | |
|            ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
 | |
|            block_w, block_h, width, height, s->uvlinesize,
 | |
|            s->put_pixels_tab[1 + (block_w == 4)]);
 | |
|     vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
 | |
|            ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
 | |
|            block_w, block_h, width, height, s->uvlinesize,
 | |
|            s->put_pixels_tab[1 + (block_w == 4)]);
 | |
| }
 | |
| 
 | |
| /* Fetch pixels for estimated mv 4 macroblocks ahead.
 | |
|  * Optimized for 64-byte cache lines.  Inspired by ffh264 prefetch_motion. */
 | |
| static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
 | |
| {
 | |
|     /* Don't prefetch refs that haven't been used very often this frame. */
 | |
|     if (s->ref_count[ref-1] > (mb_xy >> 5)) {
 | |
|         int x_off = mb_x << 4, y_off = mb_y << 4;
 | |
|         int mx = (mb->mv.x>>2) + x_off + 8;
 | |
|         int my = (mb->mv.y>>2) + y_off;
 | |
|         uint8_t **src= s->framep[ref]->data;
 | |
|         int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
 | |
|         s->dsp.prefetch(src[0]+off, s->linesize, 4);
 | |
|         off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
 | |
|         s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply motion vectors to prediction buffer, chapter 18.
 | |
|  */
 | |
| static av_always_inline
 | |
| void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
 | |
|                    int mb_x, int mb_y)
 | |
| {
 | |
|     int x_off = mb_x << 4, y_off = mb_y << 4;
 | |
|     int width = 16*s->mb_width, height = 16*s->mb_height;
 | |
|     AVFrame *ref = s->framep[mb->ref_frame];
 | |
|     VP56mv *bmv = mb->bmv;
 | |
| 
 | |
|     if (mb->mode < VP8_MVMODE_SPLIT) {
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     0, 0, 16, 16, width, height, &mb->mv);
 | |
|     } else switch (mb->partitioning) {
 | |
|     case VP8_SPLITMVMODE_4x4: {
 | |
|         int x, y;
 | |
|         VP56mv uvmv;
 | |
| 
 | |
|         /* Y */
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             for (x = 0; x < 4; x++) {
 | |
|                 vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
 | |
|                        ref->data[0], &bmv[4*y + x],
 | |
|                        4*x + x_off, 4*y + y_off, 4, 4,
 | |
|                        width, height, s->linesize,
 | |
|                        s->put_pixels_tab[2]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* U/V */
 | |
|         x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
 | |
|         for (y = 0; y < 2; y++) {
 | |
|             for (x = 0; x < 2; x++) {
 | |
|                 uvmv.x = mb->bmv[ 2*y    * 4 + 2*x  ].x +
 | |
|                          mb->bmv[ 2*y    * 4 + 2*x+1].x +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x  ].x +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x+1].x;
 | |
|                 uvmv.y = mb->bmv[ 2*y    * 4 + 2*x  ].y +
 | |
|                          mb->bmv[ 2*y    * 4 + 2*x+1].y +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x  ].y +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x+1].y;
 | |
|                 uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
 | |
|                 uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
 | |
|                 if (s->profile == 3) {
 | |
|                     uvmv.x &= ~7;
 | |
|                     uvmv.y &= ~7;
 | |
|                 }
 | |
|                 vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
 | |
|                        ref->data[1], &uvmv,
 | |
|                        4*x + x_off, 4*y + y_off, 4, 4,
 | |
|                        width, height, s->uvlinesize,
 | |
|                        s->put_pixels_tab[2]);
 | |
|                 vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
 | |
|                        ref->data[2], &uvmv,
 | |
|                        4*x + x_off, 4*y + y_off, 4, 4,
 | |
|                        width, height, s->uvlinesize,
 | |
|                        s->put_pixels_tab[2]);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case VP8_SPLITMVMODE_16x8:
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     0, 0, 16, 8, width, height, &bmv[0]);
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     0, 8, 16, 8, width, height, &bmv[1]);
 | |
|         break;
 | |
|     case VP8_SPLITMVMODE_8x16:
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     0, 0, 8, 16, width, height, &bmv[0]);
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     8, 0, 8, 16, width, height, &bmv[1]);
 | |
|         break;
 | |
|     case VP8_SPLITMVMODE_8x8:
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     0, 0, 8, 8, width, height, &bmv[0]);
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     8, 0, 8, 8, width, height, &bmv[1]);
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     0, 8, 8, 8, width, height, &bmv[2]);
 | |
|         vp8_mc_part(s, dst, ref, x_off, y_off,
 | |
|                     8, 8, 8, 8, width, height, &bmv[3]);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline void idct_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb)
 | |
| {
 | |
|     int x, y, ch;
 | |
| 
 | |
|     if (mb->mode != MODE_I4x4) {
 | |
|         uint8_t *y_dst = dst[0];
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[y]);
 | |
|             if (nnz4) {
 | |
|                 if (nnz4&~0x01010101) {
 | |
|                     for (x = 0; x < 4; x++) {
 | |
|                         int nnz = s->non_zero_count_cache[y][x];
 | |
|                         if (nnz) {
 | |
|                             if (nnz == 1)
 | |
|                                 s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
 | |
|                             else
 | |
|                                 s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     s->vp8dsp.vp8_idct_dc_add4y(y_dst, s->block[y], s->linesize);
 | |
|                 }
 | |
|             }
 | |
|             y_dst += 4*s->linesize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < 2; ch++) {
 | |
|         uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[4+ch]);
 | |
|         if (nnz4) {
 | |
|             uint8_t *ch_dst = dst[1+ch];
 | |
|             if (nnz4&~0x01010101) {
 | |
|                 for (y = 0; y < 2; y++) {
 | |
|                     for (x = 0; x < 2; x++) {
 | |
|                         int nnz = s->non_zero_count_cache[4+ch][(y<<1)+x];
 | |
|                         if (nnz) {
 | |
|                             if (nnz == 1)
 | |
|                                 s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
 | |
|                             else
 | |
|                                 s->vp8dsp.vp8_idct_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
 | |
|                         }
 | |
|                     }
 | |
|                     ch_dst += 4*s->uvlinesize;
 | |
|                 }
 | |
|             } else {
 | |
|                 s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, s->block[4+ch], s->uvlinesize);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
 | |
| {
 | |
|     int interior_limit, filter_level;
 | |
| 
 | |
|     if (s->segmentation.enabled) {
 | |
|         filter_level = s->segmentation.filter_level[s->segment];
 | |
|         if (!s->segmentation.absolute_vals)
 | |
|             filter_level += s->filter.level;
 | |
|     } else
 | |
|         filter_level = s->filter.level;
 | |
| 
 | |
|     if (s->lf_delta.enabled) {
 | |
|         filter_level += s->lf_delta.ref[mb->ref_frame];
 | |
| 
 | |
|         if (mb->ref_frame == VP56_FRAME_CURRENT) {
 | |
|             if (mb->mode == MODE_I4x4)
 | |
|                 filter_level += s->lf_delta.mode[0];
 | |
|         } else {
 | |
|             if (mb->mode == VP8_MVMODE_ZERO)
 | |
|                 filter_level += s->lf_delta.mode[1];
 | |
|             else if (mb->mode == VP8_MVMODE_SPLIT)
 | |
|                 filter_level += s->lf_delta.mode[3];
 | |
|             else
 | |
|                 filter_level += s->lf_delta.mode[2];
 | |
|         }
 | |
|     }
 | |
|     filter_level = av_clip(filter_level, 0, 63);
 | |
| 
 | |
|     interior_limit = filter_level;
 | |
|     if (s->filter.sharpness) {
 | |
|         interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
 | |
|         interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
 | |
|     }
 | |
|     interior_limit = FFMAX(interior_limit, 1);
 | |
| 
 | |
|     f->filter_level = filter_level;
 | |
|     f->inner_limit = interior_limit;
 | |
|     f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
 | |
| }
 | |
| 
 | |
| static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
 | |
| {
 | |
|     int mbedge_lim, bedge_lim, hev_thresh;
 | |
|     int filter_level = f->filter_level;
 | |
|     int inner_limit = f->inner_limit;
 | |
|     int inner_filter = f->inner_filter;
 | |
|     int linesize = s->linesize;
 | |
|     int uvlinesize = s->uvlinesize;
 | |
| 
 | |
|     if (!filter_level)
 | |
|         return;
 | |
| 
 | |
|     mbedge_lim = 2*(filter_level+2) + inner_limit;
 | |
|      bedge_lim = 2* filter_level    + inner_limit;
 | |
|     hev_thresh = filter_level >= 15;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (filter_level >= 40)
 | |
|             hev_thresh = 2;
 | |
|     } else {
 | |
|         if (filter_level >= 40)
 | |
|             hev_thresh = 3;
 | |
|         else if (filter_level >= 20)
 | |
|             hev_thresh = 2;
 | |
|     }
 | |
| 
 | |
|     if (mb_x) {
 | |
|         s->vp8dsp.vp8_h_loop_filter16y(dst[0],     linesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter8uv(dst[1],     dst[2],      uvlinesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|     }
 | |
| 
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
 | |
|                                              uvlinesize,  bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|     }
 | |
| 
 | |
|     if (mb_y) {
 | |
|         s->vp8dsp.vp8_v_loop_filter16y(dst[0],     linesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter8uv(dst[1],     dst[2],      uvlinesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|     }
 | |
| 
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize,
 | |
|                                              linesize,    bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize,
 | |
|                                              linesize,    bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize,
 | |
|                                              linesize,    bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
 | |
|                                              dst[2] + 4 * uvlinesize,
 | |
|                                              uvlinesize,  bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
 | |
| {
 | |
|     int mbedge_lim, bedge_lim;
 | |
|     int filter_level = f->filter_level;
 | |
|     int inner_limit = f->inner_limit;
 | |
|     int inner_filter = f->inner_filter;
 | |
|     int linesize = s->linesize;
 | |
| 
 | |
|     if (!filter_level)
 | |
|         return;
 | |
| 
 | |
|     mbedge_lim = 2*(filter_level+2) + inner_limit;
 | |
|      bedge_lim = 2* filter_level    + inner_limit;
 | |
| 
 | |
|     if (mb_x)
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
 | |
|     }
 | |
| 
 | |
|     if (mb_y)
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void filter_mb_row(VP8Context *s, int mb_y)
 | |
| {
 | |
|     VP8FilterStrength *f = s->filter_strength;
 | |
|     uint8_t *dst[3] = {
 | |
|         s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
 | |
|         s->framep[VP56_FRAME_CURRENT]->data[1] +  8*mb_y*s->uvlinesize,
 | |
|         s->framep[VP56_FRAME_CURRENT]->data[2] +  8*mb_y*s->uvlinesize
 | |
|     };
 | |
|     int mb_x;
 | |
| 
 | |
|     for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
 | |
|         backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
 | |
|         filter_mb(s, dst, f++, mb_x, mb_y);
 | |
|         dst[0] += 16;
 | |
|         dst[1] += 8;
 | |
|         dst[2] += 8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void filter_mb_row_simple(VP8Context *s, int mb_y)
 | |
| {
 | |
|     VP8FilterStrength *f = s->filter_strength;
 | |
|     uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
 | |
|     int mb_x;
 | |
| 
 | |
|     for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
 | |
|         backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
 | |
|         filter_mb_simple(s, dst, f++, mb_x, mb_y);
 | |
|         dst += 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
 | |
|                             AVPacket *avpkt)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int ret, mb_x, mb_y, i, y, referenced;
 | |
|     enum AVDiscard skip_thresh;
 | |
|     AVFrame *av_uninit(curframe);
 | |
| 
 | |
|     if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
 | |
|                                 || s->update_altref == VP56_FRAME_CURRENT;
 | |
| 
 | |
|     skip_thresh = !referenced ? AVDISCARD_NONREF :
 | |
|                     !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
 | |
| 
 | |
|     if (avctx->skip_frame >= skip_thresh) {
 | |
|         s->invisible = 1;
 | |
|         goto skip_decode;
 | |
|     }
 | |
|     s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
 | |
|             curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
 | |
|             break;
 | |
|         }
 | |
|     if (curframe->data[0])
 | |
|         avctx->release_buffer(avctx, curframe);
 | |
| 
 | |
|     curframe->key_frame = s->keyframe;
 | |
|     curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
 | |
|     curframe->reference = referenced ? 3 : 0;
 | |
|     if ((ret = avctx->get_buffer(avctx, curframe))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     // Given that arithmetic probabilities are updated every frame, it's quite likely
 | |
|     // that the values we have on a random interframe are complete junk if we didn't
 | |
|     // start decode on a keyframe. So just don't display anything rather than junk.
 | |
|     if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
 | |
|                          !s->framep[VP56_FRAME_GOLDEN] ||
 | |
|                          !s->framep[VP56_FRAME_GOLDEN2])) {
 | |
|         av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     s->linesize   = curframe->linesize[0];
 | |
|     s->uvlinesize = curframe->linesize[1];
 | |
| 
 | |
|     if (!s->edge_emu_buffer)
 | |
|         s->edge_emu_buffer = av_malloc(21*s->linesize);
 | |
| 
 | |
|     memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
 | |
| 
 | |
|     /* Zero macroblock structures for top/top-left prediction from outside the frame. */
 | |
|     memset(s->macroblocks + s->mb_height*2 - 1, 0, (s->mb_width+1)*sizeof(*s->macroblocks));
 | |
| 
 | |
|     // top edge of 127 for intra prediction
 | |
|     memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
 | |
|     memset(s->ref_count, 0, sizeof(s->ref_count));
 | |
|     if (s->keyframe)
 | |
|         memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width*4);
 | |
| 
 | |
|     for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
 | |
|         VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
 | |
|         VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
 | |
|         int mb_xy = mb_y*s->mb_width;
 | |
|         uint8_t *dst[3] = {
 | |
|             curframe->data[0] + 16*mb_y*s->linesize,
 | |
|             curframe->data[1] +  8*mb_y*s->uvlinesize,
 | |
|             curframe->data[2] +  8*mb_y*s->uvlinesize
 | |
|         };
 | |
| 
 | |
|         memset(mb - 1, 0, sizeof(*mb));   // zero left macroblock
 | |
|         memset(s->left_nnz, 0, sizeof(s->left_nnz));
 | |
|         AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
 | |
| 
 | |
|         // left edge of 129 for intra prediction
 | |
|         if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
 | |
|             for (i = 0; i < 3; i++)
 | |
|                 for (y = 0; y < 16>>!!i; y++)
 | |
|                     dst[i][y*curframe->linesize[i]-1] = 129;
 | |
|         if (mb_y)
 | |
|             memset(s->top_border, 129, sizeof(*s->top_border));
 | |
| 
 | |
|         for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
 | |
|             /* Prefetch the current frame, 4 MBs ahead */
 | |
|             s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
 | |
|             s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
 | |
| 
 | |
|             decode_mb_mode(s, mb, mb_x, mb_y, s->segmentation_map + mb_xy);
 | |
| 
 | |
|             prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
 | |
| 
 | |
|             if (!mb->skip)
 | |
|                 decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
 | |
| 
 | |
|             if (mb->mode <= MODE_I4x4)
 | |
|                 intra_predict(s, dst, mb, mb_x, mb_y);
 | |
|             else
 | |
|                 inter_predict(s, dst, mb, mb_x, mb_y);
 | |
| 
 | |
|             prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
 | |
| 
 | |
|             if (!mb->skip) {
 | |
|                 idct_mb(s, dst, mb);
 | |
|             } else {
 | |
|                 AV_ZERO64(s->left_nnz);
 | |
|                 AV_WN64(s->top_nnz[mb_x], 0);   // array of 9, so unaligned
 | |
| 
 | |
|                 // Reset DC block predictors if they would exist if the mb had coefficients
 | |
|                 if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
 | |
|                     s->left_nnz[8]      = 0;
 | |
|                     s->top_nnz[mb_x][8] = 0;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (s->deblock_filter)
 | |
|                 filter_level_for_mb(s, mb, &s->filter_strength[mb_x]);
 | |
| 
 | |
|             prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
 | |
| 
 | |
|             dst[0] += 16;
 | |
|             dst[1] += 8;
 | |
|             dst[2] += 8;
 | |
|         }
 | |
|         if (s->deblock_filter) {
 | |
|             if (s->filter.simple)
 | |
|                 filter_mb_row_simple(s, mb_y);
 | |
|             else
 | |
|                 filter_mb_row(s, mb_y);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| skip_decode:
 | |
|     // if future frames don't use the updated probabilities,
 | |
|     // reset them to the values we saved
 | |
|     if (!s->update_probabilities)
 | |
|         s->prob[0] = s->prob[1];
 | |
| 
 | |
|     // check if golden and altref are swapped
 | |
|     if (s->update_altref == VP56_FRAME_GOLDEN &&
 | |
|         s->update_golden == VP56_FRAME_GOLDEN2)
 | |
|         FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
 | |
|     else {
 | |
|         if (s->update_altref != VP56_FRAME_NONE)
 | |
|             s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
 | |
| 
 | |
|         if (s->update_golden != VP56_FRAME_NONE)
 | |
|             s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
 | |
|     }
 | |
| 
 | |
|     if (s->update_last) // move cur->prev
 | |
|         s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
 | |
| 
 | |
|     // release no longer referenced frames
 | |
|     for (i = 0; i < 4; i++)
 | |
|         if (s->frames[i].data[0] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
 | |
|             avctx->release_buffer(avctx, &s->frames[i]);
 | |
| 
 | |
|     if (!s->invisible) {
 | |
|         *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
 | |
|         *data_size = sizeof(AVFrame);
 | |
|     }
 | |
| 
 | |
|     return avpkt->size;
 | |
| }
 | |
| 
 | |
| static av_cold int vp8_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     avctx->pix_fmt = PIX_FMT_YUV420P;
 | |
| 
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
|     ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
 | |
|     ff_vp8dsp_init(&s->vp8dsp);
 | |
| 
 | |
|     // intra pred needs edge emulation among other things
 | |
|     if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int vp8_decode_free(AVCodecContext *avctx)
 | |
| {
 | |
|     vp8_decode_flush(avctx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec vp8_decoder = {
 | |
|     "vp8",
 | |
|     AVMEDIA_TYPE_VIDEO,
 | |
|     CODEC_ID_VP8,
 | |
|     sizeof(VP8Context),
 | |
|     vp8_decode_init,
 | |
|     NULL,
 | |
|     vp8_decode_free,
 | |
|     vp8_decode_frame,
 | |
|     CODEC_CAP_DR1,
 | |
|     .flush = vp8_decode_flush,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
 | |
| };
 | 
