mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			2501 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2501 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * MPEG Audio decoder
 | |
|  * Copyright (c) 2001 Gerard Lantau.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| //#define DEBUG
 | |
| #include "avcodec.h"
 | |
| #include "mpegaudio.h"
 | |
| 
 | |
| /*
 | |
|  * TODO:
 | |
|  *  - in low precision mode, use more 16 bit multiplies in synth filter
 | |
|  *  - test lsf / mpeg25 extensively.
 | |
|  */
 | |
| 
 | |
| /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
 | |
|    audio decoder */
 | |
| //#define USE_HIGHPRECISION
 | |
| 
 | |
| #ifdef USE_HIGHPRECISION
 | |
| #define FRAC_BITS   23   /* fractional bits for sb_samples and dct */
 | |
| #define WFRAC_BITS  16   /* fractional bits for window */
 | |
| #else
 | |
| #define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
 | |
| #define WFRAC_BITS  14   /* fractional bits for window */
 | |
| #endif
 | |
| 
 | |
| #define FRAC_ONE    (1 << FRAC_BITS)
 | |
| 
 | |
| #define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
 | |
| #define MUL64(a,b) ((INT64)(a) * (INT64)(b))
 | |
| #define FIX(a)   ((int)((a) * FRAC_ONE))
 | |
| /* WARNING: only correct for posititive numbers */
 | |
| #define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
 | |
| #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
 | |
| 
 | |
| #if FRAC_BITS <= 15
 | |
| typedef INT16 MPA_INT;
 | |
| #else
 | |
| typedef INT32 MPA_INT;
 | |
| #endif
 | |
| 
 | |
| /****************/
 | |
| 
 | |
| #define HEADER_SIZE 4
 | |
| #define BACKSTEP_SIZE 512
 | |
| 
 | |
| typedef struct MPADecodeContext {
 | |
|     UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE];	/* input buffer */
 | |
|     int inbuf_index;
 | |
|     UINT8 *inbuf_ptr, *inbuf;
 | |
|     int frame_size;
 | |
|     int free_format_frame_size; /* frame size in case of free format
 | |
|                                    (zero if currently unknown) */
 | |
|     /* next header (used in free format parsing) */
 | |
|     UINT32 free_format_next_header; 
 | |
|     int error_protection;
 | |
|     int layer;
 | |
|     int sample_rate;
 | |
|     int sample_rate_index; /* between 0 and 8 */
 | |
|     int bit_rate;
 | |
|     int old_frame_size;
 | |
|     GetBitContext gb;
 | |
|     int nb_channels;
 | |
|     int mode;
 | |
|     int mode_ext;
 | |
|     int lsf;
 | |
|     MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
 | |
|     int synth_buf_offset[MPA_MAX_CHANNELS];
 | |
|     INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
 | |
|     INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
 | |
| #ifdef DEBUG
 | |
|     int frame_count;
 | |
| #endif
 | |
| } MPADecodeContext;
 | |
| 
 | |
| /* layer 3 "granule" */
 | |
| typedef struct GranuleDef {
 | |
|     UINT8 scfsi;
 | |
|     int part2_3_length;
 | |
|     int big_values;
 | |
|     int global_gain;
 | |
|     int scalefac_compress;
 | |
|     UINT8 block_type;
 | |
|     UINT8 switch_point;
 | |
|     int table_select[3];
 | |
|     int subblock_gain[3];
 | |
|     UINT8 scalefac_scale;
 | |
|     UINT8 count1table_select;
 | |
|     int region_size[3]; /* number of huffman codes in each region */
 | |
|     int preflag;
 | |
|     int short_start, long_end; /* long/short band indexes */
 | |
|     UINT8 scale_factors[40];
 | |
|     INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */
 | |
| } GranuleDef;
 | |
| 
 | |
| #define MODE_EXT_MS_STEREO 2
 | |
| #define MODE_EXT_I_STEREO  1
 | |
| 
 | |
| /* layer 3 huffman tables */
 | |
| typedef struct HuffTable {
 | |
|     int xsize;
 | |
|     const UINT8 *bits;
 | |
|     const UINT16 *codes;
 | |
| } HuffTable;
 | |
| 
 | |
| #include "mpegaudiodectab.h"
 | |
| 
 | |
| /* vlc structure for decoding layer 3 huffman tables */
 | |
| static VLC huff_vlc[16]; 
 | |
| static UINT8 *huff_code_table[16];
 | |
| static VLC huff_quad_vlc[2];
 | |
| /* computed from band_size_long */
 | |
| static UINT16 band_index_long[9][23];
 | |
| /* XXX: free when all decoders are closed */
 | |
| #define TABLE_4_3_SIZE (8191 + 16)
 | |
| static UINT8  *table_4_3_exp;
 | |
| #if FRAC_BITS <= 15
 | |
| static UINT16 *table_4_3_value;
 | |
| #else
 | |
| static UINT32 *table_4_3_value;
 | |
| #endif
 | |
| /* intensity stereo coef table */
 | |
| static INT32 is_table[2][16];
 | |
| static INT32 is_table_lsf[2][2][16];
 | |
| static INT32 csa_table[8][2];
 | |
| static INT32 mdct_win[8][36];
 | |
| 
 | |
| /* lower 2 bits: modulo 3, higher bits: shift */
 | |
| static UINT16 scale_factor_modshift[64];
 | |
| /* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
 | |
| static INT32 scale_factor_mult[15][3];
 | |
| /* mult table for layer 2 group quantization */
 | |
| 
 | |
| #define SCALE_GEN(v) \
 | |
| { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
 | |
| 
 | |
| static INT32 scale_factor_mult2[3][3] = {
 | |
|     SCALE_GEN(1.0 / 3.0), /* 3 steps */
 | |
|     SCALE_GEN(1.0 / 5.0), /* 5 steps */
 | |
|     SCALE_GEN(1.0 / 9.0), /* 9 steps */
 | |
| };
 | |
| 
 | |
| /* 2^(n/4) */
 | |
| static UINT32 scale_factor_mult3[4] = {
 | |
|     FIXR(1.0),
 | |
|     FIXR(1.18920711500272106671),
 | |
|     FIXR(1.41421356237309504880),
 | |
|     FIXR(1.68179283050742908605),
 | |
| };
 | |
| 
 | |
| static MPA_INT window[512];
 | |
|     
 | |
| /* layer 1 unscaling */
 | |
| /* n = number of bits of the mantissa minus 1 */
 | |
| static inline int l1_unscale(int n, int mant, int scale_factor)
 | |
| {
 | |
|     int shift, mod;
 | |
|     INT64 val;
 | |
| 
 | |
|     shift = scale_factor_modshift[scale_factor];
 | |
|     mod = shift & 3;
 | |
|     shift >>= 2;
 | |
|     val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
 | |
|     shift += n;
 | |
|     return (int)((val + (1 << (shift - 1))) >> shift);
 | |
| }
 | |
| 
 | |
| static inline int l2_unscale_group(int steps, int mant, int scale_factor)
 | |
| {
 | |
|     int shift, mod, val;
 | |
| 
 | |
|     shift = scale_factor_modshift[scale_factor];
 | |
|     mod = shift & 3;
 | |
|     shift >>= 2;
 | |
|     /* XXX: store the result directly */
 | |
|     val = (2 * (mant - (steps >> 1))) * scale_factor_mult2[steps >> 2][mod];
 | |
|     return (val + (1 << (shift - 1))) >> shift;
 | |
| }
 | |
| 
 | |
| /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
 | |
| static inline int l3_unscale(int value, int exponent)
 | |
| {
 | |
| #if FRAC_BITS <= 15    
 | |
|     unsigned int m;
 | |
| #else
 | |
|     UINT64 m;
 | |
| #endif
 | |
|     int e;
 | |
| 
 | |
|     e = table_4_3_exp[value];
 | |
|     e += (exponent >> 2);
 | |
|     e = FRAC_BITS - e;
 | |
| #if FRAC_BITS <= 15    
 | |
|     if (e > 31)
 | |
|         e = 31;
 | |
| #endif
 | |
|     m = table_4_3_value[value];
 | |
| #if FRAC_BITS <= 15    
 | |
|     m = (m * scale_factor_mult3[exponent & 3]);
 | |
|     m = (m + (1 << (e-1))) >> e;
 | |
|     return m;
 | |
| #else
 | |
|     m = MUL64(m, scale_factor_mult3[exponent & 3]);
 | |
|     m = (m + (UINT64_C(1) << (e-1))) >> e;
 | |
|     return m;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* all integer n^(4/3) computation code */
 | |
| #define DEV_ORDER 13
 | |
| 
 | |
| #define POW_FRAC_BITS 24
 | |
| #define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
 | |
| #define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
 | |
| #define POW_MULL(a,b) (((INT64)(a) * (INT64)(b)) >> POW_FRAC_BITS)
 | |
| 
 | |
| static int dev_4_3_coefs[DEV_ORDER];
 | |
| 
 | |
| static int pow_mult3[3] = {
 | |
|     POW_FIX(1.0),
 | |
|     POW_FIX(1.25992104989487316476),
 | |
|     POW_FIX(1.58740105196819947474),
 | |
| };
 | |
| 
 | |
| static void int_pow_init(void)
 | |
| {
 | |
|     int i, a;
 | |
| 
 | |
|     a = POW_FIX(1.0);
 | |
|     for(i=0;i<DEV_ORDER;i++) {
 | |
|         a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
 | |
|         dev_4_3_coefs[i] = a;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* return the mantissa and the binary exponent */
 | |
| static int int_pow(int i, int *exp_ptr)
 | |
| {
 | |
|     int e, er, eq, j;
 | |
|     int a, a1;
 | |
|     
 | |
|     /* renormalize */
 | |
|     a = i;
 | |
|     e = POW_FRAC_BITS;
 | |
|     while (a < (1 << (POW_FRAC_BITS - 1))) {
 | |
|         a = a << 1;
 | |
|         e--;
 | |
|     }
 | |
|     a -= (1 << POW_FRAC_BITS);
 | |
|     a1 = 0;
 | |
|     for(j = DEV_ORDER - 1; j >= 0; j--)
 | |
|         a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
 | |
|     a = (1 << POW_FRAC_BITS) + a1;
 | |
|     /* exponent compute (exact) */
 | |
|     e = e * 4;
 | |
|     er = e % 3;
 | |
|     eq = e / 3;
 | |
|     a = POW_MULL(a, pow_mult3[er]);
 | |
|     while (a >= 2 * POW_FRAC_ONE) {
 | |
|         a = a >> 1;
 | |
|         eq++;
 | |
|     }
 | |
|     /* convert to float */
 | |
|     while (a < POW_FRAC_ONE) {
 | |
|         a = a << 1;
 | |
|         eq--;
 | |
|     }
 | |
|     *exp_ptr = eq;
 | |
| #if POW_FRAC_BITS == FRAC_BITS
 | |
|     return a;
 | |
| #else
 | |
|     return (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     static int init;
 | |
|     int i, j, k;
 | |
| 
 | |
|     if(!init) {
 | |
|         /* scale factors table for layer 1/2 */
 | |
|         for(i=0;i<64;i++) {
 | |
|             int shift, mod;
 | |
|             /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
 | |
|             shift = (i / 3) - 1;
 | |
|             mod = i % 3;
 | |
| #if FRAC_BITS <= 15
 | |
|             if (shift > 31)
 | |
|                 shift = 31;
 | |
| #endif
 | |
|             scale_factor_modshift[i] = mod | (shift << 2);
 | |
|         }
 | |
| 
 | |
|         /* scale factor multiply for layer 1 */
 | |
|         for(i=0;i<15;i++) {
 | |
|             int n, norm;
 | |
|             n = i + 2;
 | |
|             norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
 | |
|             scale_factor_mult[i][0] = MULL(FIXR(1.0), norm);
 | |
|             scale_factor_mult[i][1] = MULL(FIXR(0.7937005259), norm);
 | |
|             scale_factor_mult[i][2] = MULL(FIXR(0.6299605249), norm);
 | |
|             dprintf("%d: norm=%x s=%x %x %x\n",
 | |
|                     i, norm, 
 | |
|                     scale_factor_mult[i][0],
 | |
|                     scale_factor_mult[i][1],
 | |
|                     scale_factor_mult[i][2]);
 | |
|         }
 | |
|         
 | |
|         /* window */
 | |
|         /* max = 18760, max sum over all 16 coefs : 44736 */
 | |
|         for(i=0;i<257;i++) {
 | |
|             int v;
 | |
|             v = mpa_enwindow[i];
 | |
| #if WFRAC_BITS < 16
 | |
|             v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
 | |
| #endif
 | |
|             window[i] = v;
 | |
|             if ((i & 63) != 0)
 | |
|                 v = -v;
 | |
|             if (i != 0)
 | |
|                 window[512 - i] = v;
 | |
|         }
 | |
|         
 | |
|         /* huffman decode tables */
 | |
|         huff_code_table[0] = NULL;
 | |
|         for(i=1;i<16;i++) {
 | |
|             const HuffTable *h = &mpa_huff_tables[i];
 | |
|             int xsize, n, x, y;
 | |
|             UINT8 *code_table;
 | |
| 
 | |
|             xsize = h->xsize;
 | |
|             n = xsize * xsize;
 | |
|             /* XXX: fail test */
 | |
|             init_vlc(&huff_vlc[i], 8, n, 
 | |
|                      h->bits, 1, 1, h->codes, 2, 2);
 | |
|             
 | |
|             code_table = av_mallocz(n);
 | |
|             j = 0;
 | |
|             for(x=0;x<xsize;x++) {
 | |
|                 for(y=0;y<xsize;y++)
 | |
|                     code_table[j++] = (x << 4) | y;
 | |
|             }
 | |
|             huff_code_table[i] = code_table;
 | |
|         }
 | |
|         for(i=0;i<2;i++) {
 | |
|             init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
 | |
|                      mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
 | |
|         }
 | |
| 
 | |
|         for(i=0;i<9;i++) {
 | |
|             k = 0;
 | |
|             for(j=0;j<22;j++) {
 | |
|                 band_index_long[i][j] = k;
 | |
|                 k += band_size_long[i][j];
 | |
|             }
 | |
|             band_index_long[i][22] = k;
 | |
|         }
 | |
| 
 | |
|         /* compute n ^ (4/3) and store it in mantissa/exp format */
 | |
|         table_4_3_exp = av_mallocz(TABLE_4_3_SIZE * 
 | |
|                                    sizeof(table_4_3_exp[0]));
 | |
|         if (!table_4_3_exp)
 | |
|             return -1;
 | |
|         table_4_3_value = av_mallocz(TABLE_4_3_SIZE * 
 | |
|                                      sizeof(table_4_3_value[0]));
 | |
|         if (!table_4_3_value) {
 | |
|             av_free(table_4_3_exp);
 | |
|             return -1;
 | |
|         }
 | |
|         
 | |
|         int_pow_init();
 | |
|         for(i=1;i<TABLE_4_3_SIZE;i++) {
 | |
|             int e, m;
 | |
|             m = int_pow(i, &e);
 | |
| #if FRAC_BITS <= 15
 | |
|             if ((unsigned short)m != m)
 | |
|                 m = 65535;
 | |
| #endif
 | |
| #if 0
 | |
|             /* test code */
 | |
|             {
 | |
|                 double f, fm;
 | |
|                 int e1, m1;
 | |
|                 f = pow((double)i, 4.0 / 3.0);
 | |
|                 fm = frexp(f, &e1);
 | |
|                 m1 = FIXR(2 * fm);
 | |
| #if FRAC_BITS <= 15
 | |
|                 if ((unsigned short)m1 != m1)
 | |
|                     m1 = 65535;
 | |
| #endif
 | |
|                 e1--;
 | |
|                 if (m != m1 || e != e1) {
 | |
|                     printf("%4d: m=%x m1=%x e=%d e1=%d\n",
 | |
|                            i, m, m1, e, e1);
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|             /* normalized to FRAC_BITS */
 | |
|             table_4_3_value[i] = m;
 | |
|             table_4_3_exp[i] = e - 1;
 | |
|         }
 | |
| 
 | |
|         
 | |
|         for(i=0;i<7;i++) {
 | |
|             float f;
 | |
|             int v;
 | |
|             if (i != 6) {
 | |
|                 f = tan((double)i * M_PI / 12.0);
 | |
|                 v = FIXR(f / (1.0 + f));
 | |
|             } else {
 | |
|                 v = FIXR(1.0);
 | |
|             }
 | |
|             is_table[0][i] = v;
 | |
|             is_table[1][6 - i] = v;
 | |
|         }
 | |
|         /* invalid values */
 | |
|         for(i=7;i<16;i++)
 | |
|             is_table[0][i] = is_table[1][i] = 0.0;
 | |
| 
 | |
|         for(i=0;i<16;i++) {
 | |
|             double f;
 | |
|             int e, k;
 | |
| 
 | |
|             for(j=0;j<2;j++) {
 | |
|                 e = -(j + 1) * ((i + 1) >> 1);
 | |
|                 f = pow(2.0, e / 4.0);
 | |
|                 k = i & 1;
 | |
|                 is_table_lsf[j][k ^ 1][i] = FIXR(f);
 | |
|                 is_table_lsf[j][k][i] = FIXR(1.0);
 | |
|                 dprintf("is_table_lsf %d %d: %x %x\n", 
 | |
|                         i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for(i=0;i<8;i++) {
 | |
|             float ci, cs, ca;
 | |
|             ci = ci_table[i];
 | |
|             cs = 1.0 / sqrt(1.0 + ci * ci);
 | |
|             ca = cs * ci;
 | |
|             csa_table[i][0] = FIX(cs);
 | |
|             csa_table[i][1] = FIX(ca);
 | |
|         }
 | |
| 
 | |
|         /* compute mdct windows */
 | |
|         for(i=0;i<36;i++) {
 | |
|             int v;
 | |
|             v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
 | |
|             mdct_win[0][i] = v;
 | |
|             mdct_win[1][i] = v;
 | |
|             mdct_win[3][i] = v;
 | |
|         }
 | |
|         for(i=0;i<6;i++) {
 | |
|             mdct_win[1][18 + i] = FIXR(1.0);
 | |
|             mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
 | |
|             mdct_win[1][30 + i] = FIXR(0.0);
 | |
| 
 | |
|             mdct_win[3][i] = FIXR(0.0);
 | |
|             mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
 | |
|             mdct_win[3][12 + i] = FIXR(1.0);
 | |
|         }
 | |
| 
 | |
|         for(i=0;i<12;i++)
 | |
|             mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
 | |
|         
 | |
|         /* NOTE: we do frequency inversion adter the MDCT by changing
 | |
|            the sign of the right window coefs */
 | |
|         for(j=0;j<4;j++) {
 | |
|             for(i=0;i<36;i+=2) {
 | |
|                 mdct_win[j + 4][i] = mdct_win[j][i];
 | |
|                 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #if defined(DEBUG)
 | |
|         for(j=0;j<8;j++) {
 | |
|             printf("win%d=\n", j);
 | |
|             for(i=0;i<36;i++)
 | |
|                 printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
 | |
|             printf("\n");
 | |
|         }
 | |
| #endif
 | |
|         init = 1;
 | |
|     }
 | |
| 
 | |
|     s->inbuf_index = 0;
 | |
|     s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
 | |
|     s->inbuf_ptr = s->inbuf;
 | |
| #ifdef DEBUG
 | |
|     s->frame_count = 0;
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */;
 | |
| 
 | |
| /* cos(i*pi/64) */
 | |
| 
 | |
| #define COS0_0  FIXR(0.50060299823519630134)
 | |
| #define COS0_1  FIXR(0.50547095989754365998)
 | |
| #define COS0_2  FIXR(0.51544730992262454697)
 | |
| #define COS0_3  FIXR(0.53104259108978417447)
 | |
| #define COS0_4  FIXR(0.55310389603444452782)
 | |
| #define COS0_5  FIXR(0.58293496820613387367)
 | |
| #define COS0_6  FIXR(0.62250412303566481615)
 | |
| #define COS0_7  FIXR(0.67480834145500574602)
 | |
| #define COS0_8  FIXR(0.74453627100229844977)
 | |
| #define COS0_9  FIXR(0.83934964541552703873)
 | |
| #define COS0_10 FIXR(0.97256823786196069369)
 | |
| #define COS0_11 FIXR(1.16943993343288495515)
 | |
| #define COS0_12 FIXR(1.48416461631416627724)
 | |
| #define COS0_13 FIXR(2.05778100995341155085)
 | |
| #define COS0_14 FIXR(3.40760841846871878570)
 | |
| #define COS0_15 FIXR(10.19000812354805681150)
 | |
| 
 | |
| #define COS1_0 FIXR(0.50241928618815570551)
 | |
| #define COS1_1 FIXR(0.52249861493968888062)
 | |
| #define COS1_2 FIXR(0.56694403481635770368)
 | |
| #define COS1_3 FIXR(0.64682178335999012954)
 | |
| #define COS1_4 FIXR(0.78815462345125022473)
 | |
| #define COS1_5 FIXR(1.06067768599034747134)
 | |
| #define COS1_6 FIXR(1.72244709823833392782)
 | |
| #define COS1_7 FIXR(5.10114861868916385802)
 | |
| 
 | |
| #define COS2_0 FIXR(0.50979557910415916894)
 | |
| #define COS2_1 FIXR(0.60134488693504528054)
 | |
| #define COS2_2 FIXR(0.89997622313641570463)
 | |
| #define COS2_3 FIXR(2.56291544774150617881)
 | |
| 
 | |
| #define COS3_0 FIXR(0.54119610014619698439)
 | |
| #define COS3_1 FIXR(1.30656296487637652785)
 | |
| 
 | |
| #define COS4_0 FIXR(0.70710678118654752439)
 | |
| 
 | |
| /* butterfly operator */
 | |
| #define BF(a, b, c)\
 | |
| {\
 | |
|     tmp0 = tab[a] + tab[b];\
 | |
|     tmp1 = tab[a] - tab[b];\
 | |
|     tab[a] = tmp0;\
 | |
|     tab[b] = MULL(tmp1, c);\
 | |
| }
 | |
| 
 | |
| #define BF1(a, b, c, d)\
 | |
| {\
 | |
|     BF(a, b, COS4_0);\
 | |
|     BF(c, d, -COS4_0);\
 | |
|     tab[c] += tab[d];\
 | |
| }
 | |
| 
 | |
| #define BF2(a, b, c, d)\
 | |
| {\
 | |
|     BF(a, b, COS4_0);\
 | |
|     BF(c, d, -COS4_0);\
 | |
|     tab[c] += tab[d];\
 | |
|     tab[a] += tab[c];\
 | |
|     tab[c] += tab[b];\
 | |
|     tab[b] += tab[d];\
 | |
| }
 | |
| 
 | |
| #define ADD(a, b) tab[a] += tab[b]
 | |
| 
 | |
| /* DCT32 without 1/sqrt(2) coef zero scaling. */
 | |
| static void dct32(INT32 *out, INT32 *tab)
 | |
| {
 | |
|     int tmp0, tmp1;
 | |
| 
 | |
|     /* pass 1 */
 | |
|     BF(0, 31, COS0_0);
 | |
|     BF(1, 30, COS0_1);
 | |
|     BF(2, 29, COS0_2);
 | |
|     BF(3, 28, COS0_3);
 | |
|     BF(4, 27, COS0_4);
 | |
|     BF(5, 26, COS0_5);
 | |
|     BF(6, 25, COS0_6);
 | |
|     BF(7, 24, COS0_7);
 | |
|     BF(8, 23, COS0_8);
 | |
|     BF(9, 22, COS0_9);
 | |
|     BF(10, 21, COS0_10);
 | |
|     BF(11, 20, COS0_11);
 | |
|     BF(12, 19, COS0_12);
 | |
|     BF(13, 18, COS0_13);
 | |
|     BF(14, 17, COS0_14);
 | |
|     BF(15, 16, COS0_15);
 | |
| 
 | |
|     /* pass 2 */
 | |
|     BF(0, 15, COS1_0);
 | |
|     BF(1, 14, COS1_1);
 | |
|     BF(2, 13, COS1_2);
 | |
|     BF(3, 12, COS1_3);
 | |
|     BF(4, 11, COS1_4);
 | |
|     BF(5, 10, COS1_5);
 | |
|     BF(6,  9, COS1_6);
 | |
|     BF(7,  8, COS1_7);
 | |
|     
 | |
|     BF(16, 31, -COS1_0);
 | |
|     BF(17, 30, -COS1_1);
 | |
|     BF(18, 29, -COS1_2);
 | |
|     BF(19, 28, -COS1_3);
 | |
|     BF(20, 27, -COS1_4);
 | |
|     BF(21, 26, -COS1_5);
 | |
|     BF(22, 25, -COS1_6);
 | |
|     BF(23, 24, -COS1_7);
 | |
|     
 | |
|     /* pass 3 */
 | |
|     BF(0, 7, COS2_0);
 | |
|     BF(1, 6, COS2_1);
 | |
|     BF(2, 5, COS2_2);
 | |
|     BF(3, 4, COS2_3);
 | |
|     
 | |
|     BF(8, 15, -COS2_0);
 | |
|     BF(9, 14, -COS2_1);
 | |
|     BF(10, 13, -COS2_2);
 | |
|     BF(11, 12, -COS2_3);
 | |
|     
 | |
|     BF(16, 23, COS2_0);
 | |
|     BF(17, 22, COS2_1);
 | |
|     BF(18, 21, COS2_2);
 | |
|     BF(19, 20, COS2_3);
 | |
|     
 | |
|     BF(24, 31, -COS2_0);
 | |
|     BF(25, 30, -COS2_1);
 | |
|     BF(26, 29, -COS2_2);
 | |
|     BF(27, 28, -COS2_3);
 | |
| 
 | |
|     /* pass 4 */
 | |
|     BF(0, 3, COS3_0);
 | |
|     BF(1, 2, COS3_1);
 | |
|     
 | |
|     BF(4, 7, -COS3_0);
 | |
|     BF(5, 6, -COS3_1);
 | |
|     
 | |
|     BF(8, 11, COS3_0);
 | |
|     BF(9, 10, COS3_1);
 | |
|     
 | |
|     BF(12, 15, -COS3_0);
 | |
|     BF(13, 14, -COS3_1);
 | |
|     
 | |
|     BF(16, 19, COS3_0);
 | |
|     BF(17, 18, COS3_1);
 | |
|     
 | |
|     BF(20, 23, -COS3_0);
 | |
|     BF(21, 22, -COS3_1);
 | |
|     
 | |
|     BF(24, 27, COS3_0);
 | |
|     BF(25, 26, COS3_1);
 | |
|     
 | |
|     BF(28, 31, -COS3_0);
 | |
|     BF(29, 30, -COS3_1);
 | |
|     
 | |
|     /* pass 5 */
 | |
|     BF1(0, 1, 2, 3);
 | |
|     BF2(4, 5, 6, 7);
 | |
|     BF1(8, 9, 10, 11);
 | |
|     BF2(12, 13, 14, 15);
 | |
|     BF1(16, 17, 18, 19);
 | |
|     BF2(20, 21, 22, 23);
 | |
|     BF1(24, 25, 26, 27);
 | |
|     BF2(28, 29, 30, 31);
 | |
|     
 | |
|     /* pass 6 */
 | |
|     
 | |
|     ADD( 8, 12);
 | |
|     ADD(12, 10);
 | |
|     ADD(10, 14);
 | |
|     ADD(14,  9);
 | |
|     ADD( 9, 13);
 | |
|     ADD(13, 11);
 | |
|     ADD(11, 15);
 | |
| 
 | |
|     out[ 0] = tab[0];
 | |
|     out[16] = tab[1];
 | |
|     out[ 8] = tab[2];
 | |
|     out[24] = tab[3];
 | |
|     out[ 4] = tab[4];
 | |
|     out[20] = tab[5];
 | |
|     out[12] = tab[6];
 | |
|     out[28] = tab[7];
 | |
|     out[ 2] = tab[8];
 | |
|     out[18] = tab[9];
 | |
|     out[10] = tab[10];
 | |
|     out[26] = tab[11];
 | |
|     out[ 6] = tab[12];
 | |
|     out[22] = tab[13];
 | |
|     out[14] = tab[14];
 | |
|     out[30] = tab[15];
 | |
|     
 | |
|     ADD(24, 28);
 | |
|     ADD(28, 26);
 | |
|     ADD(26, 30);
 | |
|     ADD(30, 25);
 | |
|     ADD(25, 29);
 | |
|     ADD(29, 27);
 | |
|     ADD(27, 31);
 | |
| 
 | |
|     out[ 1] = tab[16] + tab[24];
 | |
|     out[17] = tab[17] + tab[25];
 | |
|     out[ 9] = tab[18] + tab[26];
 | |
|     out[25] = tab[19] + tab[27];
 | |
|     out[ 5] = tab[20] + tab[28];
 | |
|     out[21] = tab[21] + tab[29];
 | |
|     out[13] = tab[22] + tab[30];
 | |
|     out[29] = tab[23] + tab[31];
 | |
|     out[ 3] = tab[24] + tab[20];
 | |
|     out[19] = tab[25] + tab[21];
 | |
|     out[11] = tab[26] + tab[22];
 | |
|     out[27] = tab[27] + tab[23];
 | |
|     out[ 7] = tab[28] + tab[18];
 | |
|     out[23] = tab[29] + tab[19];
 | |
|     out[15] = tab[30] + tab[17];
 | |
|     out[31] = tab[31];
 | |
| }
 | |
| 
 | |
| #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
 | |
| 
 | |
| #if FRAC_BITS <= 15
 | |
| 
 | |
| #define OUT_SAMPLE(sum)\
 | |
| {\
 | |
|     int sum1;\
 | |
|     sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
 | |
|     if (sum1 < -32768)\
 | |
|         sum1 = -32768;\
 | |
|     else if (sum1 > 32767)\
 | |
|         sum1 = 32767;\
 | |
|     *samples = sum1;\
 | |
|     samples += incr;\
 | |
| }
 | |
| 
 | |
| #define SUM8(off, op)                           \
 | |
| {                                               \
 | |
|     sum op w[0 * 64 + off] * p[0 * 64];\
 | |
|     sum op w[1 * 64 + off] * p[1 * 64];\
 | |
|     sum op w[2 * 64 + off] * p[2 * 64];\
 | |
|     sum op w[3 * 64 + off] * p[3 * 64];\
 | |
|     sum op w[4 * 64 + off] * p[4 * 64];\
 | |
|     sum op w[5 * 64 + off] * p[5 * 64];\
 | |
|     sum op w[6 * 64 + off] * p[6 * 64];\
 | |
|     sum op w[7 * 64 + off] * p[7 * 64];\
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define OUT_SAMPLE(sum)\
 | |
| {\
 | |
|     int sum1;\
 | |
|     sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
 | |
|     if (sum1 < -32768)\
 | |
|         sum1 = -32768;\
 | |
|     else if (sum1 > 32767)\
 | |
|         sum1 = 32767;\
 | |
|     *samples = sum1;\
 | |
|     samples += incr;\
 | |
| }
 | |
| 
 | |
| #define SUM8(off, op)                           \
 | |
| {                                               \
 | |
|     sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
 | |
|     sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
 | |
|     sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
 | |
|     sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
 | |
|     sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
 | |
|     sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
 | |
|     sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
 | |
|     sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
 | |
|    32 samples. */
 | |
| /* XXX: optimize by avoiding ring buffer usage */
 | |
| static void synth_filter(MPADecodeContext *s1,
 | |
|                          int ch, INT16 *samples, int incr, 
 | |
|                          INT32 sb_samples[SBLIMIT])
 | |
| {
 | |
|     INT32 tmp[32];
 | |
|     register MPA_INT *synth_buf, *p;
 | |
|     register MPA_INT *w;
 | |
|     int j, offset, v;
 | |
| #if FRAC_BITS <= 15
 | |
|     int sum;
 | |
| #else
 | |
|     INT64 sum;
 | |
| #endif
 | |
| 
 | |
|     dct32(tmp, sb_samples);
 | |
|     
 | |
|     offset = s1->synth_buf_offset[ch];
 | |
|     synth_buf = s1->synth_buf[ch] + offset;
 | |
| 
 | |
|     for(j=0;j<32;j++) {
 | |
|         v = tmp[j];
 | |
| #if FRAC_BITS <= 15
 | |
|         if (v > 32767)
 | |
|             v = 32767;
 | |
|         else if (v < -32768)
 | |
|             v = -32768;
 | |
| #endif
 | |
|         synth_buf[j] = v;
 | |
|     }
 | |
|     /* copy to avoid wrap */
 | |
|     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
 | |
| 
 | |
|     w = window;
 | |
|     for(j=0;j<16;j++) {
 | |
|         sum = 0;
 | |
|         p = synth_buf + 16 + j;    /* 0-15  */
 | |
|         SUM8(0, +=);
 | |
|         p = synth_buf + 48 - j;    /* 32-47 */
 | |
|         SUM8(32, -=);
 | |
|         OUT_SAMPLE(sum);
 | |
|         w++;
 | |
|     }
 | |
|     
 | |
|     p = synth_buf + 32; /* 48 */
 | |
|     sum = 0;
 | |
|     SUM8(32, -=);
 | |
|     OUT_SAMPLE(sum);
 | |
|     w++;
 | |
| 
 | |
|     for(j=17;j<32;j++) {
 | |
|         sum = 0;
 | |
|         p = synth_buf + 48 - j; /* 17-31 */
 | |
|         SUM8(0, -=);
 | |
|         p = synth_buf + 16 + j; /* 49-63 */
 | |
|         SUM8(32, -=);
 | |
|         OUT_SAMPLE(sum);
 | |
|         w++;
 | |
|     }
 | |
|     offset = (offset - 32) & 511;
 | |
|     s1->synth_buf_offset[ch] = offset;
 | |
| }
 | |
| 
 | |
| /* cos(pi*i/24) */
 | |
| #define C1  FIXR(0.99144486137381041114)
 | |
| #define C3  FIXR(0.92387953251128675612)
 | |
| #define C5  FIXR(0.79335334029123516458)
 | |
| #define C7  FIXR(0.60876142900872063941)
 | |
| #define C9  FIXR(0.38268343236508977173)
 | |
| #define C11 FIXR(0.13052619222005159154)
 | |
| 
 | |
| /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
 | |
|    cases. */
 | |
| static void imdct12(int *out, int *in)
 | |
| {
 | |
|     int tmp;
 | |
|     INT64 in1_3, in1_9, in4_3, in4_9;
 | |
| 
 | |
|     in1_3 = MUL64(in[1], C3);
 | |
|     in1_9 = MUL64(in[1], C9);
 | |
|     in4_3 = MUL64(in[4], C3);
 | |
|     in4_9 = MUL64(in[4], C9);
 | |
|     
 | |
|     tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + 
 | |
|                    MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
 | |
|     out[0] = tmp;
 | |
|     out[5] = -tmp;
 | |
|     tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + 
 | |
|                    MUL64(in[2] + in[5], C3) - in4_9);
 | |
|     out[1] = tmp;
 | |
|     out[4] = -tmp;
 | |
|     tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
 | |
|                    MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
 | |
|     out[2] = tmp;
 | |
|     out[3] = -tmp;
 | |
|     tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + 
 | |
|                    MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
 | |
|     out[6] = tmp;
 | |
|     out[11] = tmp;
 | |
|     tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + 
 | |
|                    MUL64(in[2] + in[5], C9) + in4_3);
 | |
|     out[7] = tmp;
 | |
|     out[10] = tmp;
 | |
|     tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
 | |
|                    MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
 | |
|     out[8] = tmp;
 | |
|     out[9] = tmp;
 | |
| }
 | |
| 
 | |
| #undef C1
 | |
| #undef C3
 | |
| #undef C5
 | |
| #undef C7
 | |
| #undef C9
 | |
| #undef C11
 | |
| 
 | |
| /* cos(pi*i/18) */
 | |
| #define C1 FIXR(0.98480775301220805936)
 | |
| #define C2 FIXR(0.93969262078590838405)
 | |
| #define C3 FIXR(0.86602540378443864676)
 | |
| #define C4 FIXR(0.76604444311897803520)
 | |
| #define C5 FIXR(0.64278760968653932632)
 | |
| #define C6 FIXR(0.5)
 | |
| #define C7 FIXR(0.34202014332566873304)
 | |
| #define C8 FIXR(0.17364817766693034885)
 | |
| 
 | |
| /* 0.5 / cos(pi*(2*i+1)/36) */
 | |
| static const int icos36[9] = {
 | |
|     FIXR(0.50190991877167369479),
 | |
|     FIXR(0.51763809020504152469),
 | |
|     FIXR(0.55168895948124587824),
 | |
|     FIXR(0.61038729438072803416),
 | |
|     FIXR(0.70710678118654752439),
 | |
|     FIXR(0.87172339781054900991),
 | |
|     FIXR(1.18310079157624925896),
 | |
|     FIXR(1.93185165257813657349),
 | |
|     FIXR(5.73685662283492756461),
 | |
| };
 | |
| 
 | |
| static const int icos72[18] = {
 | |
|     /* 0.5 / cos(pi*(2*i+19)/72) */
 | |
|     FIXR(0.74009361646113053152),
 | |
|     FIXR(0.82133981585229078570),
 | |
|     FIXR(0.93057949835178895673),
 | |
|     FIXR(1.08284028510010010928),
 | |
|     FIXR(1.30656296487637652785),
 | |
|     FIXR(1.66275476171152078719),
 | |
|     FIXR(2.31011315767264929558),
 | |
|     FIXR(3.83064878777019433457),
 | |
|     FIXR(11.46279281302667383546),
 | |
| 
 | |
|     /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
 | |
|     FIXR(-0.67817085245462840086),
 | |
|     FIXR(-0.63023620700513223342),
 | |
|     FIXR(-0.59284452371708034528),
 | |
|     FIXR(-0.56369097343317117734),
 | |
|     FIXR(-0.54119610014619698439),
 | |
|     FIXR(-0.52426456257040533932),
 | |
|     FIXR(-0.51213975715725461845),
 | |
|     FIXR(-0.50431448029007636036),
 | |
|     FIXR(-0.50047634258165998492),
 | |
| };
 | |
| 
 | |
| /* using Lee like decomposition followed by hand coded 9 points DCT */
 | |
| static void imdct36(int *out, int *in)
 | |
| {
 | |
|     int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
 | |
|     int tmp[18], *tmp1, *in1;
 | |
|     INT64 in3_3, in6_6;
 | |
| 
 | |
|     for(i=17;i>=1;i--)
 | |
|         in[i] += in[i-1];
 | |
|     for(i=17;i>=3;i-=2)
 | |
|         in[i] += in[i-2];
 | |
| 
 | |
|     for(j=0;j<2;j++) {
 | |
|         tmp1 = tmp + j;
 | |
|         in1 = in + j;
 | |
| 
 | |
|         in3_3 = MUL64(in1[2*3], C3);
 | |
|         in6_6 = MUL64(in1[2*6], C6);
 | |
| 
 | |
|         tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + 
 | |
|                            MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
 | |
|         tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + 
 | |
|                                       MUL64(in1[2*4], C4) + in6_6 + 
 | |
|                                       MUL64(in1[2*8], C8));
 | |
|         tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
 | |
|         tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - 
 | |
|             in1[2*6] + in1[2*0];
 | |
|         tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - 
 | |
|                            MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
 | |
|         tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - 
 | |
|                                        MUL64(in1[2*4], C2) + in6_6 + 
 | |
|                                        MUL64(in1[2*8], C4));
 | |
|         tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + 
 | |
|                             MUL64(in1[2*5], C1) - 
 | |
|                             MUL64(in1[2*7], C5));
 | |
|         tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + 
 | |
|                                        MUL64(in1[2*4], C8) + in6_6 - 
 | |
|                                        MUL64(in1[2*8], C2));
 | |
|         tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
 | |
|     }
 | |
| 
 | |
|     i = 0;
 | |
|     for(j=0;j<4;j++) {
 | |
|         t0 = tmp[i];
 | |
|         t1 = tmp[i + 2];
 | |
|         s0 = t1 + t0;
 | |
|         s2 = t1 - t0;
 | |
| 
 | |
|         t2 = tmp[i + 1];
 | |
|         t3 = tmp[i + 3];
 | |
|         s1 = MULL(t3 + t2, icos36[j]);
 | |
|         s3 = MULL(t3 - t2, icos36[8 - j]);
 | |
|         
 | |
|         t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
 | |
|         t1 = MULL(s0 - s1, icos72[8 - j]);
 | |
|         out[18 + 9 + j] = t0;
 | |
|         out[18 + 8 - j] = t0;
 | |
|         out[9 + j] = -t1;
 | |
|         out[8 - j] = t1;
 | |
|         
 | |
|         t0 = MULL(s2 + s3, icos72[9+j]);
 | |
|         t1 = MULL(s2 - s3, icos72[j]);
 | |
|         out[18 + 9 + (8 - j)] = t0;
 | |
|         out[18 + j] = t0;
 | |
|         out[9 + (8 - j)] = -t1;
 | |
|         out[j] = t1;
 | |
|         i += 4;
 | |
|     }
 | |
| 
 | |
|     s0 = tmp[16];
 | |
|     s1 = MULL(tmp[17], icos36[4]);
 | |
|     t0 = MULL(s0 + s1, icos72[9 + 4]);
 | |
|     t1 = MULL(s0 - s1, icos72[4]);
 | |
|     out[18 + 9 + 4] = t0;
 | |
|     out[18 + 8 - 4] = t0;
 | |
|     out[9 + 4] = -t1;
 | |
|     out[8 - 4] = t1;
 | |
| }
 | |
| 
 | |
| /* fast header check for resync */
 | |
| static int check_header(UINT32 header)
 | |
| {
 | |
|     /* header */
 | |
|     if ((header & 0xffe00000) != 0xffe00000)
 | |
| 	return -1;
 | |
|     /* layer check */
 | |
|     if (((header >> 17) & 3) == 0)
 | |
| 	return -1;
 | |
|     /* bit rate */
 | |
|     if (((header >> 12) & 0xf) == 0xf)
 | |
| 	return -1;
 | |
|     /* frequency */
 | |
|     if (((header >> 10) & 3) == 3)
 | |
| 	return -1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* header + layer + bitrate + freq + lsf/mpeg25 */
 | |
| #define SAME_HEADER_MASK \
 | |
|    (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
 | |
| 
 | |
| /* header decoding. MUST check the header before because no
 | |
|    consistency check is done there. Return 1 if free format found and
 | |
|    that the frame size must be computed externally */
 | |
| static int decode_header(MPADecodeContext *s, UINT32 header)
 | |
| {
 | |
|     int sample_rate, frame_size, mpeg25, padding;
 | |
|     int sample_rate_index, bitrate_index;
 | |
|     if (header & (1<<20)) {
 | |
|         s->lsf = (header & (1<<19)) ? 0 : 1;
 | |
|         mpeg25 = 0;
 | |
|     } else {
 | |
|         s->lsf = 1;
 | |
|         mpeg25 = 1;
 | |
|     }
 | |
|     
 | |
|     s->layer = 4 - ((header >> 17) & 3);
 | |
|     /* extract frequency */
 | |
|     sample_rate_index = (header >> 10) & 3;
 | |
|     sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
 | |
|     if (sample_rate == 0)
 | |
|         return 1;
 | |
|     sample_rate_index += 3 * (s->lsf + mpeg25);
 | |
|     s->sample_rate_index = sample_rate_index;
 | |
|     s->error_protection = ((header >> 16) & 1) ^ 1;
 | |
| 
 | |
|     bitrate_index = (header >> 12) & 0xf;
 | |
|     padding = (header >> 9) & 1;
 | |
|     //extension = (header >> 8) & 1;
 | |
|     s->mode = (header >> 6) & 3;
 | |
|     s->mode_ext = (header >> 4) & 3;
 | |
|     //copyright = (header >> 3) & 1;
 | |
|     //original = (header >> 2) & 1;
 | |
|     //emphasis = header & 3;
 | |
| 
 | |
|     if (s->mode == MPA_MONO)
 | |
|         s->nb_channels = 1;
 | |
|     else
 | |
|         s->nb_channels = 2;
 | |
|     
 | |
|     if (bitrate_index != 0) {
 | |
|         frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
 | |
|         s->bit_rate = frame_size * 1000;
 | |
|         switch(s->layer) {
 | |
|         case 1:
 | |
|             frame_size = (frame_size * 12000) / sample_rate;
 | |
|             frame_size = (frame_size + padding) * 4;
 | |
|             break;
 | |
|         case 2:
 | |
|             frame_size = (frame_size * 144000) / sample_rate;
 | |
|             frame_size += padding;
 | |
|             break;
 | |
|         default:
 | |
|         case 3:
 | |
|             frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
 | |
|             frame_size += padding;
 | |
|             break;
 | |
|         }
 | |
|         s->frame_size = frame_size;
 | |
|     } else {
 | |
|         /* if no frame size computed, signal it */
 | |
|         if (!s->free_format_frame_size)
 | |
|             return 1;
 | |
|         /* free format: compute bitrate and real frame size from the
 | |
|            frame size we extracted by reading the bitstream */
 | |
|         s->frame_size = s->free_format_frame_size;
 | |
|         switch(s->layer) {
 | |
|         case 1:
 | |
|             s->frame_size += padding  * 4;
 | |
|             s->bit_rate = (s->frame_size * sample_rate) / 48000;
 | |
|             break;
 | |
|         case 2:
 | |
|             s->frame_size += padding;
 | |
|             s->bit_rate = (s->frame_size * sample_rate) / 144000;
 | |
|             break;
 | |
|         default:
 | |
|         case 3:
 | |
|             s->frame_size += padding;
 | |
|             s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     s->sample_rate = sample_rate;
 | |
|     
 | |
| #ifdef DEBUG
 | |
|     printf("layer%d, %d Hz, %d kbits/s, ",
 | |
|            s->layer, s->sample_rate, s->bit_rate);
 | |
|     if (s->nb_channels == 2) {
 | |
|         if (s->layer == 3) {
 | |
|             if (s->mode_ext & MODE_EXT_MS_STEREO)
 | |
|                 printf("ms-");
 | |
|             if (s->mode_ext & MODE_EXT_I_STEREO)
 | |
|                 printf("i-");
 | |
|         }
 | |
|         printf("stereo");
 | |
|     } else {
 | |
|         printf("mono");
 | |
|     }
 | |
|     printf("\n");
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* return the number of decoded frames */
 | |
| static int mp_decode_layer1(MPADecodeContext *s)
 | |
| {
 | |
|     int bound, i, v, n, ch, j, mant;
 | |
|     UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
 | |
| 
 | |
|     if (s->mode == MPA_JSTEREO) 
 | |
|         bound = (s->mode_ext + 1) * 4;
 | |
|     else
 | |
|         bound = SBLIMIT;
 | |
| 
 | |
|     /* allocation bits */
 | |
|     for(i=0;i<bound;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             allocation[ch][i] = get_bits(&s->gb, 4);
 | |
|         }
 | |
|     }
 | |
|     for(i=bound;i<SBLIMIT;i++) {
 | |
|         allocation[0][i] = get_bits(&s->gb, 4);
 | |
|     }
 | |
| 
 | |
|     /* scale factors */
 | |
|     for(i=0;i<bound;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (allocation[ch][i])
 | |
|                 scale_factors[ch][i] = get_bits(&s->gb, 6);
 | |
|         }
 | |
|     }
 | |
|     for(i=bound;i<SBLIMIT;i++) {
 | |
|         if (allocation[0][i]) {
 | |
|             scale_factors[0][i] = get_bits(&s->gb, 6);
 | |
|             scale_factors[1][i] = get_bits(&s->gb, 6);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     /* compute samples */
 | |
|     for(j=0;j<12;j++) {
 | |
|         for(i=0;i<bound;i++) {
 | |
|             for(ch=0;ch<s->nb_channels;ch++) {
 | |
|                 n = allocation[ch][i];
 | |
|                 if (n) {
 | |
|                     mant = get_bits(&s->gb, n + 1);
 | |
|                     v = l1_unscale(n, mant, scale_factors[ch][i]);
 | |
|                 } else {
 | |
|                     v = 0;
 | |
|                 }
 | |
|                 s->sb_samples[ch][j][i] = v;
 | |
|             }
 | |
|         }
 | |
|         for(i=bound;i<SBLIMIT;i++) {
 | |
|             n = allocation[0][i];
 | |
|             if (n) {
 | |
|                 mant = get_bits(&s->gb, n + 1);
 | |
|                 v = l1_unscale(n, mant, scale_factors[0][i]);
 | |
|                 s->sb_samples[0][j][i] = v;
 | |
|                 v = l1_unscale(n, mant, scale_factors[1][i]);
 | |
|                 s->sb_samples[1][j][i] = v;
 | |
|             } else {
 | |
|                 s->sb_samples[0][j][i] = 0;
 | |
|                 s->sb_samples[1][j][i] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 12;
 | |
| }
 | |
| 
 | |
| /* bitrate is in kb/s */
 | |
| int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
 | |
| {
 | |
|     int ch_bitrate, table;
 | |
|     
 | |
|     ch_bitrate = bitrate / nb_channels;
 | |
|     if (!lsf) {
 | |
|         if ((freq == 48000 && ch_bitrate >= 56) ||
 | |
|             (ch_bitrate >= 56 && ch_bitrate <= 80)) 
 | |
|             table = 0;
 | |
|         else if (freq != 48000 && ch_bitrate >= 96) 
 | |
|             table = 1;
 | |
|         else if (freq != 32000 && ch_bitrate <= 48) 
 | |
|             table = 2;
 | |
|         else 
 | |
|             table = 3;
 | |
|     } else {
 | |
|         table = 4;
 | |
|     }
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| static int mp_decode_layer2(MPADecodeContext *s)
 | |
| {
 | |
|     int sblimit; /* number of used subbands */
 | |
|     const unsigned char *alloc_table;
 | |
|     int table, bit_alloc_bits, i, j, ch, bound, v;
 | |
|     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
 | |
|     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
 | |
|     int scale, qindex, bits, steps, k, l, m, b;
 | |
| 
 | |
|     /* select decoding table */
 | |
|     table = l2_select_table(s->bit_rate / 1000, s->nb_channels, 
 | |
|                             s->sample_rate, s->lsf);
 | |
|     sblimit = sblimit_table[table];
 | |
|     alloc_table = alloc_tables[table];
 | |
| 
 | |
|     if (s->mode == MPA_JSTEREO) 
 | |
|         bound = (s->mode_ext + 1) * 4;
 | |
|     else
 | |
|         bound = sblimit;
 | |
| 
 | |
|     dprintf("bound=%d sblimit=%d\n", bound, sblimit);
 | |
|     /* parse bit allocation */
 | |
|     j = 0;
 | |
|     for(i=0;i<bound;i++) {
 | |
|         bit_alloc_bits = alloc_table[j];
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
 | |
|         }
 | |
|         j += 1 << bit_alloc_bits;
 | |
|     }
 | |
|     for(i=bound;i<sblimit;i++) {
 | |
|         bit_alloc_bits = alloc_table[j];
 | |
|         v = get_bits(&s->gb, bit_alloc_bits);
 | |
|         bit_alloc[0][i] = v;
 | |
|         bit_alloc[1][i] = v;
 | |
|         j += 1 << bit_alloc_bits;
 | |
|     }
 | |
| 
 | |
| #ifdef DEBUG
 | |
|     {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             for(i=0;i<sblimit;i++)
 | |
|                 printf(" %d", bit_alloc[ch][i]);
 | |
|             printf("\n");
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* scale codes */
 | |
|     for(i=0;i<sblimit;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (bit_alloc[ch][i]) 
 | |
|                 scale_code[ch][i] = get_bits(&s->gb, 2);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     /* scale factors */
 | |
|     for(i=0;i<sblimit;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (bit_alloc[ch][i]) {
 | |
|                 sf = scale_factors[ch][i];
 | |
|                 switch(scale_code[ch][i]) {
 | |
|                 default:
 | |
|                 case 0:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[0];
 | |
|                     sf[2] = sf[0];
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[0];
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     sf[0] = get_bits(&s->gb, 6);
 | |
|                     sf[2] = get_bits(&s->gb, 6);
 | |
|                     sf[1] = sf[2];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef DEBUG
 | |
|     for(ch=0;ch<s->nb_channels;ch++) {
 | |
|         for(i=0;i<sblimit;i++) {
 | |
|             if (bit_alloc[ch][i]) {
 | |
|                 sf = scale_factors[ch][i];
 | |
|                 printf(" %d %d %d", sf[0], sf[1], sf[2]);
 | |
|             } else {
 | |
|                 printf(" -");
 | |
|             }
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* samples */
 | |
|     for(k=0;k<3;k++) {
 | |
|         for(l=0;l<12;l+=3) {
 | |
|             j = 0;
 | |
|             for(i=0;i<bound;i++) {
 | |
|                 bit_alloc_bits = alloc_table[j];
 | |
|                 for(ch=0;ch<s->nb_channels;ch++) {
 | |
|                     b = bit_alloc[ch][i];
 | |
|                     if (b) {
 | |
|                         scale = scale_factors[ch][i][k];
 | |
|                         qindex = alloc_table[j+b];
 | |
|                         bits = quant_bits[qindex];
 | |
|                         if (bits < 0) {
 | |
|                             /* 3 values at the same time */
 | |
|                             v = get_bits(&s->gb, -bits);
 | |
|                             steps = quant_steps[qindex];
 | |
|                             s->sb_samples[ch][k * 12 + l + 0][i] = 
 | |
|                                 l2_unscale_group(steps, v % steps, scale);
 | |
|                             v = v / steps;
 | |
|                             s->sb_samples[ch][k * 12 + l + 1][i] = 
 | |
|                                 l2_unscale_group(steps, v % steps, scale);
 | |
|                             v = v / steps;
 | |
|                             s->sb_samples[ch][k * 12 + l + 2][i] = 
 | |
|                                 l2_unscale_group(steps, v, scale);
 | |
|                         } else {
 | |
|                             for(m=0;m<3;m++) {
 | |
|                                 v = get_bits(&s->gb, bits);
 | |
|                                 v = l1_unscale(bits - 1, v, scale);
 | |
|                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
 | |
|                             }
 | |
|                         }
 | |
|                     } else {
 | |
|                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | |
|                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | |
|                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 /* next subband in alloc table */
 | |
|                 j += 1 << bit_alloc_bits; 
 | |
|             }
 | |
|             /* XXX: find a way to avoid this duplication of code */
 | |
|             for(i=bound;i<sblimit;i++) {
 | |
|                 bit_alloc_bits = alloc_table[j];
 | |
|                 b = bit_alloc[0][i];
 | |
|                 if (b) {
 | |
|                     int mant, scale0, scale1;
 | |
|                     scale0 = scale_factors[0][i][k];
 | |
|                     scale1 = scale_factors[1][i][k];
 | |
|                     qindex = alloc_table[j+b];
 | |
|                     bits = quant_bits[qindex];
 | |
|                     if (bits < 0) {
 | |
|                         /* 3 values at the same time */
 | |
|                         v = get_bits(&s->gb, -bits);
 | |
|                         steps = quant_steps[qindex];
 | |
|                         mant = v % steps;
 | |
|                         v = v / steps;
 | |
|                         s->sb_samples[0][k * 12 + l + 0][i] = 
 | |
|                             l2_unscale_group(steps, mant, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 0][i] = 
 | |
|                             l2_unscale_group(steps, mant, scale1);
 | |
|                         mant = v % steps;
 | |
|                         v = v / steps;
 | |
|                         s->sb_samples[0][k * 12 + l + 1][i] = 
 | |
|                             l2_unscale_group(steps, mant, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 1][i] = 
 | |
|                             l2_unscale_group(steps, mant, scale1);
 | |
|                         s->sb_samples[0][k * 12 + l + 2][i] = 
 | |
|                             l2_unscale_group(steps, v, scale0);
 | |
|                         s->sb_samples[1][k * 12 + l + 2][i] = 
 | |
|                             l2_unscale_group(steps, v, scale1);
 | |
|                     } else {
 | |
|                         for(m=0;m<3;m++) {
 | |
|                             mant = get_bits(&s->gb, bits);
 | |
|                             s->sb_samples[0][k * 12 + l + m][i] = 
 | |
|                                 l1_unscale(bits - 1, mant, scale0);
 | |
|                             s->sb_samples[1][k * 12 + l + m][i] = 
 | |
|                                 l1_unscale(bits - 1, mant, scale1);
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
 | |
|                 }
 | |
|                 /* next subband in alloc table */
 | |
|                 j += 1 << bit_alloc_bits; 
 | |
|             }
 | |
|             /* fill remaining samples to zero */
 | |
|             for(i=sblimit;i<SBLIMIT;i++) {
 | |
|                 for(ch=0;ch<s->nb_channels;ch++) {
 | |
|                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | |
|                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | |
|                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 3 * 12;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Seek back in the stream for backstep bytes (at most 511 bytes)
 | |
|  */
 | |
| static void seek_to_maindata(MPADecodeContext *s, long backstep)
 | |
| {
 | |
|     UINT8 *ptr;
 | |
| 
 | |
|     /* compute current position in stream */
 | |
| #ifdef ALT_BITSTREAM_READER
 | |
|     ptr = s->gb.buffer + (s->gb.index>>3);
 | |
| #else
 | |
|     ptr = s->gb.buf_ptr - (s->gb.bit_cnt >> 3);
 | |
| #endif    
 | |
|     /* copy old data before current one */
 | |
|     ptr -= backstep;
 | |
|     memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + 
 | |
|            BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
 | |
|     /* init get bits again */
 | |
|     init_get_bits(&s->gb, ptr, s->frame_size + backstep);
 | |
| 
 | |
|     /* prepare next buffer */
 | |
|     s->inbuf_index ^= 1;
 | |
|     s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
 | |
|     s->old_frame_size = s->frame_size;
 | |
| }
 | |
| 
 | |
| static inline void lsf_sf_expand(int *slen,
 | |
|                                  int sf, int n1, int n2, int n3)
 | |
| {
 | |
|     if (n3) {
 | |
|         slen[3] = sf % n3;
 | |
|         sf /= n3;
 | |
|     } else {
 | |
|         slen[3] = 0;
 | |
|     }
 | |
|     if (n2) {
 | |
|         slen[2] = sf % n2;
 | |
|         sf /= n2;
 | |
|     } else {
 | |
|         slen[2] = 0;
 | |
|     }
 | |
|     slen[1] = sf % n1;
 | |
|     sf /= n1;
 | |
|     slen[0] = sf;
 | |
| }
 | |
| 
 | |
| static void exponents_from_scale_factors(MPADecodeContext *s, 
 | |
|                                          GranuleDef *g,
 | |
|                                          INT16 *exponents)
 | |
| {
 | |
|     const UINT8 *bstab, *pretab;
 | |
|     int len, i, j, k, l, v0, shift, gain, gains[3];
 | |
|     INT16 *exp_ptr;
 | |
| 
 | |
|     exp_ptr = exponents;
 | |
|     gain = g->global_gain - 210;
 | |
|     shift = g->scalefac_scale + 1;
 | |
| 
 | |
|     bstab = band_size_long[s->sample_rate_index];
 | |
|     pretab = mpa_pretab[g->preflag];
 | |
|     for(i=0;i<g->long_end;i++) {
 | |
|         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
 | |
|         len = bstab[i];
 | |
|         for(j=len;j>0;j--)
 | |
|             *exp_ptr++ = v0;
 | |
|     }
 | |
| 
 | |
|     if (g->short_start < 13) {
 | |
|         bstab = band_size_short[s->sample_rate_index];
 | |
|         gains[0] = gain - (g->subblock_gain[0] << 3);
 | |
|         gains[1] = gain - (g->subblock_gain[1] << 3);
 | |
|         gains[2] = gain - (g->subblock_gain[2] << 3);
 | |
|         k = g->long_end;
 | |
|         for(i=g->short_start;i<13;i++) {
 | |
|             len = bstab[i];
 | |
|             for(l=0;l<3;l++) {
 | |
|                 v0 = gains[l] - (g->scale_factors[k++] << shift);
 | |
|                 for(j=len;j>0;j--)
 | |
|                 *exp_ptr++ = v0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* handle n = 0 too */
 | |
| static inline int get_bitsz(GetBitContext *s, int n)
 | |
| {
 | |
|     if (n == 0)
 | |
|         return 0;
 | |
|     else
 | |
|         return get_bits(s, n);
 | |
| }
 | |
| 
 | |
| static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
 | |
|                           INT16 *exponents, int end_pos)
 | |
| {
 | |
|     int s_index;
 | |
|     int linbits, code, x, y, l, v, i, j, k, pos;
 | |
|     UINT8 *last_buf_ptr;
 | |
|     UINT32 last_bit_buf;
 | |
|     int last_bit_cnt;
 | |
|     VLC *vlc;
 | |
|     UINT8 *code_table;
 | |
| 
 | |
|     /* low frequencies (called big values) */
 | |
|     s_index = 0;
 | |
|     for(i=0;i<3;i++) {
 | |
|         j = g->region_size[i];
 | |
|         if (j == 0)
 | |
|             continue;
 | |
|         /* select vlc table */
 | |
|         k = g->table_select[i];
 | |
|         l = mpa_huff_data[k][0];
 | |
|         linbits = mpa_huff_data[k][1];
 | |
|         vlc = &huff_vlc[l];
 | |
|         code_table = huff_code_table[l];
 | |
| 
 | |
|         /* read huffcode and compute each couple */
 | |
|         for(;j>0;j--) {
 | |
|             if (get_bits_count(&s->gb) >= end_pos)
 | |
|                 break;
 | |
|             if (code_table) {
 | |
|                 code = get_vlc(&s->gb, vlc);
 | |
|                 if (code < 0)
 | |
|                     return -1;
 | |
|                 y = code_table[code];
 | |
|                 x = y >> 4;
 | |
|                 y = y & 0x0f;
 | |
|             } else {
 | |
|                 x = 0;
 | |
|                 y = 0;
 | |
|             }
 | |
|             dprintf("region=%d n=%d x=%d y=%d exp=%d\n", 
 | |
|                     i, g->region_size[i] - j, x, y, exponents[s_index]);
 | |
|             if (x) {
 | |
|                 if (x == 15)
 | |
|                     x += get_bitsz(&s->gb, linbits);
 | |
|                 v = l3_unscale(x, exponents[s_index]);
 | |
|                 if (get_bits1(&s->gb))
 | |
|                     v = -v;
 | |
|             } else {
 | |
|                 v = 0;
 | |
|             }
 | |
|             g->sb_hybrid[s_index++] = v;
 | |
|             if (y) {
 | |
|                 if (y == 15)
 | |
|                     y += get_bitsz(&s->gb, linbits);
 | |
|                 v = l3_unscale(y, exponents[s_index]);
 | |
|                 if (get_bits1(&s->gb))
 | |
|                     v = -v;
 | |
|             } else {
 | |
|                 v = 0;
 | |
|             }
 | |
|             g->sb_hybrid[s_index++] = v;
 | |
|         }
 | |
|     }
 | |
|             
 | |
|     /* high frequencies */
 | |
|     vlc = &huff_quad_vlc[g->count1table_select];
 | |
|     last_buf_ptr = NULL;
 | |
|     last_bit_buf = 0;
 | |
|     last_bit_cnt = 0;
 | |
|     while (s_index <= 572) {
 | |
|         pos = get_bits_count(&s->gb);
 | |
|         if (pos >= end_pos) {
 | |
|             if (pos > end_pos && last_buf_ptr != NULL) {
 | |
|                 /* some encoders generate an incorrect size for this
 | |
|                    part. We must go back into the data */
 | |
|                 s_index -= 4;
 | |
| #ifdef ALT_BITSTREAM_READER
 | |
|                 s->gb.buffer = last_buf_ptr;
 | |
|                 s->gb.index = last_bit_cnt;
 | |
| #else
 | |
|                 s->gb.buf_ptr = last_buf_ptr;
 | |
|                 s->gb.bit_buf = last_bit_buf;
 | |
|                 s->gb.bit_cnt = last_bit_cnt;
 | |
| #endif            
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| #ifdef ALT_BITSTREAM_READER
 | |
|         last_buf_ptr = s->gb.buffer;
 | |
|         last_bit_cnt = s->gb.index;
 | |
| #else
 | |
|         last_buf_ptr = s->gb.buf_ptr;
 | |
|         last_bit_buf = s->gb.bit_buf;
 | |
|         last_bit_cnt = s->gb.bit_cnt;
 | |
| #endif
 | |
|         
 | |
|         code = get_vlc(&s->gb, vlc);
 | |
|         dprintf("t=%d code=%d\n", g->count1table_select, code);
 | |
|         if (code < 0)
 | |
|             return -1;
 | |
|         for(i=0;i<4;i++) {
 | |
|             if (code & (8 >> i)) {
 | |
|                 /* non zero value. Could use a hand coded function for
 | |
|                    'one' value */
 | |
|                 v = l3_unscale(1, exponents[s_index]);
 | |
|                 if(get_bits1(&s->gb))
 | |
|                     v = -v;
 | |
|             } else {
 | |
|                 v = 0;
 | |
|             }
 | |
|             g->sb_hybrid[s_index++] = v;
 | |
|         }
 | |
|     }
 | |
|     while (s_index < 576)
 | |
|         g->sb_hybrid[s_index++] = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Reorder short blocks from bitstream order to interleaved order. It
 | |
|    would be faster to do it in parsing, but the code would be far more
 | |
|    complicated */
 | |
| static void reorder_block(MPADecodeContext *s, GranuleDef *g)
 | |
| {
 | |
|     int i, j, k, len;
 | |
|     INT32 *ptr, *dst, *ptr1;
 | |
|     INT32 tmp[576];
 | |
| 
 | |
|     if (g->block_type != 2)
 | |
|         return;
 | |
| 
 | |
|     if (g->switch_point) {
 | |
|         if (s->sample_rate_index != 8) {
 | |
|             ptr = g->sb_hybrid + 36;
 | |
|         } else {
 | |
|             ptr = g->sb_hybrid + 48;
 | |
|         }
 | |
|     } else {
 | |
|         ptr = g->sb_hybrid;
 | |
|     }
 | |
|     
 | |
|     for(i=g->short_start;i<13;i++) {
 | |
|         len = band_size_short[s->sample_rate_index][i];
 | |
|         ptr1 = ptr;
 | |
|         for(k=0;k<3;k++) {
 | |
|             dst = tmp + k;
 | |
|             for(j=len;j>0;j--) {
 | |
|                 *dst = *ptr++;
 | |
|                 dst += 3;
 | |
|             }
 | |
|         }
 | |
|         memcpy(ptr1, tmp, len * 3 * sizeof(INT32));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define ISQRT2 FIXR(0.70710678118654752440)
 | |
| 
 | |
| static void compute_stereo(MPADecodeContext *s,
 | |
|                            GranuleDef *g0, GranuleDef *g1)
 | |
| {
 | |
|     int i, j, k, l;
 | |
|     INT32 v1, v2;
 | |
|     int sf_max, tmp0, tmp1, sf, len, non_zero_found;
 | |
|     INT32 (*is_tab)[16];
 | |
|     INT32 *tab0, *tab1;
 | |
|     int non_zero_found_short[3];
 | |
| 
 | |
|     /* intensity stereo */
 | |
|     if (s->mode_ext & MODE_EXT_I_STEREO) {
 | |
|         if (!s->lsf) {
 | |
|             is_tab = is_table;
 | |
|             sf_max = 7;
 | |
|         } else {
 | |
|             is_tab = is_table_lsf[g1->scalefac_compress & 1];
 | |
|             sf_max = 16;
 | |
|         }
 | |
|             
 | |
|         tab0 = g0->sb_hybrid + 576;
 | |
|         tab1 = g1->sb_hybrid + 576;
 | |
| 
 | |
|         non_zero_found_short[0] = 0;
 | |
|         non_zero_found_short[1] = 0;
 | |
|         non_zero_found_short[2] = 0;
 | |
|         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
 | |
|         for(i = 12;i >= g1->short_start;i--) {
 | |
|             /* for last band, use previous scale factor */
 | |
|             if (i != 11)
 | |
|                 k -= 3;
 | |
|             len = band_size_short[s->sample_rate_index][i];
 | |
|             for(l=2;l>=0;l--) {
 | |
|                 tab0 -= len;
 | |
|                 tab1 -= len;
 | |
|                 if (!non_zero_found_short[l]) {
 | |
|                     /* test if non zero band. if so, stop doing i-stereo */
 | |
|                     for(j=0;j<len;j++) {
 | |
|                         if (tab1[j] != 0) {
 | |
|                             non_zero_found_short[l] = 1;
 | |
|                             goto found1;
 | |
|                         }
 | |
|                     }
 | |
|                     sf = g1->scale_factors[k + l];
 | |
|                     if (sf >= sf_max)
 | |
|                         goto found1;
 | |
| 
 | |
|                     v1 = is_tab[0][sf];
 | |
|                     v2 = is_tab[1][sf];
 | |
|                     for(j=0;j<len;j++) {
 | |
|                         tmp0 = tab0[j];
 | |
|                         tab0[j] = MULL(tmp0, v1);
 | |
|                         tab1[j] = MULL(tmp0, v2);
 | |
|                     }
 | |
|                 } else {
 | |
|                 found1:
 | |
|                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|                         /* lower part of the spectrum : do ms stereo
 | |
|                            if enabled */
 | |
|                         for(j=0;j<len;j++) {
 | |
|                             tmp0 = tab0[j];
 | |
|                             tmp1 = tab1[j];
 | |
|                             tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
 | |
|                             tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         non_zero_found = non_zero_found_short[0] | 
 | |
|             non_zero_found_short[1] | 
 | |
|             non_zero_found_short[2];
 | |
| 
 | |
|         for(i = g1->long_end - 1;i >= 0;i--) {
 | |
|             len = band_size_long[s->sample_rate_index][i];
 | |
|             tab0 -= len;
 | |
|             tab1 -= len;
 | |
|             /* test if non zero band. if so, stop doing i-stereo */
 | |
|             if (!non_zero_found) {
 | |
|                 for(j=0;j<len;j++) {
 | |
|                     if (tab1[j] != 0) {
 | |
|                         non_zero_found = 1;
 | |
|                         goto found2;
 | |
|                     }
 | |
|                 }
 | |
|                 /* for last band, use previous scale factor */
 | |
|                 k = (i == 21) ? 20 : i;
 | |
|                 sf = g1->scale_factors[k];
 | |
|                 if (sf >= sf_max)
 | |
|                     goto found2;
 | |
|                 v1 = is_tab[0][sf];
 | |
|                 v2 = is_tab[1][sf];
 | |
|                 for(j=0;j<len;j++) {
 | |
|                     tmp0 = tab0[j];
 | |
|                     tab0[j] = MULL(tmp0, v1);
 | |
|                     tab1[j] = MULL(tmp0, v2);
 | |
|                 }
 | |
|             } else {
 | |
|             found2:
 | |
|                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|                     /* lower part of the spectrum : do ms stereo
 | |
|                        if enabled */
 | |
|                     for(j=0;j<len;j++) {
 | |
|                         tmp0 = tab0[j];
 | |
|                         tmp1 = tab1[j];
 | |
|                         tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
 | |
|                         tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | |
|         /* ms stereo ONLY */
 | |
|         /* NOTE: the 1/sqrt(2) normalization factor is included in the
 | |
|            global gain */
 | |
|         tab0 = g0->sb_hybrid;
 | |
|         tab1 = g1->sb_hybrid;
 | |
|         for(i=0;i<576;i++) {
 | |
|             tmp0 = tab0[i];
 | |
|             tmp1 = tab1[i];
 | |
|             tab0[i] = tmp0 + tmp1;
 | |
|             tab1[i] = tmp0 - tmp1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compute_antialias(MPADecodeContext *s,
 | |
|                               GranuleDef *g)
 | |
| {
 | |
|     INT32 *ptr, *p0, *p1, *csa;
 | |
|     int n, tmp0, tmp1, i, j;
 | |
| 
 | |
|     /* we antialias only "long" bands */
 | |
|     if (g->block_type == 2) {
 | |
|         if (!g->switch_point)
 | |
|             return;
 | |
|         /* XXX: check this for 8000Hz case */
 | |
|         n = 1;
 | |
|     } else {
 | |
|         n = SBLIMIT - 1;
 | |
|     }
 | |
|     
 | |
|     ptr = g->sb_hybrid + 18;
 | |
|     for(i = n;i > 0;i--) {
 | |
|         p0 = ptr - 1;
 | |
|         p1 = ptr;
 | |
|         csa = &csa_table[0][0];
 | |
|         for(j=0;j<8;j++) {
 | |
|             tmp0 = *p0;
 | |
|             tmp1 = *p1;
 | |
|             *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
 | |
|             *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
 | |
|             p0--;
 | |
|             p1++;
 | |
|             csa += 2;
 | |
|         }
 | |
|         ptr += 18;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compute_imdct(MPADecodeContext *s,
 | |
|                           GranuleDef *g, 
 | |
|                           INT32 *sb_samples,
 | |
|                           INT32 *mdct_buf)
 | |
| {
 | |
|     INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
 | |
|     INT32 in[6];
 | |
|     INT32 out[36];
 | |
|     INT32 out2[12];
 | |
|     int i, j, k, mdct_long_end, v, sblimit;
 | |
| 
 | |
|     /* find last non zero block */
 | |
|     ptr = g->sb_hybrid + 576;
 | |
|     ptr1 = g->sb_hybrid + 2 * 18;
 | |
|     while (ptr >= ptr1) {
 | |
|         ptr -= 6;
 | |
|         v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
 | |
|         if (v != 0)
 | |
|             break;
 | |
|     }
 | |
|     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
 | |
| 
 | |
|     if (g->block_type == 2) {
 | |
|         /* XXX: check for 8000 Hz */
 | |
|         if (g->switch_point)
 | |
|             mdct_long_end = 2;
 | |
|         else
 | |
|             mdct_long_end = 0;
 | |
|     } else {
 | |
|         mdct_long_end = sblimit;
 | |
|     }
 | |
| 
 | |
|     buf = mdct_buf;
 | |
|     ptr = g->sb_hybrid;
 | |
|     for(j=0;j<mdct_long_end;j++) {
 | |
|         imdct36(out, ptr);
 | |
|         /* apply window & overlap with previous buffer */
 | |
|         out_ptr = sb_samples + j;
 | |
|         /* select window */
 | |
|         if (g->switch_point && j < 2)
 | |
|             win1 = mdct_win[0];
 | |
|         else
 | |
|             win1 = mdct_win[g->block_type];
 | |
|         /* select frequency inversion */
 | |
|         win = win1 + ((4 * 36) & -(j & 1));
 | |
|         for(i=0;i<18;i++) {
 | |
|             *out_ptr = MULL(out[i], win[i]) + buf[i];
 | |
|             buf[i] = MULL(out[i + 18], win[i + 18]);
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         ptr += 18;
 | |
|         buf += 18;
 | |
|     }
 | |
|     for(j=mdct_long_end;j<sblimit;j++) {
 | |
|         for(i=0;i<6;i++) {
 | |
|             out[i] = 0;
 | |
|             out[6 + i] = 0;
 | |
|             out[30+i] = 0;
 | |
|         }
 | |
|         /* select frequency inversion */
 | |
|         win = mdct_win[2] + ((4 * 36) & -(j & 1));
 | |
|         buf2 = out + 6;
 | |
|         for(k=0;k<3;k++) {
 | |
|             /* reorder input for short mdct */
 | |
|             ptr1 = ptr + k;
 | |
|             for(i=0;i<6;i++) {
 | |
|                 in[i] = *ptr1;
 | |
|                 ptr1 += 3;
 | |
|             }
 | |
|             imdct12(out2, in);
 | |
|             /* apply 12 point window and do small overlap */
 | |
|             for(i=0;i<6;i++) {
 | |
|                 buf2[i] = MULL(out2[i], win[i]) + buf2[i];
 | |
|                 buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
 | |
|             }
 | |
|             buf2 += 6;
 | |
|         }
 | |
|         /* overlap */
 | |
|         out_ptr = sb_samples + j;
 | |
|         for(i=0;i<18;i++) {
 | |
|             *out_ptr = out[i] + buf[i];
 | |
|             buf[i] = out[i + 18];
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         ptr += 18;
 | |
|         buf += 18;
 | |
|     }
 | |
|     /* zero bands */
 | |
|     for(j=sblimit;j<SBLIMIT;j++) {
 | |
|         /* overlap */
 | |
|         out_ptr = sb_samples + j;
 | |
|         for(i=0;i<18;i++) {
 | |
|             *out_ptr = buf[i];
 | |
|             buf[i] = 0;
 | |
|             out_ptr += SBLIMIT;
 | |
|         }
 | |
|         buf += 18;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| void sample_dump(int fnum, INT32 *tab, int n)
 | |
| {
 | |
|     static FILE *files[16], *f;
 | |
|     char buf[512];
 | |
| 
 | |
|     f = files[fnum];
 | |
|     if (!f) {
 | |
|         sprintf(buf, "/tmp/out%d.pcm", fnum);
 | |
|         f = fopen(buf, "w");
 | |
|         if (!f)
 | |
|             return;
 | |
|         files[fnum] = f;
 | |
|     }
 | |
|     
 | |
|     if (fnum == 0) {
 | |
|         int i;
 | |
|         static int pos = 0;
 | |
|         printf("pos=%d\n", pos);
 | |
|         for(i=0;i<n;i++) {
 | |
|             printf(" %f", (double)tab[i] / 32768.0);
 | |
|             if ((i % 18) == 17)
 | |
|                 printf("\n");
 | |
|         }
 | |
|         pos += n;
 | |
|     }
 | |
| 
 | |
|     fwrite(tab, 1, n * sizeof(INT32), f);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* main layer3 decoding function */
 | |
| static int mp_decode_layer3(MPADecodeContext *s)
 | |
| {
 | |
|     int nb_granules, main_data_begin, private_bits;
 | |
|     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
 | |
|     GranuleDef granules[2][2], *g;
 | |
|     INT16 exponents[576];
 | |
| 
 | |
|     /* read side info */
 | |
|     if (s->lsf) {
 | |
|         main_data_begin = get_bits(&s->gb, 8);
 | |
|         if (s->nb_channels == 2)
 | |
|             private_bits = get_bits(&s->gb, 2);
 | |
|         else
 | |
|             private_bits = get_bits(&s->gb, 1);
 | |
|         nb_granules = 1;
 | |
|     } else {
 | |
|         main_data_begin = get_bits(&s->gb, 9);
 | |
|         if (s->nb_channels == 2)
 | |
|             private_bits = get_bits(&s->gb, 3);
 | |
|         else
 | |
|             private_bits = get_bits(&s->gb, 5);
 | |
|         nb_granules = 2;
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
 | |
|             granules[ch][1].scfsi = get_bits(&s->gb, 4);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     for(gr=0;gr<nb_granules;gr++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             dprintf("gr=%d ch=%d: side_info\n", gr, ch);
 | |
|             g = &granules[ch][gr];
 | |
|             g->part2_3_length = get_bits(&s->gb, 12);
 | |
|             g->big_values = get_bits(&s->gb, 9);
 | |
|             g->global_gain = get_bits(&s->gb, 8);
 | |
|             /* if MS stereo only is selected, we precompute the
 | |
|                1/sqrt(2) renormalization factor */
 | |
|             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == 
 | |
|                 MODE_EXT_MS_STEREO)
 | |
|                 g->global_gain -= 2;
 | |
|             if (s->lsf)
 | |
|                 g->scalefac_compress = get_bits(&s->gb, 9);
 | |
|             else
 | |
|                 g->scalefac_compress = get_bits(&s->gb, 4);
 | |
|             blocksplit_flag = get_bits(&s->gb, 1);
 | |
|             if (blocksplit_flag) {
 | |
|                 g->block_type = get_bits(&s->gb, 2);
 | |
|                 if (g->block_type == 0)
 | |
|                     return -1;
 | |
|                 g->switch_point = get_bits(&s->gb, 1);
 | |
|                 for(i=0;i<2;i++)
 | |
|                     g->table_select[i] = get_bits(&s->gb, 5);
 | |
|                 for(i=0;i<3;i++) 
 | |
|                     g->subblock_gain[i] = get_bits(&s->gb, 3);
 | |
|                 /* compute huffman coded region sizes */
 | |
|                 if (g->block_type == 2)
 | |
|                     g->region_size[0] = (36 / 2);
 | |
|                 else {
 | |
|                     if (s->sample_rate_index <= 2) 
 | |
|                         g->region_size[0] = (36 / 2);
 | |
|                     else if (s->sample_rate_index != 8) 
 | |
|                         g->region_size[0] = (54 / 2);
 | |
|                     else
 | |
|                         g->region_size[0] = (108 / 2);
 | |
|                 }
 | |
|                 g->region_size[1] = (576 / 2);
 | |
|             } else {
 | |
|                 int region_address1, region_address2, l;
 | |
|                 g->block_type = 0;
 | |
|                 g->switch_point = 0;
 | |
|                 for(i=0;i<3;i++)
 | |
|                     g->table_select[i] = get_bits(&s->gb, 5);
 | |
|                 /* compute huffman coded region sizes */
 | |
|                 region_address1 = get_bits(&s->gb, 4);
 | |
|                 region_address2 = get_bits(&s->gb, 3);
 | |
|                 dprintf("region1=%d region2=%d\n", 
 | |
|                         region_address1, region_address2);
 | |
|                 g->region_size[0] = 
 | |
|                     band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
 | |
|                 l = region_address1 + region_address2 + 2;
 | |
|                 /* should not overflow */
 | |
|                 if (l > 22)
 | |
|                     l = 22;
 | |
|                 g->region_size[1] = 
 | |
|                     band_index_long[s->sample_rate_index][l] >> 1;
 | |
|             }
 | |
|             /* convert region offsets to region sizes and truncate
 | |
|                size to big_values */
 | |
|             g->region_size[2] = (576 / 2);
 | |
|             j = 0;
 | |
|             for(i=0;i<3;i++) {
 | |
|                 k = g->region_size[i];
 | |
|                 if (k > g->big_values)
 | |
|                     k = g->big_values;
 | |
|                 g->region_size[i] = k - j;
 | |
|                 j = k;
 | |
|             }
 | |
| 
 | |
|             /* compute band indexes */
 | |
|             if (g->block_type == 2) {
 | |
|                 if (g->switch_point) {
 | |
|                     /* if switched mode, we handle the 36 first samples as
 | |
|                        long blocks.  For 8000Hz, we handle the 48 first
 | |
|                        exponents as long blocks (XXX: check this!) */
 | |
|                     if (s->sample_rate_index <= 2)
 | |
|                         g->long_end = 8;
 | |
|                     else if (s->sample_rate_index != 8)
 | |
|                         g->long_end = 6;
 | |
|                     else
 | |
|                         g->long_end = 4; /* 8000 Hz */
 | |
|                     
 | |
|                     if (s->sample_rate_index != 8)
 | |
|                         g->short_start = 3;
 | |
|                     else
 | |
|                         g->short_start = 2; 
 | |
|                 } else {
 | |
|                     g->long_end = 0;
 | |
|                     g->short_start = 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 g->short_start = 13;
 | |
|                 g->long_end = 22;
 | |
|             }
 | |
|             
 | |
|             g->preflag = 0;
 | |
|             if (!s->lsf)
 | |
|                 g->preflag = get_bits(&s->gb, 1);
 | |
|             g->scalefac_scale = get_bits(&s->gb, 1);
 | |
|             g->count1table_select = get_bits(&s->gb, 1);
 | |
|             dprintf("block_type=%d switch_point=%d\n",
 | |
|                     g->block_type, g->switch_point);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* now we get bits from the main_data_begin offset */
 | |
|     dprintf("seekback: %d\n", main_data_begin);
 | |
|     seek_to_maindata(s, main_data_begin);
 | |
| 
 | |
|     for(gr=0;gr<nb_granules;gr++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             g = &granules[ch][gr];
 | |
|             
 | |
|             bits_pos = get_bits_count(&s->gb);
 | |
|             
 | |
|             if (!s->lsf) {
 | |
|                 UINT8 *sc;
 | |
|                 int slen, slen1, slen2;
 | |
| 
 | |
|                 /* MPEG1 scale factors */
 | |
|                 slen1 = slen_table[0][g->scalefac_compress];
 | |
|                 slen2 = slen_table[1][g->scalefac_compress];
 | |
|                 dprintf("slen1=%d slen2=%d\n", slen1, slen2);
 | |
|                 if (g->block_type == 2) {
 | |
|                     n = g->switch_point ? 17 : 18;
 | |
|                     j = 0;
 | |
|                     for(i=0;i<n;i++)
 | |
|                         g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
 | |
|                     for(i=0;i<18;i++)
 | |
|                         g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
 | |
|                     for(i=0;i<3;i++)
 | |
|                         g->scale_factors[j++] = 0;
 | |
|                 } else {
 | |
|                     sc = granules[ch][0].scale_factors;
 | |
|                     j = 0;
 | |
|                     for(k=0;k<4;k++) {
 | |
|                         n = (k == 0 ? 6 : 5);
 | |
|                         if ((g->scfsi & (0x8 >> k)) == 0) {
 | |
|                             slen = (k < 2) ? slen1 : slen2;
 | |
|                             for(i=0;i<n;i++)
 | |
|                                 g->scale_factors[j++] = get_bitsz(&s->gb, slen);
 | |
|                         } else {
 | |
|                             /* simply copy from last granule */
 | |
|                             for(i=0;i<n;i++) {
 | |
|                                 g->scale_factors[j] = sc[j];
 | |
|                                 j++;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     g->scale_factors[j++] = 0;
 | |
|                 }
 | |
| #ifdef DEBUG
 | |
|                 {
 | |
|                     printf("scfsi=%x gr=%d ch=%d scale_factors:\n", 
 | |
|                            g->scfsi, gr, ch);
 | |
|                     for(i=0;i<j;i++)
 | |
|                         printf(" %d", g->scale_factors[i]);
 | |
|                     printf("\n");
 | |
|                 }
 | |
| #endif
 | |
|             } else {
 | |
|                 int tindex, tindex2, slen[4], sl, sf;
 | |
| 
 | |
|                 /* LSF scale factors */
 | |
|                 if (g->block_type == 2) {
 | |
|                     tindex = g->switch_point ? 2 : 1;
 | |
|                 } else {
 | |
|                     tindex = 0;
 | |
|                 }
 | |
|                 sf = g->scalefac_compress;
 | |
|                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
 | |
|                     /* intensity stereo case */
 | |
|                     sf >>= 1;
 | |
|                     if (sf < 180) {
 | |
|                         lsf_sf_expand(slen, sf, 6, 6, 0);
 | |
|                         tindex2 = 3;
 | |
|                     } else if (sf < 244) {
 | |
|                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
 | |
|                         tindex2 = 4;
 | |
|                     } else {
 | |
|                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
 | |
|                         tindex2 = 5;
 | |
|                     }
 | |
|                 } else {
 | |
|                     /* normal case */
 | |
|                     if (sf < 400) {
 | |
|                         lsf_sf_expand(slen, sf, 5, 4, 4);
 | |
|                         tindex2 = 0;
 | |
|                     } else if (sf < 500) {
 | |
|                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
 | |
|                         tindex2 = 1;
 | |
|                     } else {
 | |
|                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
 | |
|                         tindex2 = 2;
 | |
|                         g->preflag = 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 j = 0;
 | |
|                 for(k=0;k<4;k++) {
 | |
|                     n = lsf_nsf_table[tindex2][tindex][k];
 | |
|                     sl = slen[k];
 | |
|                     for(i=0;i<n;i++)
 | |
|                         g->scale_factors[j++] = get_bitsz(&s->gb, sl);
 | |
|                 }
 | |
|                 /* XXX: should compute exact size */
 | |
|                 for(;j<40;j++)
 | |
|                     g->scale_factors[j] = 0;
 | |
| #ifdef DEBUG
 | |
|                 {
 | |
|                     printf("gr=%d ch=%d scale_factors:\n", 
 | |
|                            gr, ch);
 | |
|                     for(i=0;i<40;i++)
 | |
|                         printf(" %d", g->scale_factors[i]);
 | |
|                     printf("\n");
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
| 
 | |
|             exponents_from_scale_factors(s, g, exponents);
 | |
| 
 | |
|             /* read Huffman coded residue */
 | |
|             if (huffman_decode(s, g, exponents,
 | |
|                                bits_pos + g->part2_3_length) < 0)
 | |
|                 return -1;
 | |
| #if defined(DEBUG) && 0
 | |
|             sample_dump(3, g->sb_hybrid, 576);
 | |
| #endif
 | |
| 
 | |
|             /* skip extension bits */
 | |
|             bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
 | |
|             if (bits_left < 0) {
 | |
|                 dprintf("bits_left=%d\n", bits_left);
 | |
|                 return -1;
 | |
|             }
 | |
|             while (bits_left >= 16) {
 | |
|                 skip_bits(&s->gb, 16);
 | |
|                 bits_left -= 16;
 | |
|             }
 | |
|             if (bits_left > 0)
 | |
|                 skip_bits(&s->gb, bits_left);
 | |
|         } /* ch */
 | |
| 
 | |
|         if (s->nb_channels == 2)
 | |
|             compute_stereo(s, &granules[0][gr], &granules[1][gr]);
 | |
| 
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             g = &granules[ch][gr];
 | |
| 
 | |
|             reorder_block(s, g);
 | |
| #ifdef DEBUG
 | |
|             sample_dump(0, g->sb_hybrid, 576);
 | |
| #endif
 | |
|             compute_antialias(s, g);
 | |
| #ifdef DEBUG
 | |
|             sample_dump(1, g->sb_hybrid, 576);
 | |
| #endif
 | |
|             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); 
 | |
| #ifdef DEBUG
 | |
|             sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
 | |
| #endif
 | |
|         }
 | |
|     } /* gr */
 | |
|     return nb_granules * 18;
 | |
| }
 | |
| 
 | |
| static int mp_decode_frame(MPADecodeContext *s, 
 | |
|                            short *samples)
 | |
| {
 | |
|     int i, nb_frames, ch;
 | |
|     short *samples_ptr;
 | |
| 
 | |
|     init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, 
 | |
|                   s->inbuf_ptr - s->inbuf - HEADER_SIZE);
 | |
|     
 | |
|     /* skip error protection field */
 | |
|     if (s->error_protection)
 | |
|         get_bits(&s->gb, 16);
 | |
| 
 | |
|     dprintf("frame %d:\n", s->frame_count);
 | |
|     switch(s->layer) {
 | |
|     case 1:
 | |
|         nb_frames = mp_decode_layer1(s);
 | |
|         break;
 | |
|     case 2:
 | |
|         nb_frames = mp_decode_layer2(s);
 | |
|         break;
 | |
|     case 3:
 | |
|     default:
 | |
|         nb_frames = mp_decode_layer3(s);
 | |
|         break;
 | |
|     }
 | |
| #if defined(DEBUG)
 | |
|     for(i=0;i<nb_frames;i++) {
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             int j;
 | |
|             printf("%d-%d:", i, ch);
 | |
|             for(j=0;j<SBLIMIT;j++)
 | |
|                 printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
 | |
|             printf("\n");
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     /* apply the synthesis filter */
 | |
|     for(ch=0;ch<s->nb_channels;ch++) {
 | |
|         samples_ptr = samples + ch;
 | |
|         for(i=0;i<nb_frames;i++) {
 | |
|             synth_filter(s, ch, samples_ptr, s->nb_channels,
 | |
|                          s->sb_samples[ch][i]);
 | |
|             samples_ptr += 32 * s->nb_channels;
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG
 | |
|     s->frame_count++;        
 | |
| #endif
 | |
|     return nb_frames * 32 * sizeof(short) * s->nb_channels;
 | |
| }
 | |
| 
 | |
| static int decode_frame(AVCodecContext * avctx,
 | |
| 			void *data, int *data_size,
 | |
| 			UINT8 * buf, int buf_size)
 | |
| {
 | |
|     MPADecodeContext *s = avctx->priv_data;
 | |
|     UINT32 header;
 | |
|     UINT8 *buf_ptr;
 | |
|     int len, out_size;
 | |
|     short *out_samples = data;
 | |
| 
 | |
|     *data_size = 0;
 | |
|     buf_ptr = buf;
 | |
|     while (buf_size > 0) {
 | |
| 	len = s->inbuf_ptr - s->inbuf;
 | |
| 	if (s->frame_size == 0) {
 | |
|             /* special case for next header for first frame in free
 | |
|                format case (XXX: find a simpler method) */
 | |
|             if (s->free_format_next_header != 0) {
 | |
|                 s->inbuf[0] = s->free_format_next_header >> 24;
 | |
|                 s->inbuf[1] = s->free_format_next_header >> 16;
 | |
|                 s->inbuf[2] = s->free_format_next_header >> 8;
 | |
|                 s->inbuf[3] = s->free_format_next_header;
 | |
|                 s->inbuf_ptr = s->inbuf + 4;
 | |
|                 s->free_format_next_header = 0;
 | |
|                 goto got_header;
 | |
|             }
 | |
| 	    /* no header seen : find one. We need at least HEADER_SIZE
 | |
|                bytes to parse it */
 | |
| 	    len = HEADER_SIZE - len;
 | |
| 	    if (len > buf_size)
 | |
| 		len = buf_size;
 | |
| 	    if (len > 0) {
 | |
| 		memcpy(s->inbuf_ptr, buf_ptr, len);
 | |
| 		buf_ptr += len;
 | |
| 		buf_size -= len;
 | |
| 		s->inbuf_ptr += len;
 | |
| 	    }
 | |
| 	    if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
 | |
|             got_header:
 | |
| 		header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
 | |
| 		    (s->inbuf[2] << 8) | s->inbuf[3];
 | |
| 
 | |
| 		if (check_header(header) < 0) {
 | |
| 		    /* no sync found : move by one byte (inefficient, but simple!) */
 | |
| 		    memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
 | |
| 		    s->inbuf_ptr--;
 | |
|                     dprintf("skip %x\n", header);
 | |
|                     /* reset free format frame size to give a chance
 | |
|                        to get a new bitrate */
 | |
|                     s->free_format_frame_size = 0;
 | |
| 		} else {
 | |
| 		    if (decode_header(s, header) == 1) {
 | |
|                         /* free format: compute frame size */
 | |
| 			s->frame_size = -1;
 | |
| 			memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
 | |
| 			s->inbuf_ptr--;
 | |
|                     } else {
 | |
|                         /* update codec info */
 | |
|                         avctx->sample_rate = s->sample_rate;
 | |
|                         avctx->channels = s->nb_channels;
 | |
| 			avctx->bit_rate = s->bit_rate;
 | |
| 			avctx->frame_size = s->frame_size;
 | |
|                     }
 | |
| 		}
 | |
| 	    }
 | |
|         } else if (s->frame_size == -1) {
 | |
|             /* free format : find next sync to compute frame size */
 | |
| 	    len = MPA_MAX_CODED_FRAME_SIZE - len;
 | |
| 	    if (len > buf_size)
 | |
| 		len = buf_size;
 | |
|             if (len == 0) {
 | |
|                 /* frame too long: resync */
 | |
|                 s->frame_size = 0;
 | |
|             } else {
 | |
|                 UINT8 *p, *pend;
 | |
|                 UINT32 header1;
 | |
|                 int padding;
 | |
| 
 | |
|                 memcpy(s->inbuf_ptr, buf_ptr, len);
 | |
|                 /* check for header */
 | |
|                 p = s->inbuf_ptr - 3;
 | |
|                 pend = s->inbuf_ptr + len - 4;
 | |
|                 while (p <= pend) {
 | |
|                     header = (p[0] << 24) | (p[1] << 16) |
 | |
|                         (p[2] << 8) | p[3];
 | |
|                     header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
 | |
|                         (s->inbuf[2] << 8) | s->inbuf[3];
 | |
|                     /* check with high probability that we have a
 | |
|                        valid header */
 | |
|                     if ((header & SAME_HEADER_MASK) ==
 | |
|                         (header1 & SAME_HEADER_MASK)) {
 | |
|                         /* header found: update pointers */
 | |
|                         len = (p + 4) - s->inbuf_ptr;
 | |
|                         buf_ptr += len;
 | |
|                         buf_size -= len;
 | |
|                         s->inbuf_ptr = p;
 | |
|                         /* compute frame size */
 | |
|                         s->free_format_next_header = header;
 | |
|                         s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
 | |
|                         padding = (header1 >> 9) & 1;
 | |
|                         if (s->layer == 1)
 | |
|                             s->free_format_frame_size -= padding * 4;
 | |
|                         else
 | |
|                             s->free_format_frame_size -= padding;
 | |
|                         dprintf("free frame size=%d padding=%d\n", 
 | |
|                                 s->free_format_frame_size, padding);
 | |
|                         decode_header(s, header1);
 | |
|                         goto next_data;
 | |
|                     }
 | |
|                     p++;
 | |
|                 }
 | |
|                 /* not found: simply increase pointers */
 | |
|                 buf_ptr += len;
 | |
|                 s->inbuf_ptr += len;
 | |
|                 buf_size -= len;
 | |
|             }
 | |
| 	} else if (len < s->frame_size) {
 | |
|             if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
 | |
|                 s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
 | |
| 	    len = s->frame_size - len;
 | |
| 	    if (len > buf_size)
 | |
| 		len = buf_size;
 | |
| 	    else if (len < 4)
 | |
| 		len = buf_size > 4 ? 4 : buf_size;
 | |
| 	    memcpy(s->inbuf_ptr, buf_ptr, len);
 | |
| 	    buf_ptr += len;
 | |
| 	    s->inbuf_ptr += len;
 | |
| 	    buf_size -= len;
 | |
| 	} else {
 | |
|             out_size = mp_decode_frame(s, out_samples);
 | |
| 	    s->inbuf_ptr = s->inbuf;
 | |
| 	    s->frame_size = 0;
 | |
| 	    *data_size = out_size;
 | |
| 	    break;
 | |
| 	}
 | |
|     next_data:
 | |
|     }
 | |
|     return buf_ptr - buf;
 | |
| }
 | |
| 
 | |
| AVCodec mp2_decoder =
 | |
| {
 | |
|     "mp2",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP2,
 | |
|     sizeof(MPADecodeContext),
 | |
|     decode_init,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     decode_frame,
 | |
| };
 | |
| 
 | |
| AVCodec mp3_decoder =
 | |
| {
 | |
|     "mp3",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_MP3LAME,
 | |
|     sizeof(MPADecodeContext),
 | |
|     decode_init,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     decode_frame,
 | |
| };
 | 
