mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			2521 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2521 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2003-2004 The FFmpeg project
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * On2 VP3 Video Decoder
 | |
|  *
 | |
|  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 | |
|  * For more information about the VP3 coding process, visit:
 | |
|  *   http://wiki.multimedia.cx/index.php?title=On2_VP3
 | |
|  *
 | |
|  * Theora decoder by Alex Beregszaszi
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/imgutils.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "hpeldsp.h"
 | |
| #include "internal.h"
 | |
| #include "mathops.h"
 | |
| #include "thread.h"
 | |
| #include "videodsp.h"
 | |
| #include "vp3data.h"
 | |
| #include "vp3dsp.h"
 | |
| #include "xiph.h"
 | |
| 
 | |
| #define FRAGMENT_PIXELS 8
 | |
| 
 | |
| // FIXME split things out into their own arrays
 | |
| typedef struct Vp3Fragment {
 | |
|     int16_t dc;
 | |
|     uint8_t coding_method;
 | |
|     uint8_t qpi;
 | |
| } Vp3Fragment;
 | |
| 
 | |
| #define SB_NOT_CODED        0
 | |
| #define SB_PARTIALLY_CODED  1
 | |
| #define SB_FULLY_CODED      2
 | |
| 
 | |
| // This is the maximum length of a single long bit run that can be encoded
 | |
| // for superblock coding or block qps. Theora special-cases this to read a
 | |
| // bit instead of flipping the current bit to allow for runs longer than 4129.
 | |
| #define MAXIMUM_LONG_BIT_RUN 4129
 | |
| 
 | |
| #define MODE_INTER_NO_MV      0
 | |
| #define MODE_INTRA            1
 | |
| #define MODE_INTER_PLUS_MV    2
 | |
| #define MODE_INTER_LAST_MV    3
 | |
| #define MODE_INTER_PRIOR_LAST 4
 | |
| #define MODE_USING_GOLDEN     5
 | |
| #define MODE_GOLDEN_MV        6
 | |
| #define MODE_INTER_FOURMV     7
 | |
| #define CODING_MODE_COUNT     8
 | |
| 
 | |
| /* special internal mode */
 | |
| #define MODE_COPY             8
 | |
| 
 | |
| /* There are 6 preset schemes, plus a free-form scheme */
 | |
| static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
 | |
|     /* scheme 1: Last motion vector dominates */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 2 */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 3 */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | |
|       MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 4 */
 | |
|     { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | |
|       MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 5: No motion vector dominates */
 | |
|     { MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
 | |
|       MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
 | |
|       MODE_INTRA,            MODE_USING_GOLDEN,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 6 */
 | |
|     { MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
 | |
|       MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|       MODE_INTER_PLUS_MV,    MODE_INTRA,
 | |
|       MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| };
 | |
| 
 | |
| static const uint8_t hilbert_offset[16][2] = {
 | |
|     { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
 | |
|     { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
 | |
|     { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
 | |
|     { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
 | |
| };
 | |
| 
 | |
| #define MIN_DEQUANT_VAL 2
 | |
| 
 | |
| typedef struct Vp3DecodeContext {
 | |
|     AVCodecContext *avctx;
 | |
|     int theora, theora_tables;
 | |
|     int version;
 | |
|     int width, height;
 | |
|     int chroma_x_shift, chroma_y_shift;
 | |
|     ThreadFrame golden_frame;
 | |
|     ThreadFrame last_frame;
 | |
|     ThreadFrame current_frame;
 | |
|     int keyframe;
 | |
|     uint8_t idct_permutation[64];
 | |
|     uint8_t idct_scantable[64];
 | |
|     HpelDSPContext hdsp;
 | |
|     VideoDSPContext vdsp;
 | |
|     VP3DSPContext vp3dsp;
 | |
|     DECLARE_ALIGNED(16, int16_t, block)[64];
 | |
|     int flipped_image;
 | |
|     int last_slice_end;
 | |
|     int skip_loop_filter;
 | |
| 
 | |
|     int qps[3];
 | |
|     int nqps;
 | |
|     int last_qps[3];
 | |
| 
 | |
|     int superblock_count;
 | |
|     int y_superblock_width;
 | |
|     int y_superblock_height;
 | |
|     int y_superblock_count;
 | |
|     int c_superblock_width;
 | |
|     int c_superblock_height;
 | |
|     int c_superblock_count;
 | |
|     int u_superblock_start;
 | |
|     int v_superblock_start;
 | |
|     unsigned char *superblock_coding;
 | |
| 
 | |
|     int macroblock_count;
 | |
|     int macroblock_width;
 | |
|     int macroblock_height;
 | |
| 
 | |
|     int fragment_count;
 | |
|     int fragment_width[2];
 | |
|     int fragment_height[2];
 | |
| 
 | |
|     Vp3Fragment *all_fragments;
 | |
|     int fragment_start[3];
 | |
|     int data_offset[3];
 | |
|     uint8_t offset_x;
 | |
|     uint8_t offset_y;
 | |
| 
 | |
|     int8_t (*motion_val[2])[2];
 | |
| 
 | |
|     /* tables */
 | |
|     uint16_t coded_dc_scale_factor[64];
 | |
|     uint32_t coded_ac_scale_factor[64];
 | |
|     uint8_t base_matrix[384][64];
 | |
|     uint8_t qr_count[2][3];
 | |
|     uint8_t qr_size[2][3][64];
 | |
|     uint16_t qr_base[2][3][64];
 | |
| 
 | |
|     /**
 | |
|      * This is a list of all tokens in bitstream order. Reordering takes place
 | |
|      * by pulling from each level during IDCT. As a consequence, IDCT must be
 | |
|      * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
 | |
|      * otherwise. The 32 different tokens with up to 12 bits of extradata are
 | |
|      * collapsed into 3 types, packed as follows:
 | |
|      *   (from the low to high bits)
 | |
|      *
 | |
|      * 2 bits: type (0,1,2)
 | |
|      *   0: EOB run, 14 bits for run length (12 needed)
 | |
|      *   1: zero run, 7 bits for run length
 | |
|      *                7 bits for the next coefficient (3 needed)
 | |
|      *   2: coefficient, 14 bits (11 needed)
 | |
|      *
 | |
|      * Coefficients are signed, so are packed in the highest bits for automatic
 | |
|      * sign extension.
 | |
|      */
 | |
|     int16_t *dct_tokens[3][64];
 | |
|     int16_t *dct_tokens_base;
 | |
| #define TOKEN_EOB(eob_run)              ((eob_run) << 2)
 | |
| #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
 | |
| #define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
 | |
| 
 | |
|     /**
 | |
|      * number of blocks that contain DCT coefficients at
 | |
|      * the given level or higher
 | |
|      */
 | |
|     int num_coded_frags[3][64];
 | |
|     int total_num_coded_frags;
 | |
| 
 | |
|     /* this is a list of indexes into the all_fragments array indicating
 | |
|      * which of the fragments are coded */
 | |
|     int *coded_fragment_list[3];
 | |
| 
 | |
|     VLC dc_vlc[16];
 | |
|     VLC ac_vlc_1[16];
 | |
|     VLC ac_vlc_2[16];
 | |
|     VLC ac_vlc_3[16];
 | |
|     VLC ac_vlc_4[16];
 | |
| 
 | |
|     VLC superblock_run_length_vlc;
 | |
|     VLC fragment_run_length_vlc;
 | |
|     VLC mode_code_vlc;
 | |
|     VLC motion_vector_vlc;
 | |
| 
 | |
|     /* these arrays need to be on 16-byte boundaries since SSE2 operations
 | |
|      * index into them */
 | |
|     DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
 | |
| 
 | |
|     /* This table contains superblock_count * 16 entries. Each set of 16
 | |
|      * numbers corresponds to the fragment indexes 0..15 of the superblock.
 | |
|      * An entry will be -1 to indicate that no entry corresponds to that
 | |
|      * index. */
 | |
|     int *superblock_fragments;
 | |
| 
 | |
|     /* This is an array that indicates how a particular macroblock
 | |
|      * is coded. */
 | |
|     unsigned char *macroblock_coding;
 | |
| 
 | |
|     uint8_t *edge_emu_buffer;
 | |
| 
 | |
|     /* Huffman decode */
 | |
|     int hti;
 | |
|     unsigned int hbits;
 | |
|     int entries;
 | |
|     int huff_code_size;
 | |
|     uint32_t huffman_table[80][32][2];
 | |
| 
 | |
|     uint8_t filter_limit_values[64];
 | |
|     DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
 | |
| } Vp3DecodeContext;
 | |
| 
 | |
| /************************************************************************
 | |
|  * VP3 specific functions
 | |
|  ************************************************************************/
 | |
| 
 | |
| static void vp3_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (s->golden_frame.f)
 | |
|         ff_thread_release_buffer(avctx, &s->golden_frame);
 | |
|     if (s->last_frame.f)
 | |
|         ff_thread_release_buffer(avctx, &s->last_frame);
 | |
|     if (s->current_frame.f)
 | |
|         ff_thread_release_buffer(avctx, &s->current_frame);
 | |
| }
 | |
| 
 | |
| static av_cold int vp3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     av_freep(&s->superblock_coding);
 | |
|     av_freep(&s->all_fragments);
 | |
|     av_freep(&s->coded_fragment_list[0]);
 | |
|     av_freep(&s->dct_tokens_base);
 | |
|     av_freep(&s->superblock_fragments);
 | |
|     av_freep(&s->macroblock_coding);
 | |
|     av_freep(&s->motion_val[0]);
 | |
|     av_freep(&s->motion_val[1]);
 | |
|     av_freep(&s->edge_emu_buffer);
 | |
| 
 | |
|     /* release all frames */
 | |
|     vp3_decode_flush(avctx);
 | |
|     av_frame_free(&s->current_frame.f);
 | |
|     av_frame_free(&s->last_frame.f);
 | |
|     av_frame_free(&s->golden_frame.f);
 | |
| 
 | |
|     if (avctx->internal->is_copy)
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         ff_free_vlc(&s->dc_vlc[i]);
 | |
|         ff_free_vlc(&s->ac_vlc_1[i]);
 | |
|         ff_free_vlc(&s->ac_vlc_2[i]);
 | |
|         ff_free_vlc(&s->ac_vlc_3[i]);
 | |
|         ff_free_vlc(&s->ac_vlc_4[i]);
 | |
|     }
 | |
| 
 | |
|     ff_free_vlc(&s->superblock_run_length_vlc);
 | |
|     ff_free_vlc(&s->fragment_run_length_vlc);
 | |
|     ff_free_vlc(&s->mode_code_vlc);
 | |
|     ff_free_vlc(&s->motion_vector_vlc);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets up all of the various blocks mappings:
 | |
|  * superblocks <-> fragments, macroblocks <-> fragments,
 | |
|  * superblocks <-> macroblocks
 | |
|  *
 | |
|  * @return 0 is successful; returns 1 if *anything* went wrong.
 | |
|  */
 | |
| static int init_block_mapping(Vp3DecodeContext *s)
 | |
| {
 | |
|     int sb_x, sb_y, plane;
 | |
|     int x, y, i, j = 0;
 | |
| 
 | |
|     for (plane = 0; plane < 3; plane++) {
 | |
|         int sb_width    = plane ? s->c_superblock_width
 | |
|                                 : s->y_superblock_width;
 | |
|         int sb_height   = plane ? s->c_superblock_height
 | |
|                                 : s->y_superblock_height;
 | |
|         int frag_width  = s->fragment_width[!!plane];
 | |
|         int frag_height = s->fragment_height[!!plane];
 | |
| 
 | |
|         for (sb_y = 0; sb_y < sb_height; sb_y++)
 | |
|             for (sb_x = 0; sb_x < sb_width; sb_x++)
 | |
|                 for (i = 0; i < 16; i++) {
 | |
|                     x = 4 * sb_x + hilbert_offset[i][0];
 | |
|                     y = 4 * sb_y + hilbert_offset[i][1];
 | |
| 
 | |
|                     if (x < frag_width && y < frag_height)
 | |
|                         s->superblock_fragments[j++] = s->fragment_start[plane] +
 | |
|                                                        y * frag_width + x;
 | |
|                     else
 | |
|                         s->superblock_fragments[j++] = -1;
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     return 0;  /* successful path out */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets up the dequantization tables used for a particular
 | |
|  * frame.
 | |
|  */
 | |
| static void init_dequantizer(Vp3DecodeContext *s, int qpi)
 | |
| {
 | |
|     int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
 | |
|     int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
 | |
|     int i, plane, inter, qri, bmi, bmj, qistart;
 | |
| 
 | |
|     for (inter = 0; inter < 2; inter++) {
 | |
|         for (plane = 0; plane < 3; plane++) {
 | |
|             int sum = 0;
 | |
|             for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
 | |
|                 sum += s->qr_size[inter][plane][qri];
 | |
|                 if (s->qps[qpi] <= sum)
 | |
|                     break;
 | |
|             }
 | |
|             qistart = sum - s->qr_size[inter][plane][qri];
 | |
|             bmi     = s->qr_base[inter][plane][qri];
 | |
|             bmj     = s->qr_base[inter][plane][qri + 1];
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 int coeff = (2 * (sum     - s->qps[qpi]) * s->base_matrix[bmi][i] -
 | |
|                              2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
 | |
|                              s->qr_size[inter][plane][qri]) /
 | |
|                             (2 * s->qr_size[inter][plane][qri]);
 | |
| 
 | |
|                 int qmin   = 8 << (inter + !i);
 | |
|                 int qscale = i ? ac_scale_factor : dc_scale_factor;
 | |
| 
 | |
|                 s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
 | |
|                     av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
 | |
|             }
 | |
|             /* all DC coefficients use the same quant so as not to interfere
 | |
|              * with DC prediction */
 | |
|             s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function initializes the loop filter boundary limits if the frame's
 | |
|  * quality index is different from the previous frame's.
 | |
|  *
 | |
|  * The filter_limit_values may not be larger than 127.
 | |
|  */
 | |
| static void init_loop_filter(Vp3DecodeContext *s)
 | |
| {
 | |
|     int *bounding_values = s->bounding_values_array + 127;
 | |
|     int filter_limit;
 | |
|     int x;
 | |
|     int value;
 | |
| 
 | |
|     filter_limit = s->filter_limit_values[s->qps[0]];
 | |
|     assert(filter_limit < 128);
 | |
| 
 | |
|     /* set up the bounding values */
 | |
|     memset(s->bounding_values_array, 0, 256 * sizeof(int));
 | |
|     for (x = 0; x < filter_limit; x++) {
 | |
|         bounding_values[-x] = -x;
 | |
|         bounding_values[x] = x;
 | |
|     }
 | |
|     for (x = value = filter_limit; x < 128 && value; x++, value--) {
 | |
|         bounding_values[ x] =  value;
 | |
|         bounding_values[-x] = -value;
 | |
|     }
 | |
|     if (value)
 | |
|         bounding_values[128] = value;
 | |
|     bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all of the superblock/macroblock/fragment coding
 | |
|  * information from the bitstream.
 | |
|  */
 | |
| static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int superblock_starts[3] = {
 | |
|         0, s->u_superblock_start, s->v_superblock_start
 | |
|     };
 | |
|     int bit = 0;
 | |
|     int current_superblock = 0;
 | |
|     int current_run = 0;
 | |
|     int num_partial_superblocks = 0;
 | |
| 
 | |
|     int i, j;
 | |
|     int current_fragment;
 | |
|     int plane;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
 | |
|     } else {
 | |
|         /* unpack the list of partially-coded superblocks */
 | |
|         bit         = get_bits1(gb) ^ 1;
 | |
|         current_run = 0;
 | |
| 
 | |
|         while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
 | |
|             if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | |
|                 bit = get_bits1(gb);
 | |
|             else
 | |
|                 bit ^= 1;
 | |
| 
 | |
|             current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
 | |
|                                    6, 2) + 1;
 | |
|             if (current_run == 34)
 | |
|                 current_run += get_bits(gb, 12);
 | |
| 
 | |
|             if (current_superblock + current_run > s->superblock_count) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid partially coded superblock run length\n");
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             memset(s->superblock_coding + current_superblock, bit, current_run);
 | |
| 
 | |
|             current_superblock += current_run;
 | |
|             if (bit)
 | |
|                 num_partial_superblocks += current_run;
 | |
|         }
 | |
| 
 | |
|         /* unpack the list of fully coded superblocks if any of the blocks were
 | |
|          * not marked as partially coded in the previous step */
 | |
|         if (num_partial_superblocks < s->superblock_count) {
 | |
|             int superblocks_decoded = 0;
 | |
| 
 | |
|             current_superblock = 0;
 | |
|             bit                = get_bits1(gb) ^ 1;
 | |
|             current_run        = 0;
 | |
| 
 | |
|             while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
 | |
|                    get_bits_left(gb) > 0) {
 | |
|                 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | |
|                     bit = get_bits1(gb);
 | |
|                 else
 | |
|                     bit ^= 1;
 | |
| 
 | |
|                 current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
 | |
|                                        6, 2) + 1;
 | |
|                 if (current_run == 34)
 | |
|                     current_run += get_bits(gb, 12);
 | |
| 
 | |
|                 for (j = 0; j < current_run; current_superblock++) {
 | |
|                     if (current_superblock >= s->superblock_count) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                "Invalid fully coded superblock run length\n");
 | |
|                         return -1;
 | |
|                     }
 | |
| 
 | |
|                     /* skip any superblocks already marked as partially coded */
 | |
|                     if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
 | |
|                         s->superblock_coding[current_superblock] = 2 * bit;
 | |
|                         j++;
 | |
|                     }
 | |
|                 }
 | |
|                 superblocks_decoded += current_run;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* if there were partial blocks, initialize bitstream for
 | |
|          * unpacking fragment codings */
 | |
|         if (num_partial_superblocks) {
 | |
|             current_run = 0;
 | |
|             bit         = get_bits1(gb);
 | |
|             /* toggle the bit because as soon as the first run length is
 | |
|              * fetched the bit will be toggled again */
 | |
|             bit ^= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* figure out which fragments are coded; iterate through each
 | |
|      * superblock (all planes) */
 | |
|     s->total_num_coded_frags = 0;
 | |
|     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | |
| 
 | |
|     for (plane = 0; plane < 3; plane++) {
 | |
|         int sb_start = superblock_starts[plane];
 | |
|         int sb_end   = sb_start + (plane ? s->c_superblock_count
 | |
|                                          : s->y_superblock_count);
 | |
|         int num_coded_frags = 0;
 | |
| 
 | |
|         for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
 | |
|             /* iterate through all 16 fragments in a superblock */
 | |
|             for (j = 0; j < 16; j++) {
 | |
|                 /* if the fragment is in bounds, check its coding status */
 | |
|                 current_fragment = s->superblock_fragments[i * 16 + j];
 | |
|                 if (current_fragment != -1) {
 | |
|                     int coded = s->superblock_coding[i];
 | |
| 
 | |
|                     if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
 | |
|                         /* fragment may or may not be coded; this is the case
 | |
|                          * that cares about the fragment coding runs */
 | |
|                         if (current_run-- == 0) {
 | |
|                             bit        ^= 1;
 | |
|                             current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
 | |
|                         }
 | |
|                         coded = bit;
 | |
|                     }
 | |
| 
 | |
|                     if (coded) {
 | |
|                         /* default mode; actual mode will be decoded in
 | |
|                          * the next phase */
 | |
|                         s->all_fragments[current_fragment].coding_method =
 | |
|                             MODE_INTER_NO_MV;
 | |
|                         s->coded_fragment_list[plane][num_coded_frags++] =
 | |
|                             current_fragment;
 | |
|                     } else {
 | |
|                         /* not coded; copy this fragment from the prior frame */
 | |
|                         s->all_fragments[current_fragment].coding_method =
 | |
|                             MODE_COPY;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         s->total_num_coded_frags += num_coded_frags;
 | |
|         for (i = 0; i < 64; i++)
 | |
|             s->num_coded_frags[plane][i] = num_coded_frags;
 | |
|         if (plane < 2)
 | |
|             s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
 | |
|                                                 num_coded_frags;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the coding mode data for individual macroblocks
 | |
|  * from the bitstream.
 | |
|  */
 | |
| static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i, j, k, sb_x, sb_y;
 | |
|     int scheme;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int coding_mode;
 | |
|     int custom_mode_alphabet[CODING_MODE_COUNT];
 | |
|     const int *alphabet;
 | |
|     Vp3Fragment *frag;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         for (i = 0; i < s->fragment_count; i++)
 | |
|             s->all_fragments[i].coding_method = MODE_INTRA;
 | |
|     } else {
 | |
|         /* fetch the mode coding scheme for this frame */
 | |
|         scheme = get_bits(gb, 3);
 | |
| 
 | |
|         /* is it a custom coding scheme? */
 | |
|         if (scheme == 0) {
 | |
|             for (i = 0; i < 8; i++)
 | |
|                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
 | |
|             for (i = 0; i < 8; i++)
 | |
|                 custom_mode_alphabet[get_bits(gb, 3)] = i;
 | |
|             alphabet = custom_mode_alphabet;
 | |
|         } else
 | |
|             alphabet = ModeAlphabet[scheme - 1];
 | |
| 
 | |
|         /* iterate through all of the macroblocks that contain 1 or more
 | |
|          * coded fragments */
 | |
|         for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | |
|             for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | |
|                 if (get_bits_left(gb) <= 0)
 | |
|                     return -1;
 | |
| 
 | |
|                 for (j = 0; j < 4; j++) {
 | |
|                     int mb_x = 2 * sb_x + (j >> 1);
 | |
|                     int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
 | |
|                     current_macroblock = mb_y * s->macroblock_width + mb_x;
 | |
| 
 | |
|                     if (mb_x >= s->macroblock_width ||
 | |
|                         mb_y >= s->macroblock_height)
 | |
|                         continue;
 | |
| 
 | |
| #define BLOCK_X (2 * mb_x + (k & 1))
 | |
| #define BLOCK_Y (2 * mb_y + (k >> 1))
 | |
|                     /* coding modes are only stored if the macroblock has
 | |
|                      * at least one luma block coded, otherwise it must be
 | |
|                      * INTER_NO_MV */
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         current_fragment = BLOCK_Y *
 | |
|                                            s->fragment_width[0] + BLOCK_X;
 | |
|                         if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
 | |
|                             break;
 | |
|                     }
 | |
|                     if (k == 4) {
 | |
|                         s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     /* mode 7 means get 3 bits for each coding mode */
 | |
|                     if (scheme == 7)
 | |
|                         coding_mode = get_bits(gb, 3);
 | |
|                     else
 | |
|                         coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
 | |
| 
 | |
|                     s->macroblock_coding[current_macroblock] = coding_mode;
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | |
|                         if (frag->coding_method != MODE_COPY)
 | |
|                             frag->coding_method = coding_mode;
 | |
|                     }
 | |
| 
 | |
| #define SET_CHROMA_MODES                                                      \
 | |
|     if (frag[s->fragment_start[1]].coding_method != MODE_COPY)                \
 | |
|         frag[s->fragment_start[1]].coding_method = coding_mode;               \
 | |
|     if (frag[s->fragment_start[2]].coding_method != MODE_COPY)                \
 | |
|         frag[s->fragment_start[2]].coding_method = coding_mode;
 | |
| 
 | |
|                     if (s->chroma_y_shift) {
 | |
|                         frag = s->all_fragments + mb_y *
 | |
|                                s->fragment_width[1] + mb_x;
 | |
|                         SET_CHROMA_MODES
 | |
|                     } else if (s->chroma_x_shift) {
 | |
|                         frag = s->all_fragments +
 | |
|                                2 * mb_y * s->fragment_width[1] + mb_x;
 | |
|                         for (k = 0; k < 2; k++) {
 | |
|                             SET_CHROMA_MODES
 | |
|                             frag += s->fragment_width[1];
 | |
|                         }
 | |
|                     } else {
 | |
|                         for (k = 0; k < 4; k++) {
 | |
|                             frag = s->all_fragments +
 | |
|                                    BLOCK_Y * s->fragment_width[1] + BLOCK_X;
 | |
|                             SET_CHROMA_MODES
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the motion vectors for the individual
 | |
|  * macroblocks from the bitstream.
 | |
|  */
 | |
| static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int j, k, sb_x, sb_y;
 | |
|     int coding_mode;
 | |
|     int motion_x[4];
 | |
|     int motion_y[4];
 | |
|     int last_motion_x = 0;
 | |
|     int last_motion_y = 0;
 | |
|     int prior_last_motion_x = 0;
 | |
|     int prior_last_motion_y = 0;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int frag;
 | |
| 
 | |
|     if (s->keyframe)
 | |
|         return 0;
 | |
| 
 | |
|     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
 | |
|     coding_mode = get_bits1(gb);
 | |
| 
 | |
|     /* iterate through all of the macroblocks that contain 1 or more
 | |
|      * coded fragments */
 | |
|     for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | |
|         for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | |
|             if (get_bits_left(gb) <= 0)
 | |
|                 return -1;
 | |
| 
 | |
|             for (j = 0; j < 4; j++) {
 | |
|                 int mb_x = 2 * sb_x + (j >> 1);
 | |
|                 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
 | |
|                 current_macroblock = mb_y * s->macroblock_width + mb_x;
 | |
| 
 | |
|                 if (mb_x >= s->macroblock_width  ||
 | |
|                     mb_y >= s->macroblock_height ||
 | |
|                     s->macroblock_coding[current_macroblock] == MODE_COPY)
 | |
|                     continue;
 | |
| 
 | |
|                 switch (s->macroblock_coding[current_macroblock]) {
 | |
|                 case MODE_INTER_PLUS_MV:
 | |
|                 case MODE_GOLDEN_MV:
 | |
|                     /* all 6 fragments use the same motion vector */
 | |
|                     if (coding_mode == 0) {
 | |
|                         motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                         motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                     } else {
 | |
|                         motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                         motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                     }
 | |
| 
 | |
|                     /* vector maintenance, only on MODE_INTER_PLUS_MV */
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
 | |
|                         prior_last_motion_x = last_motion_x;
 | |
|                         prior_last_motion_y = last_motion_y;
 | |
|                         last_motion_x       = motion_x[0];
 | |
|                         last_motion_y       = motion_y[0];
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_FOURMV:
 | |
|                     /* vector maintenance */
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
| 
 | |
|                     /* fetch 4 vectors from the bitstream, one for each
 | |
|                      * Y fragment, then average for the C fragment vectors */
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | |
|                         if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
 | |
|                             if (coding_mode == 0) {
 | |
|                                 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                                 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | |
|                             } else {
 | |
|                                 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                                 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | |
|                             }
 | |
|                             last_motion_x = motion_x[k];
 | |
|                             last_motion_y = motion_y[k];
 | |
|                         } else {
 | |
|                             motion_x[k] = 0;
 | |
|                             motion_y[k] = 0;
 | |
|                         }
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_LAST_MV:
 | |
|                     /* all 6 fragments use the last motion vector */
 | |
|                     motion_x[0] = last_motion_x;
 | |
|                     motion_y[0] = last_motion_y;
 | |
| 
 | |
|                     /* no vector maintenance (last vector remains the
 | |
|                      * last vector) */
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_PRIOR_LAST:
 | |
|                     /* all 6 fragments use the motion vector prior to the
 | |
|                      * last motion vector */
 | |
|                     motion_x[0] = prior_last_motion_x;
 | |
|                     motion_y[0] = prior_last_motion_y;
 | |
| 
 | |
|                     /* vector maintenance */
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
|                     last_motion_x       = motion_x[0];
 | |
|                     last_motion_y       = motion_y[0];
 | |
|                     break;
 | |
| 
 | |
|                 default:
 | |
|                     /* covers intra, inter without MV, golden without MV */
 | |
|                     motion_x[0] = 0;
 | |
|                     motion_y[0] = 0;
 | |
| 
 | |
|                     /* no vector maintenance */
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 /* assign the motion vectors to the correct fragments */
 | |
|                 for (k = 0; k < 4; k++) {
 | |
|                     current_fragment =
 | |
|                         BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         s->motion_val[0][current_fragment][0] = motion_x[k];
 | |
|                         s->motion_val[0][current_fragment][1] = motion_y[k];
 | |
|                     } else {
 | |
|                         s->motion_val[0][current_fragment][0] = motion_x[0];
 | |
|                         s->motion_val[0][current_fragment][1] = motion_y[0];
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (s->chroma_y_shift) {
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
 | |
|                                              motion_x[2] + motion_x[3], 2);
 | |
|                         motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
 | |
|                                              motion_y[2] + motion_y[3], 2);
 | |
|                     }
 | |
|                     motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
 | |
|                     motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
 | |
|                     frag = mb_y * s->fragment_width[1] + mb_x;
 | |
|                     s->motion_val[1][frag][0] = motion_x[0];
 | |
|                     s->motion_val[1][frag][1] = motion_y[0];
 | |
|                 } else if (s->chroma_x_shift) {
 | |
|                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                         motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
 | |
|                         motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
 | |
|                         motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
 | |
|                         motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
 | |
|                     } else {
 | |
|                         motion_x[1] = motion_x[0];
 | |
|                         motion_y[1] = motion_y[0];
 | |
|                     }
 | |
|                     motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
 | |
|                     motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
 | |
| 
 | |
|                     frag = 2 * mb_y * s->fragment_width[1] + mb_x;
 | |
|                     for (k = 0; k < 2; k++) {
 | |
|                         s->motion_val[1][frag][0] = motion_x[k];
 | |
|                         s->motion_val[1][frag][1] = motion_y[k];
 | |
|                         frag += s->fragment_width[1];
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
 | |
|                         if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | |
|                             s->motion_val[1][frag][0] = motion_x[k];
 | |
|                             s->motion_val[1][frag][1] = motion_y[k];
 | |
|                         } else {
 | |
|                             s->motion_val[1][frag][0] = motion_x[0];
 | |
|                             s->motion_val[1][frag][1] = motion_y[0];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
 | |
|     int num_blocks = s->total_num_coded_frags;
 | |
| 
 | |
|     for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
 | |
|         i = blocks_decoded = num_blocks_at_qpi = 0;
 | |
| 
 | |
|         bit        = get_bits1(gb) ^ 1;
 | |
|         run_length = 0;
 | |
| 
 | |
|         do {
 | |
|             if (run_length == MAXIMUM_LONG_BIT_RUN)
 | |
|                 bit = get_bits1(gb);
 | |
|             else
 | |
|                 bit ^= 1;
 | |
| 
 | |
|             run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
 | |
|             if (run_length == 34)
 | |
|                 run_length += get_bits(gb, 12);
 | |
|             blocks_decoded += run_length;
 | |
| 
 | |
|             if (!bit)
 | |
|                 num_blocks_at_qpi += run_length;
 | |
| 
 | |
|             for (j = 0; j < run_length; i++) {
 | |
|                 if (i >= s->total_num_coded_frags)
 | |
|                     return -1;
 | |
| 
 | |
|                 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
 | |
|                     s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
 | |
|                     j++;
 | |
|                 }
 | |
|             }
 | |
|         } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
 | |
| 
 | |
|         num_blocks -= num_blocks_at_qpi;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by unpack_dct_coeffs() to extract the VLCs from
 | |
|  * the bitstream. The VLCs encode tokens which are used to unpack DCT
 | |
|  * data. This function unpacks all the VLCs for either the Y plane or both
 | |
|  * C planes, and is called for DC coefficients or different AC coefficient
 | |
|  * levels (since different coefficient types require different VLC tables.
 | |
|  *
 | |
|  * This function returns a residual eob run. E.g, if a particular token gave
 | |
|  * instructions to EOB the next 5 fragments and there were only 2 fragments
 | |
|  * left in the current fragment range, 3 would be returned so that it could
 | |
|  * be passed into the next call to this same function.
 | |
|  */
 | |
| static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | |
|                        VLC *table, int coeff_index,
 | |
|                        int plane,
 | |
|                        int eob_run)
 | |
| {
 | |
|     int i, j = 0;
 | |
|     int token;
 | |
|     int zero_run  = 0;
 | |
|     int16_t coeff = 0;
 | |
|     int bits_to_get;
 | |
|     int blocks_ended;
 | |
|     int coeff_i = 0;
 | |
|     int num_coeffs      = s->num_coded_frags[plane][coeff_index];
 | |
|     int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
 | |
| 
 | |
|     /* local references to structure members to avoid repeated dereferences */
 | |
|     int *coded_fragment_list   = s->coded_fragment_list[plane];
 | |
|     Vp3Fragment *all_fragments = s->all_fragments;
 | |
|     VLC_TYPE(*vlc_table)[2] = table->table;
 | |
| 
 | |
|     if (num_coeffs < 0)
 | |
|         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                "Invalid number of coefficients at level %d\n", coeff_index);
 | |
| 
 | |
|     if (eob_run > num_coeffs) {
 | |
|         coeff_i      =
 | |
|         blocks_ended = num_coeffs;
 | |
|         eob_run     -= num_coeffs;
 | |
|     } else {
 | |
|         coeff_i      =
 | |
|         blocks_ended = eob_run;
 | |
|         eob_run      = 0;
 | |
|     }
 | |
| 
 | |
|     // insert fake EOB token to cover the split between planes or zzi
 | |
|     if (blocks_ended)
 | |
|         dct_tokens[j++] = blocks_ended << 2;
 | |
| 
 | |
|     while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
 | |
|         /* decode a VLC into a token */
 | |
|         token = get_vlc2(gb, vlc_table, 11, 3);
 | |
|         /* use the token to get a zero run, a coefficient, and an eob run */
 | |
|         if ((unsigned) token <= 6U) {
 | |
|             eob_run = eob_run_base[token];
 | |
|             if (eob_run_get_bits[token])
 | |
|                 eob_run += get_bits(gb, eob_run_get_bits[token]);
 | |
| 
 | |
|             // record only the number of blocks ended in this plane,
 | |
|             // any spill will be recorded in the next plane.
 | |
|             if (eob_run > num_coeffs - coeff_i) {
 | |
|                 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
 | |
|                 blocks_ended   += num_coeffs - coeff_i;
 | |
|                 eob_run        -= num_coeffs - coeff_i;
 | |
|                 coeff_i         = num_coeffs;
 | |
|             } else {
 | |
|                 dct_tokens[j++] = TOKEN_EOB(eob_run);
 | |
|                 blocks_ended   += eob_run;
 | |
|                 coeff_i        += eob_run;
 | |
|                 eob_run         = 0;
 | |
|             }
 | |
|         } else if (token >= 0) {
 | |
|             bits_to_get = coeff_get_bits[token];
 | |
|             if (bits_to_get)
 | |
|                 bits_to_get = get_bits(gb, bits_to_get);
 | |
|             coeff = coeff_tables[token][bits_to_get];
 | |
| 
 | |
|             zero_run = zero_run_base[token];
 | |
|             if (zero_run_get_bits[token])
 | |
|                 zero_run += get_bits(gb, zero_run_get_bits[token]);
 | |
| 
 | |
|             if (zero_run) {
 | |
|                 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
 | |
|             } else {
 | |
|                 // Save DC into the fragment structure. DC prediction is
 | |
|                 // done in raster order, so the actual DC can't be in with
 | |
|                 // other tokens. We still need the token in dct_tokens[]
 | |
|                 // however, or else the structure collapses on itself.
 | |
|                 if (!coeff_index)
 | |
|                     all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
 | |
| 
 | |
|                 dct_tokens[j++] = TOKEN_COEFF(coeff);
 | |
|             }
 | |
| 
 | |
|             if (coeff_index + zero_run > 64) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Invalid zero run of %d with %d coeffs left\n",
 | |
|                        zero_run, 64 - coeff_index);
 | |
|                 zero_run = 64 - coeff_index;
 | |
|             }
 | |
| 
 | |
|             // zero runs code multiple coefficients,
 | |
|             // so don't try to decode coeffs for those higher levels
 | |
|             for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
 | |
|                 s->num_coded_frags[plane][i]--;
 | |
|             coeff_i++;
 | |
|         } else {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (blocks_ended > s->num_coded_frags[plane][coeff_index])
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
 | |
| 
 | |
|     // decrement the number of blocks that have higher coefficients for each
 | |
|     // EOB run at this level
 | |
|     if (blocks_ended)
 | |
|         for (i = coeff_index + 1; i < 64; i++)
 | |
|             s->num_coded_frags[plane][i] -= blocks_ended;
 | |
| 
 | |
|     // setup the next buffer
 | |
|     if (plane < 2)
 | |
|         s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
 | |
|     else if (coeff_index < 63)
 | |
|         s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
 | |
| 
 | |
|     return eob_run;
 | |
| }
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height);
 | |
| /*
 | |
|  * This function unpacks all of the DCT coefficient data from the
 | |
|  * bitstream.
 | |
|  */
 | |
| static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i;
 | |
|     int dc_y_table;
 | |
|     int dc_c_table;
 | |
|     int ac_y_table;
 | |
|     int ac_c_table;
 | |
|     int residual_eob_run = 0;
 | |
|     VLC *y_tables[64];
 | |
|     VLC *c_tables[64];
 | |
| 
 | |
|     s->dct_tokens[0][0] = s->dct_tokens_base;
 | |
| 
 | |
|     /* fetch the DC table indexes */
 | |
|     dc_y_table = get_bits(gb, 4);
 | |
|     dc_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* unpack the Y plane DC coefficients */
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
 | |
|                                    0, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
| 
 | |
|     /* reverse prediction of the Y-plane DC coefficients */
 | |
|     reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
 | |
| 
 | |
|     /* unpack the C plane DC coefficients */
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | |
|                                    1, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | |
|                                    2, residual_eob_run);
 | |
|     if (residual_eob_run < 0)
 | |
|         return residual_eob_run;
 | |
| 
 | |
|     /* reverse prediction of the C-plane DC coefficients */
 | |
|     if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
 | |
|         reverse_dc_prediction(s, s->fragment_start[1],
 | |
|                               s->fragment_width[1], s->fragment_height[1]);
 | |
|         reverse_dc_prediction(s, s->fragment_start[2],
 | |
|                               s->fragment_width[1], s->fragment_height[1]);
 | |
|     }
 | |
| 
 | |
|     /* fetch the AC table indexes */
 | |
|     ac_y_table = get_bits(gb, 4);
 | |
|     ac_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* build tables of AC VLC tables */
 | |
|     for (i = 1; i <= 5; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_1[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_1[ac_c_table];
 | |
|     }
 | |
|     for (i = 6; i <= 14; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_2[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_2[ac_c_table];
 | |
|     }
 | |
|     for (i = 15; i <= 27; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_3[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_3[ac_c_table];
 | |
|     }
 | |
|     for (i = 28; i <= 63; i++) {
 | |
|         y_tables[i] = &s->ac_vlc_4[ac_y_table];
 | |
|         c_tables[i] = &s->ac_vlc_4[ac_c_table];
 | |
|     }
 | |
| 
 | |
|     /* decode all AC coefficients */
 | |
|     for (i = 1; i <= 63; i++) {
 | |
|         residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
 | |
|                                        0, residual_eob_run);
 | |
|         if (residual_eob_run < 0)
 | |
|             return residual_eob_run;
 | |
| 
 | |
|         residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | |
|                                        1, residual_eob_run);
 | |
|         if (residual_eob_run < 0)
 | |
|             return residual_eob_run;
 | |
|         residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | |
|                                        2, residual_eob_run);
 | |
|         if (residual_eob_run < 0)
 | |
|             return residual_eob_run;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function reverses the DC prediction for each coded fragment in
 | |
|  * the frame. Much of this function is adapted directly from the original
 | |
|  * VP3 source code.
 | |
|  */
 | |
| #define COMPATIBLE_FRAME(x)                                                   \
 | |
|     (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
 | |
| #define DC_COEFF(u) s->all_fragments[u].dc
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height)
 | |
| {
 | |
| #define PUL 8
 | |
| #define PU 4
 | |
| #define PUR 2
 | |
| #define PL 1
 | |
| 
 | |
|     int x, y;
 | |
|     int i = first_fragment;
 | |
| 
 | |
|     int predicted_dc;
 | |
| 
 | |
|     /* DC values for the left, up-left, up, and up-right fragments */
 | |
|     int vl, vul, vu, vur;
 | |
| 
 | |
|     /* indexes for the left, up-left, up, and up-right fragments */
 | |
|     int l, ul, u, ur;
 | |
| 
 | |
|     /*
 | |
|      * The 6 fields mean:
 | |
|      *   0: up-left multiplier
 | |
|      *   1: up multiplier
 | |
|      *   2: up-right multiplier
 | |
|      *   3: left multiplier
 | |
|      */
 | |
|     static const int predictor_transform[16][4] = {
 | |
|         {    0,   0,   0,   0 },
 | |
|         {    0,   0,   0, 128 }, // PL
 | |
|         {    0,   0, 128,   0 }, // PUR
 | |
|         {    0,   0,  53,  75 }, // PUR|PL
 | |
|         {    0, 128,   0,   0 }, // PU
 | |
|         {    0,  64,   0,  64 }, // PU |PL
 | |
|         {    0, 128,   0,   0 }, // PU |PUR
 | |
|         {    0,   0,  53,  75 }, // PU |PUR|PL
 | |
|         {  128,   0,   0,   0 }, // PUL
 | |
|         {    0,   0,   0, 128 }, // PUL|PL
 | |
|         {   64,   0,  64,   0 }, // PUL|PUR
 | |
|         {    0,   0,  53,  75 }, // PUL|PUR|PL
 | |
|         {    0, 128,   0,   0 }, // PUL|PU
 | |
|         { -104, 116,   0, 116 }, // PUL|PU |PL
 | |
|         {   24,  80,  24,   0 }, // PUL|PU |PUR
 | |
|         { -104, 116,   0, 116 }  // PUL|PU |PUR|PL
 | |
|     };
 | |
| 
 | |
|     /* This table shows which types of blocks can use other blocks for
 | |
|      * prediction. For example, INTRA is the only mode in this table to
 | |
|      * have a frame number of 0. That means INTRA blocks can only predict
 | |
|      * from other INTRA blocks. There are 2 golden frame coding types;
 | |
|      * blocks encoding in these modes can only predict from other blocks
 | |
|      * that were encoded with these 1 of these 2 modes. */
 | |
|     static const unsigned char compatible_frame[9] = {
 | |
|         1,    /* MODE_INTER_NO_MV */
 | |
|         0,    /* MODE_INTRA */
 | |
|         1,    /* MODE_INTER_PLUS_MV */
 | |
|         1,    /* MODE_INTER_LAST_MV */
 | |
|         1,    /* MODE_INTER_PRIOR_MV */
 | |
|         2,    /* MODE_USING_GOLDEN */
 | |
|         2,    /* MODE_GOLDEN_MV */
 | |
|         1,    /* MODE_INTER_FOUR_MV */
 | |
|         3     /* MODE_COPY */
 | |
|     };
 | |
|     int current_frame_type;
 | |
| 
 | |
|     /* there is a last DC predictor for each of the 3 frame types */
 | |
|     short last_dc[3];
 | |
| 
 | |
|     int transform = 0;
 | |
| 
 | |
|     vul =
 | |
|     vu  =
 | |
|     vur =
 | |
|     vl  = 0;
 | |
|     last_dc[0] =
 | |
|     last_dc[1] =
 | |
|     last_dc[2] = 0;
 | |
| 
 | |
|     /* for each fragment row... */
 | |
|     for (y = 0; y < fragment_height; y++) {
 | |
|         /* for each fragment in a row... */
 | |
|         for (x = 0; x < fragment_width; x++, i++) {
 | |
| 
 | |
|             /* reverse prediction if this block was coded */
 | |
|             if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
|                 current_frame_type =
 | |
|                     compatible_frame[s->all_fragments[i].coding_method];
 | |
| 
 | |
|                 transform = 0;
 | |
|                 if (x) {
 | |
|                     l  = i - 1;
 | |
|                     vl = DC_COEFF(l);
 | |
|                     if (COMPATIBLE_FRAME(l))
 | |
|                         transform |= PL;
 | |
|                 }
 | |
|                 if (y) {
 | |
|                     u  = i - fragment_width;
 | |
|                     vu = DC_COEFF(u);
 | |
|                     if (COMPATIBLE_FRAME(u))
 | |
|                         transform |= PU;
 | |
|                     if (x) {
 | |
|                         ul  = i - fragment_width - 1;
 | |
|                         vul = DC_COEFF(ul);
 | |
|                         if (COMPATIBLE_FRAME(ul))
 | |
|                             transform |= PUL;
 | |
|                     }
 | |
|                     if (x + 1 < fragment_width) {
 | |
|                         ur  = i - fragment_width + 1;
 | |
|                         vur = DC_COEFF(ur);
 | |
|                         if (COMPATIBLE_FRAME(ur))
 | |
|                             transform |= PUR;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (transform == 0) {
 | |
|                     /* if there were no fragments to predict from, use last
 | |
|                      * DC saved */
 | |
|                     predicted_dc = last_dc[current_frame_type];
 | |
|                 } else {
 | |
|                     /* apply the appropriate predictor transform */
 | |
|                     predicted_dc =
 | |
|                         (predictor_transform[transform][0] * vul) +
 | |
|                         (predictor_transform[transform][1] * vu) +
 | |
|                         (predictor_transform[transform][2] * vur) +
 | |
|                         (predictor_transform[transform][3] * vl);
 | |
| 
 | |
|                     predicted_dc /= 128;
 | |
| 
 | |
|                     /* check for outranging on the [ul u l] and
 | |
|                      * [ul u ur l] predictors */
 | |
|                     if ((transform == 15) || (transform == 13)) {
 | |
|                         if (FFABS(predicted_dc - vu) > 128)
 | |
|                             predicted_dc = vu;
 | |
|                         else if (FFABS(predicted_dc - vl) > 128)
 | |
|                             predicted_dc = vl;
 | |
|                         else if (FFABS(predicted_dc - vul) > 128)
 | |
|                             predicted_dc = vul;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /* at long last, apply the predictor */
 | |
|                 DC_COEFF(i) += predicted_dc;
 | |
|                 /* save the DC */
 | |
|                 last_dc[current_frame_type] = DC_COEFF(i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void apply_loop_filter(Vp3DecodeContext *s, int plane,
 | |
|                               int ystart, int yend)
 | |
| {
 | |
|     int x, y;
 | |
|     int *bounding_values = s->bounding_values_array + 127;
 | |
| 
 | |
|     int width           = s->fragment_width[!!plane];
 | |
|     int height          = s->fragment_height[!!plane];
 | |
|     int fragment        = s->fragment_start[plane] + ystart * width;
 | |
|     ptrdiff_t stride    = s->current_frame.f->linesize[plane];
 | |
|     uint8_t *plane_data = s->current_frame.f->data[plane];
 | |
|     if (!s->flipped_image)
 | |
|         stride = -stride;
 | |
|     plane_data += s->data_offset[plane] + 8 * ystart * stride;
 | |
| 
 | |
|     for (y = ystart; y < yend; y++) {
 | |
|         for (x = 0; x < width; x++) {
 | |
|             /* This code basically just deblocks on the edges of coded blocks.
 | |
|              * However, it has to be much more complicated because of the
 | |
|              * brain damaged deblock ordering used in VP3/Theora. Order matters
 | |
|              * because some pixels get filtered twice. */
 | |
|             if (s->all_fragments[fragment].coding_method != MODE_COPY) {
 | |
|                 /* do not perform left edge filter for left columns frags */
 | |
|                 if (x > 0) {
 | |
|                     s->vp3dsp.h_loop_filter(
 | |
|                         plane_data + 8 * x,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform top edge filter for top row fragments */
 | |
|                 if (y > 0) {
 | |
|                     s->vp3dsp.v_loop_filter(
 | |
|                         plane_data + 8 * x,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform right edge filter for right column
 | |
|                  * fragments or if right fragment neighbor is also coded
 | |
|                  * in this frame (it will be filtered in next iteration) */
 | |
|                 if ((x < width - 1) &&
 | |
|                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
 | |
|                     s->vp3dsp.h_loop_filter(
 | |
|                         plane_data + 8 * x + 8,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
| 
 | |
|                 /* do not perform bottom edge filter for bottom row
 | |
|                  * fragments or if bottom fragment neighbor is also coded
 | |
|                  * in this frame (it will be filtered in the next row) */
 | |
|                 if ((y < height - 1) &&
 | |
|                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
 | |
|                     s->vp3dsp.v_loop_filter(
 | |
|                         plane_data + 8 * x + 8 * stride,
 | |
|                         stride, bounding_values);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             fragment++;
 | |
|         }
 | |
|         plane_data += 8 * stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
 | |
|  * for the next block in coding order
 | |
|  */
 | |
| static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
 | |
|                               int plane, int inter, int16_t block[64])
 | |
| {
 | |
|     int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
 | |
|     uint8_t *perm = s->idct_scantable;
 | |
|     int i = 0;
 | |
| 
 | |
|     do {
 | |
|         int token = *s->dct_tokens[plane][i];
 | |
|         switch (token & 3) {
 | |
|         case 0: // EOB
 | |
|             if (--token < 4) // 0-3 are token types so the EOB run must now be 0
 | |
|                 s->dct_tokens[plane][i]++;
 | |
|             else
 | |
|                 *s->dct_tokens[plane][i] = token & ~3;
 | |
|             goto end;
 | |
|         case 1: // zero run
 | |
|             s->dct_tokens[plane][i]++;
 | |
|             i += (token >> 2) & 0x7f;
 | |
|             if (i > 63) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
 | |
|                 return i;
 | |
|             }
 | |
|             block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
 | |
|             i++;
 | |
|             break;
 | |
|         case 2: // coeff
 | |
|             block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
 | |
|             s->dct_tokens[plane][i++]++;
 | |
|             break;
 | |
|         default: // shouldn't happen
 | |
|             return i;
 | |
|         }
 | |
|     } while (i < 64);
 | |
|     // return value is expected to be a valid level
 | |
|     i--;
 | |
| end:
 | |
|     // the actual DC+prediction is in the fragment structure
 | |
|     block[0] = frag->dc * s->qmat[0][inter][plane][0];
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * called when all pixels up to row y are complete
 | |
|  */
 | |
| static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
 | |
| {
 | |
|     int h, cy, i;
 | |
|     int offset[AV_NUM_DATA_POINTERS];
 | |
| 
 | |
|     if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
 | |
|         int y_flipped = s->flipped_image ? s->height - y : y;
 | |
| 
 | |
|         /* At the end of the frame, report INT_MAX instead of the height of
 | |
|          * the frame. This makes the other threads' ff_thread_await_progress()
 | |
|          * calls cheaper, because they don't have to clip their values. */
 | |
|         ff_thread_report_progress(&s->current_frame,
 | |
|                                   y_flipped == s->height ? INT_MAX
 | |
|                                                          : y_flipped - 1,
 | |
|                                   0);
 | |
|     }
 | |
| 
 | |
|     if (!s->avctx->draw_horiz_band)
 | |
|         return;
 | |
| 
 | |
|     h = y - s->last_slice_end;
 | |
|     s->last_slice_end = y;
 | |
|     y -= h;
 | |
| 
 | |
|     if (!s->flipped_image)
 | |
|         y = s->height - y - h;
 | |
| 
 | |
|     cy        = y >> s->chroma_y_shift;
 | |
|     offset[0] = s->current_frame.f->linesize[0] * y;
 | |
|     offset[1] = s->current_frame.f->linesize[1] * cy;
 | |
|     offset[2] = s->current_frame.f->linesize[2] * cy;
 | |
|     for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
 | |
|         offset[i] = 0;
 | |
| 
 | |
|     emms_c();
 | |
|     s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Wait for the reference frame of the current fragment.
 | |
|  * The progress value is in luma pixel rows.
 | |
|  */
 | |
| static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment,
 | |
|                                 int motion_y, int y)
 | |
| {
 | |
|     ThreadFrame *ref_frame;
 | |
|     int ref_row;
 | |
|     int border = motion_y & 1;
 | |
| 
 | |
|     if (fragment->coding_method == MODE_USING_GOLDEN ||
 | |
|         fragment->coding_method == MODE_GOLDEN_MV)
 | |
|         ref_frame = &s->golden_frame;
 | |
|     else
 | |
|         ref_frame = &s->last_frame;
 | |
| 
 | |
|     ref_row = y + (motion_y >> 1);
 | |
|     ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
 | |
| 
 | |
|     ff_thread_await_progress(ref_frame, ref_row, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the final rendering for a particular slice of data.
 | |
|  * The slice number ranges from 0..(c_superblock_height - 1).
 | |
|  */
 | |
| static void render_slice(Vp3DecodeContext *s, int slice)
 | |
| {
 | |
|     int x, y, i, j, fragment;
 | |
|     int16_t *block = s->block;
 | |
|     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
 | |
|     int motion_halfpel_index;
 | |
|     uint8_t *motion_source;
 | |
|     int plane, first_pixel;
 | |
| 
 | |
|     if (slice >= s->c_superblock_height)
 | |
|         return;
 | |
| 
 | |
|     for (plane = 0; plane < 3; plane++) {
 | |
|         uint8_t *output_plane = s->current_frame.f->data[plane] +
 | |
|                                 s->data_offset[plane];
 | |
|         uint8_t *last_plane = s->last_frame.f->data[plane] +
 | |
|                               s->data_offset[plane];
 | |
|         uint8_t *golden_plane = s->golden_frame.f->data[plane] +
 | |
|                                 s->data_offset[plane];
 | |
|         ptrdiff_t stride = s->current_frame.f->linesize[plane];
 | |
|         int plane_width  = s->width  >> (plane && s->chroma_x_shift);
 | |
|         int plane_height = s->height >> (plane && s->chroma_y_shift);
 | |
|         int8_t(*motion_val)[2] = s->motion_val[!!plane];
 | |
| 
 | |
|         int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
 | |
|         int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
 | |
|         int slice_width  = plane ? s->c_superblock_width
 | |
|                                  : s->y_superblock_width;
 | |
| 
 | |
|         int fragment_width  = s->fragment_width[!!plane];
 | |
|         int fragment_height = s->fragment_height[!!plane];
 | |
|         int fragment_start  = s->fragment_start[plane];
 | |
| 
 | |
|         int do_await = !plane && HAVE_THREADS &&
 | |
|                        (s->avctx->active_thread_type & FF_THREAD_FRAME);
 | |
| 
 | |
|         if (!s->flipped_image)
 | |
|             stride = -stride;
 | |
|         if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
 | |
|             continue;
 | |
| 
 | |
|         /* for each superblock row in the slice (both of them)... */
 | |
|         for (; sb_y < slice_height; sb_y++) {
 | |
|             /* for each superblock in a row... */
 | |
|             for (sb_x = 0; sb_x < slice_width; sb_x++) {
 | |
|                 /* for each block in a superblock... */
 | |
|                 for (j = 0; j < 16; j++) {
 | |
|                     x        = 4 * sb_x + hilbert_offset[j][0];
 | |
|                     y        = 4 * sb_y + hilbert_offset[j][1];
 | |
|                     fragment = y * fragment_width + x;
 | |
| 
 | |
|                     i = fragment_start + fragment;
 | |
| 
 | |
|                     // bounds check
 | |
|                     if (x >= fragment_width || y >= fragment_height)
 | |
|                         continue;
 | |
| 
 | |
|                     first_pixel = 8 * y * stride + 8 * x;
 | |
| 
 | |
|                     if (do_await &&
 | |
|                         s->all_fragments[i].coding_method != MODE_INTRA)
 | |
|                         await_reference_row(s, &s->all_fragments[i],
 | |
|                                             motion_val[fragment][1],
 | |
|                                             (16 * y) >> s->chroma_y_shift);
 | |
| 
 | |
|                     /* transform if this block was coded */
 | |
|                     if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
|                         if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
 | |
|                             (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
 | |
|                             motion_source = golden_plane;
 | |
|                         else
 | |
|                             motion_source = last_plane;
 | |
| 
 | |
|                         motion_source       += first_pixel;
 | |
|                         motion_halfpel_index = 0;
 | |
| 
 | |
|                         /* sort out the motion vector if this fragment is coded
 | |
|                          * using a motion vector method */
 | |
|                         if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
 | |
|                             (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
 | |
|                             int src_x, src_y;
 | |
|                             motion_x = motion_val[fragment][0];
 | |
|                             motion_y = motion_val[fragment][1];
 | |
| 
 | |
|                             src_x = (motion_x >> 1) + 8 * x;
 | |
|                             src_y = (motion_y >> 1) + 8 * y;
 | |
| 
 | |
|                             motion_halfpel_index = motion_x & 0x01;
 | |
|                             motion_source       += (motion_x >> 1);
 | |
| 
 | |
|                             motion_halfpel_index |= (motion_y & 0x01) << 1;
 | |
|                             motion_source        += ((motion_y >> 1) * stride);
 | |
| 
 | |
|                             if (src_x < 0 || src_y < 0 ||
 | |
|                                 src_x + 9 >= plane_width ||
 | |
|                                 src_y + 9 >= plane_height) {
 | |
|                                 uint8_t *temp = s->edge_emu_buffer;
 | |
|                                 if (stride < 0)
 | |
|                                     temp -= 8 * stride;
 | |
| 
 | |
|                                 s->vdsp.emulated_edge_mc(temp, motion_source,
 | |
|                                                          stride, stride,
 | |
|                                                          9, 9, src_x, src_y,
 | |
|                                                          plane_width,
 | |
|                                                          plane_height);
 | |
|                                 motion_source = temp;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         /* first, take care of copying a block from either the
 | |
|                          * previous or the golden frame */
 | |
|                         if (s->all_fragments[i].coding_method != MODE_INTRA) {
 | |
|                             /* Note, it is possible to implement all MC cases
 | |
|                              * with put_no_rnd_pixels_l2 which would look more
 | |
|                              * like the VP3 source but this would be slower as
 | |
|                              * put_no_rnd_pixels_tab is better optimized */
 | |
|                             if (motion_halfpel_index != 3) {
 | |
|                                 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
 | |
|                                     output_plane + first_pixel,
 | |
|                                     motion_source, stride, 8);
 | |
|                             } else {
 | |
|                                 /* d is 0 if motion_x and _y have the same sign,
 | |
|                                  * else -1 */
 | |
|                                 int d = (motion_x ^ motion_y) >> 31;
 | |
|                                 s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
 | |
|                                                                motion_source - d,
 | |
|                                                                motion_source + stride + 1 + d,
 | |
|                                                                stride, 8);
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         /* invert DCT and place (or add) in final output */
 | |
| 
 | |
|                         if (s->all_fragments[i].coding_method == MODE_INTRA) {
 | |
|                             int index;
 | |
|                             index = vp3_dequant(s, s->all_fragments + i,
 | |
|                                                 plane, 0, block);
 | |
|                             if (index > 63)
 | |
|                                 continue;
 | |
|                             s->vp3dsp.idct_put(output_plane + first_pixel,
 | |
|                                                stride,
 | |
|                                                block);
 | |
|                         } else {
 | |
|                             int index = vp3_dequant(s, s->all_fragments + i,
 | |
|                                                     plane, 1, block);
 | |
|                             if (index > 63)
 | |
|                                 continue;
 | |
|                             if (index > 0) {
 | |
|                                 s->vp3dsp.idct_add(output_plane + first_pixel,
 | |
|                                                    stride,
 | |
|                                                    block);
 | |
|                             } else {
 | |
|                                 s->vp3dsp.idct_dc_add(output_plane + first_pixel,
 | |
|                                                       stride, block);
 | |
|                             }
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* copy directly from the previous frame */
 | |
|                         s->hdsp.put_pixels_tab[1][0](
 | |
|                             output_plane + first_pixel,
 | |
|                             last_plane + first_pixel,
 | |
|                             stride, 8);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Filter up to the last row in the superblock row
 | |
|             if (!s->skip_loop_filter)
 | |
|                 apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
 | |
|                                   FFMIN(4 * sb_y + 3, fragment_height - 1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* this looks like a good place for slice dispatch... */
 | |
|     /* algorithm:
 | |
|      *   if (slice == s->macroblock_height - 1)
 | |
|      *     dispatch (both last slice & 2nd-to-last slice);
 | |
|      *   else if (slice > 0)
 | |
|      *     dispatch (slice - 1);
 | |
|      */
 | |
| 
 | |
|     vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
 | |
|                                  s->height - 16));
 | |
| }
 | |
| 
 | |
| /// Allocate tables for per-frame data in Vp3DecodeContext
 | |
| static av_cold int allocate_tables(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int y_fragment_count, c_fragment_count;
 | |
| 
 | |
|     y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | |
|     c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | |
| 
 | |
|     s->superblock_coding = av_malloc(s->superblock_count);
 | |
|     s->all_fragments     = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
 | |
| 
 | |
|     s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
 | |
| 
 | |
|     s->dct_tokens_base = av_malloc(64 * s->fragment_count *
 | |
|                                    sizeof(*s->dct_tokens_base));
 | |
|     s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
 | |
|     s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
 | |
| 
 | |
|     /* work out the block mapping tables */
 | |
|     s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
 | |
|     s->macroblock_coding    = av_malloc(s->macroblock_count + 1);
 | |
| 
 | |
|     if (!s->superblock_coding    || !s->all_fragments          ||
 | |
|         !s->dct_tokens_base      || !s->coded_fragment_list[0] ||
 | |
|         !s->superblock_fragments || !s->macroblock_coding      ||
 | |
|         !s->motion_val[0]        || !s->motion_val[1]) {
 | |
|         vp3_decode_end(avctx);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     init_block_mapping(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int init_frames(Vp3DecodeContext *s)
 | |
| {
 | |
|     s->current_frame.f = av_frame_alloc();
 | |
|     s->last_frame.f    = av_frame_alloc();
 | |
|     s->golden_frame.f  = av_frame_alloc();
 | |
| 
 | |
|     if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
 | |
|         av_frame_free(&s->current_frame.f);
 | |
|         av_frame_free(&s->last_frame.f);
 | |
|         av_frame_free(&s->golden_frame.f);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int vp3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i, inter, plane, ret;
 | |
|     int c_width;
 | |
|     int c_height;
 | |
|     int y_fragment_count, c_fragment_count;
 | |
| 
 | |
|     ret = init_frames(s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     avctx->internal->allocate_progress = 1;
 | |
| 
 | |
|     if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
 | |
|         s->version = 0;
 | |
|     else
 | |
|         s->version = 1;
 | |
| 
 | |
|     s->avctx  = avctx;
 | |
|     s->width  = FFALIGN(avctx->coded_width, 16);
 | |
|     s->height = FFALIGN(avctx->coded_height, 16);
 | |
|     if (avctx->pix_fmt == AV_PIX_FMT_NONE)
 | |
|         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | |
|     avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
 | |
|     ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
 | |
|     ff_videodsp_init(&s->vdsp, 8);
 | |
|     ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
 | |
| 
 | |
|     for (i = 0; i < 64; i++) {
 | |
| #define TRANSPOSE(x) (x >> 3) | ((x & 7) << 3)
 | |
|         s->idct_permutation[i] = TRANSPOSE(i);
 | |
|         s->idct_scantable[i]   = TRANSPOSE(ff_zigzag_direct[i]);
 | |
| #undef TRANSPOSE
 | |
|     }
 | |
| 
 | |
|     /* initialize to an impossible value which will force a recalculation
 | |
|      * in the first frame decode */
 | |
|     for (i = 0; i < 3; i++)
 | |
|         s->qps[i] = -1;
 | |
| 
 | |
|     av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift,
 | |
|                                      &s->chroma_y_shift);
 | |
| 
 | |
|     s->y_superblock_width  = (s->width  + 31) / 32;
 | |
|     s->y_superblock_height = (s->height + 31) / 32;
 | |
|     s->y_superblock_count  = s->y_superblock_width * s->y_superblock_height;
 | |
| 
 | |
|     /* work out the dimensions for the C planes */
 | |
|     c_width                = s->width >> s->chroma_x_shift;
 | |
|     c_height               = s->height >> s->chroma_y_shift;
 | |
|     s->c_superblock_width  = (c_width  + 31) / 32;
 | |
|     s->c_superblock_height = (c_height + 31) / 32;
 | |
|     s->c_superblock_count  = s->c_superblock_width * s->c_superblock_height;
 | |
| 
 | |
|     s->superblock_count   = s->y_superblock_count + (s->c_superblock_count * 2);
 | |
|     s->u_superblock_start = s->y_superblock_count;
 | |
|     s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
 | |
| 
 | |
|     s->macroblock_width  = (s->width  + 15) / 16;
 | |
|     s->macroblock_height = (s->height + 15) / 16;
 | |
|     s->macroblock_count  = s->macroblock_width * s->macroblock_height;
 | |
| 
 | |
|     s->fragment_width[0]  = s->width / FRAGMENT_PIXELS;
 | |
|     s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
 | |
|     s->fragment_width[1]  = s->fragment_width[0] >> s->chroma_x_shift;
 | |
|     s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
 | |
| 
 | |
|     /* fragment count covers all 8x8 blocks for all 3 planes */
 | |
|     y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
 | |
|     c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
 | |
|     s->fragment_count    = y_fragment_count + 2 * c_fragment_count;
 | |
|     s->fragment_start[1] = y_fragment_count;
 | |
|     s->fragment_start[2] = y_fragment_count + c_fragment_count;
 | |
| 
 | |
|     if (!s->theora_tables) {
 | |
|         for (i = 0; i < 64; i++) {
 | |
|             s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
 | |
|             s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
 | |
|             s->base_matrix[0][i]        = vp31_intra_y_dequant[i];
 | |
|             s->base_matrix[1][i]        = vp31_intra_c_dequant[i];
 | |
|             s->base_matrix[2][i]        = vp31_inter_dequant[i];
 | |
|             s->filter_limit_values[i]   = vp31_filter_limit_values[i];
 | |
|         }
 | |
| 
 | |
|         for (inter = 0; inter < 2; inter++) {
 | |
|             for (plane = 0; plane < 3; plane++) {
 | |
|                 s->qr_count[inter][plane]   = 1;
 | |
|                 s->qr_size[inter][plane][0] = 63;
 | |
|                 s->qr_base[inter][plane][0] =
 | |
|                 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* init VLC tables */
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             /* DC histograms */
 | |
|             init_vlc(&s->dc_vlc[i], 11, 32,
 | |
|                      &dc_bias[i][0][1], 4, 2,
 | |
|                      &dc_bias[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 1 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_1[i], 11, 32,
 | |
|                      &ac_bias_0[i][0][1], 4, 2,
 | |
|                      &ac_bias_0[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 2 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_2[i], 11, 32,
 | |
|                      &ac_bias_1[i][0][1], 4, 2,
 | |
|                      &ac_bias_1[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 3 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_3[i], 11, 32,
 | |
|                      &ac_bias_2[i][0][1], 4, 2,
 | |
|                      &ac_bias_2[i][0][0], 4, 2, 0);
 | |
| 
 | |
|             /* group 4 AC histograms */
 | |
|             init_vlc(&s->ac_vlc_4[i], 11, 32,
 | |
|                      &ac_bias_3[i][0][1], 4, 2,
 | |
|                      &ac_bias_3[i][0][0], 4, 2, 0);
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             /* DC histograms */
 | |
|             if (init_vlc(&s->dc_vlc[i], 11, 32,
 | |
|                          &s->huffman_table[i][0][1], 8, 4,
 | |
|                          &s->huffman_table[i][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 1 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_1[i], 11, 32,
 | |
|                          &s->huffman_table[i + 16][0][1], 8, 4,
 | |
|                          &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 2 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_2[i], 11, 32,
 | |
|                          &s->huffman_table[i + 16 * 2][0][1], 8, 4,
 | |
|                          &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 3 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_3[i], 11, 32,
 | |
|                          &s->huffman_table[i + 16 * 3][0][1], 8, 4,
 | |
|                          &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
| 
 | |
|             /* group 4 AC histograms */
 | |
|             if (init_vlc(&s->ac_vlc_4[i], 11, 32,
 | |
|                          &s->huffman_table[i + 16 * 4][0][1], 8, 4,
 | |
|                          &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
 | |
|                 goto vlc_fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     init_vlc(&s->superblock_run_length_vlc, 6, 34,
 | |
|              &superblock_run_length_vlc_table[0][1], 4, 2,
 | |
|              &superblock_run_length_vlc_table[0][0], 4, 2, 0);
 | |
| 
 | |
|     init_vlc(&s->fragment_run_length_vlc, 5, 30,
 | |
|              &fragment_run_length_vlc_table[0][1], 4, 2,
 | |
|              &fragment_run_length_vlc_table[0][0], 4, 2, 0);
 | |
| 
 | |
|     init_vlc(&s->mode_code_vlc, 3, 8,
 | |
|              &mode_code_vlc_table[0][1], 2, 1,
 | |
|              &mode_code_vlc_table[0][0], 2, 1, 0);
 | |
| 
 | |
|     init_vlc(&s->motion_vector_vlc, 6, 63,
 | |
|              &motion_vector_vlc_table[0][1], 2, 1,
 | |
|              &motion_vector_vlc_table[0][0], 2, 1, 0);
 | |
| 
 | |
|     return allocate_tables(avctx);
 | |
| 
 | |
| vlc_fail:
 | |
|     av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /// Release and shuffle frames after decode finishes
 | |
| static int update_frames(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* shuffle frames (last = current) */
 | |
|     ff_thread_release_buffer(avctx, &s->last_frame);
 | |
|     ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         ff_thread_release_buffer(avctx, &s->golden_frame);
 | |
|         ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
 | |
|     }
 | |
| 
 | |
| fail:
 | |
|     ff_thread_release_buffer(avctx, &s->current_frame);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
 | |
| {
 | |
|     ff_thread_release_buffer(s->avctx, dst);
 | |
|     if (src->f->data[0])
 | |
|         return ff_thread_ref_frame(dst, src);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
 | |
| {
 | |
|     int ret;
 | |
|     if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
 | |
|         (ret = ref_frame(dst, &dst->golden_frame,  &src->golden_frame)) < 0  ||
 | |
|         (ret = ref_frame(dst, &dst->last_frame,    &src->last_frame)) < 0)
 | |
|         return ret;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
 | |
| {
 | |
|     Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
 | |
|     int qps_changed = 0, i, err;
 | |
| 
 | |
| #define copy_fields(to, from, start_field, end_field)                         \
 | |
|     memcpy(&to->start_field, &from->start_field,                              \
 | |
|            (char *) &to->end_field - (char *) &to->start_field)
 | |
| 
 | |
|     if (!s1->current_frame.f->data[0] ||
 | |
|         s->width != s1->width || s->height != s1->height) {
 | |
|         if (s != s1)
 | |
|             ref_frames(s, s1);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (s != s1) {
 | |
|         // init tables if the first frame hasn't been decoded
 | |
|         if (!s->current_frame.f->data[0]) {
 | |
|             int y_fragment_count, c_fragment_count;
 | |
|             s->avctx = dst;
 | |
|             err = allocate_tables(dst);
 | |
|             if (err)
 | |
|                 return err;
 | |
|             y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | |
|             c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | |
|             memcpy(s->motion_val[0], s1->motion_val[0],
 | |
|                    y_fragment_count * sizeof(*s->motion_val[0]));
 | |
|             memcpy(s->motion_val[1], s1->motion_val[1],
 | |
|                    c_fragment_count * sizeof(*s->motion_val[1]));
 | |
|         }
 | |
| 
 | |
|         // copy previous frame data
 | |
|         if ((err = ref_frames(s, s1)) < 0)
 | |
|             return err;
 | |
| 
 | |
|         s->keyframe = s1->keyframe;
 | |
| 
 | |
|         // copy qscale data if necessary
 | |
|         for (i = 0; i < 3; i++) {
 | |
|             if (s->qps[i] != s1->qps[1]) {
 | |
|                 qps_changed = 1;
 | |
|                 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->qps[0] != s1->qps[0])
 | |
|             memcpy(&s->bounding_values_array, &s1->bounding_values_array,
 | |
|                    sizeof(s->bounding_values_array));
 | |
| 
 | |
|         if (qps_changed)
 | |
|             copy_fields(s, s1, qps, superblock_count);
 | |
| #undef copy_fields
 | |
|     }
 | |
| 
 | |
|     return update_frames(dst);
 | |
| }
 | |
| 
 | |
| static int vp3_decode_frame(AVCodecContext *avctx,
 | |
|                             void *data, int *got_frame,
 | |
|                             AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf  = avpkt->data;
 | |
|     int buf_size        = avpkt->size;
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int i, ret;
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size * 8);
 | |
| 
 | |
|     if (s->theora && get_bits1(&gb)) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Header packet passed to frame decoder, skipping\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     s->keyframe = !get_bits1(&gb);
 | |
|     if (!s->theora)
 | |
|         skip_bits(&gb, 1);
 | |
|     for (i = 0; i < 3; i++)
 | |
|         s->last_qps[i] = s->qps[i];
 | |
| 
 | |
|     s->nqps = 0;
 | |
|     do {
 | |
|         s->qps[s->nqps++] = get_bits(&gb, 6);
 | |
|     } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
 | |
|     for (i = s->nqps; i < 3; i++)
 | |
|         s->qps[i] = -1;
 | |
| 
 | |
|     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
 | |
|         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
 | |
|                s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
 | |
| 
 | |
|     s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
 | |
|                           avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
 | |
|                                                                   : AVDISCARD_NONKEY);
 | |
| 
 | |
|     if (s->qps[0] != s->last_qps[0])
 | |
|         init_loop_filter(s);
 | |
| 
 | |
|     for (i = 0; i < s->nqps; i++)
 | |
|         // reinit all dequantizers if the first one changed, because
 | |
|         // the DC of the first quantizer must be used for all matrices
 | |
|         if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
 | |
|             init_dequantizer(s, i);
 | |
| 
 | |
|     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
 | |
|         return buf_size;
 | |
| 
 | |
|     s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
 | |
|                                                 : AV_PICTURE_TYPE_P;
 | |
|     if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (!s->edge_emu_buffer)
 | |
|         s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (!s->theora) {
 | |
|             skip_bits(&gb, 4); /* width code */
 | |
|             skip_bits(&gb, 4); /* height code */
 | |
|             if (s->version) {
 | |
|                 s->version = get_bits(&gb, 5);
 | |
|                 if (avctx->frame_number == 0)
 | |
|                     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                            "VP version: %d\n", s->version);
 | |
|             }
 | |
|         }
 | |
|         if (s->version || s->theora) {
 | |
|             if (get_bits1(&gb))
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Warning, unsupported keyframe coding type?!\n");
 | |
|             skip_bits(&gb, 2); /* reserved? */
 | |
|         }
 | |
|     } else {
 | |
|         if (!s->golden_frame.f->data[0]) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING,
 | |
|                    "vp3: first frame not a keyframe\n");
 | |
| 
 | |
|             s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
 | |
|             if (ff_thread_get_buffer(avctx, &s->golden_frame,
 | |
|                                      AV_GET_BUFFER_FLAG_REF) < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|                 goto error;
 | |
|             }
 | |
|             ff_thread_release_buffer(avctx, &s->last_frame);
 | |
|             if ((ret = ff_thread_ref_frame(&s->last_frame,
 | |
|                                            &s->golden_frame)) < 0)
 | |
|                 goto error;
 | |
|             ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
 | |
|     ff_thread_finish_setup(avctx);
 | |
| 
 | |
|     if (unpack_superblocks(s, &gb)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_modes(s, &gb)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_vectors(s, &gb)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_block_qpis(s, &gb)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
 | |
|         goto error;
 | |
|     }
 | |
|     if (unpack_dct_coeffs(s, &gb)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int height = s->height >> (i && s->chroma_y_shift);
 | |
|         if (s->flipped_image)
 | |
|             s->data_offset[i] = 0;
 | |
|         else
 | |
|             s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
 | |
|     }
 | |
| 
 | |
|     s->last_slice_end = 0;
 | |
|     for (i = 0; i < s->c_superblock_height; i++)
 | |
|         render_slice(s, i);
 | |
| 
 | |
|     // filter the last row
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
 | |
|         apply_loop_filter(s, i, row, row + 1);
 | |
|     }
 | |
|     vp3_draw_horiz_band(s, s->height);
 | |
| 
 | |
|     /* output frame, offset as needed */
 | |
|     if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
 | |
|         return ret;
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         AVFrame *dst = data;
 | |
|         int off = (s->offset_x >> (i && s->chroma_y_shift)) +
 | |
|                   (s->offset_y >> (i && s->chroma_y_shift)) * dst->linesize[i];
 | |
|         dst->data[i] += off;
 | |
|     }
 | |
|     *got_frame = 1;
 | |
| 
 | |
|     if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
 | |
|         ret = update_frames(avctx);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     return buf_size;
 | |
| 
 | |
| error:
 | |
|     ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
 | |
| 
 | |
|     if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
 | |
|         av_frame_unref(s->current_frame.f);
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     if (get_bits1(gb)) {
 | |
|         int token;
 | |
|         if (s->entries >= 32) { /* overflow */
 | |
|             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | |
|             return -1;
 | |
|         }
 | |
|         token = get_bits(gb, 5);
 | |
|         ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
 | |
|                 s->hti, s->hbits, token, s->entries, s->huff_code_size);
 | |
|         s->huffman_table[s->hti][token][0] = s->hbits;
 | |
|         s->huffman_table[s->hti][token][1] = s->huff_code_size;
 | |
|         s->entries++;
 | |
|     } else {
 | |
|         if (s->huff_code_size >= 32) { /* overflow */
 | |
|             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | |
|             return -1;
 | |
|         }
 | |
|         s->huff_code_size++;
 | |
|         s->hbits <<= 1;
 | |
|         if (read_huffman_tree(avctx, gb))
 | |
|             return -1;
 | |
|         s->hbits |= 1;
 | |
|         if (read_huffman_tree(avctx, gb))
 | |
|             return -1;
 | |
|         s->hbits >>= 1;
 | |
|         s->huff_code_size--;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vp3_init_thread_copy(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     s->superblock_coding      = NULL;
 | |
|     s->all_fragments          = NULL;
 | |
|     s->coded_fragment_list[0] = NULL;
 | |
|     s->dct_tokens_base        = NULL;
 | |
|     s->superblock_fragments   = NULL;
 | |
|     s->macroblock_coding      = NULL;
 | |
|     s->motion_val[0]          = NULL;
 | |
|     s->motion_val[1]          = NULL;
 | |
|     s->edge_emu_buffer        = NULL;
 | |
| 
 | |
|     return init_frames(s);
 | |
| }
 | |
| 
 | |
| #if CONFIG_THEORA_DECODER
 | |
| static const enum AVPixelFormat theora_pix_fmts[4] = {
 | |
|     AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
 | |
| };
 | |
| 
 | |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int visible_width, visible_height, colorspace;
 | |
|     uint8_t offset_x = 0, offset_y = 0;
 | |
|     int ret;
 | |
|     AVRational fps, aspect;
 | |
| 
 | |
|     s->theora = get_bits_long(gb, 24);
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
 | |
| 
 | |
|     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
 | |
|      * but previous versions have the image flipped relative to vp3 */
 | |
|     if (s->theora < 0x030200) {
 | |
|         s->flipped_image = 1;
 | |
|         av_log(avctx, AV_LOG_DEBUG,
 | |
|                "Old (<alpha3) Theora bitstream, flipped image\n");
 | |
|     }
 | |
| 
 | |
|     visible_width  =
 | |
|     s->width       = get_bits(gb, 16) << 4;
 | |
|     visible_height =
 | |
|     s->height      = get_bits(gb, 16) << 4;
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         visible_width  = get_bits_long(gb, 24);
 | |
|         visible_height = get_bits_long(gb, 24);
 | |
| 
 | |
|         offset_x = get_bits(gb, 8); /* offset x */
 | |
|         offset_y = get_bits(gb, 8); /* offset y, from bottom */
 | |
|     }
 | |
| 
 | |
|     /* sanity check */
 | |
|     if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
 | |
|         visible_width  + offset_x > s->width ||
 | |
|         visible_height + offset_y > s->height) {
 | |
|         av_log(s, AV_LOG_ERROR,
 | |
|                "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
 | |
|                visible_width, visible_height, offset_x, offset_y,
 | |
|                s->width, s->height);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     fps.num = get_bits_long(gb, 32);
 | |
|     fps.den = get_bits_long(gb, 32);
 | |
|     if (fps.num && fps.den) {
 | |
|         if (fps.num < 0 || fps.den < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         av_reduce(&avctx->framerate.den, &avctx->framerate.num,
 | |
|                   fps.den, fps.num, 1 << 30);
 | |
|     }
 | |
| 
 | |
|     aspect.num = get_bits_long(gb, 24);
 | |
|     aspect.den = get_bits_long(gb, 24);
 | |
|     if (aspect.num && aspect.den) {
 | |
|         av_reduce(&avctx->sample_aspect_ratio.num,
 | |
|                   &avctx->sample_aspect_ratio.den,
 | |
|                   aspect.num, aspect.den, 1 << 30);
 | |
|         ff_set_sar(avctx, avctx->sample_aspect_ratio);
 | |
|     }
 | |
| 
 | |
|     if (s->theora < 0x030200)
 | |
|         skip_bits(gb, 5); /* keyframe frequency force */
 | |
|     colorspace = get_bits(gb, 8);
 | |
|     skip_bits(gb, 24); /* bitrate */
 | |
| 
 | |
|     skip_bits(gb, 6); /* quality hint */
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         skip_bits(gb, 5); /* keyframe frequency force */
 | |
|         avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
 | |
|         skip_bits(gb, 3); /* reserved */
 | |
|     }
 | |
| 
 | |
|     ret = ff_set_dimensions(avctx, s->width, s->height);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP) &&
 | |
|         (visible_width != s->width || visible_height != s->height)) {
 | |
|         avctx->width  = visible_width;
 | |
|         avctx->height = visible_height;
 | |
|         // translate offsets from theora axis ([0,0] lower left)
 | |
|         // to normal axis ([0,0] upper left)
 | |
|         s->offset_x = offset_x;
 | |
|         s->offset_y = s->height - visible_height - offset_y;
 | |
| 
 | |
|         if ((s->offset_x & 0x1F) && !(avctx->flags & AV_CODEC_FLAG_UNALIGNED)) {
 | |
|             s->offset_x &= ~0x1F;
 | |
|             av_log(avctx, AV_LOG_WARNING, "Reducing offset_x from %d to %d"
 | |
|                    "chroma samples to preserve alignment.\n",
 | |
|                    offset_x, s->offset_x);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (colorspace == 1)
 | |
|         avctx->color_primaries = AVCOL_PRI_BT470M;
 | |
|     else if (colorspace == 2)
 | |
|         avctx->color_primaries = AVCOL_PRI_BT470BG;
 | |
| 
 | |
|     if (colorspace == 1 || colorspace == 2) {
 | |
|         avctx->colorspace = AVCOL_SPC_BT470BG;
 | |
|         avctx->color_trc  = AVCOL_TRC_BT709;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i, n, matrices, inter, plane;
 | |
| 
 | |
|     if (s->theora >= 0x030200) {
 | |
|         n = get_bits(gb, 3);
 | |
|         /* loop filter limit values table */
 | |
|         if (n)
 | |
|             for (i = 0; i < 64; i++)
 | |
|                 s->filter_limit_values[i] = get_bits(gb, n);
 | |
|     }
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         n = get_bits(gb, 4) + 1;
 | |
|     else
 | |
|         n = 16;
 | |
|     /* quality threshold table */
 | |
|     for (i = 0; i < 64; i++)
 | |
|         s->coded_ac_scale_factor[i] = get_bits(gb, n);
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         n = get_bits(gb, 4) + 1;
 | |
|     else
 | |
|         n = 16;
 | |
|     /* dc scale factor table */
 | |
|     for (i = 0; i < 64; i++)
 | |
|         s->coded_dc_scale_factor[i] = get_bits(gb, n);
 | |
| 
 | |
|     if (s->theora >= 0x030200)
 | |
|         matrices = get_bits(gb, 9) + 1;
 | |
|     else
 | |
|         matrices = 3;
 | |
| 
 | |
|     if (matrices > 384) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (n = 0; n < matrices; n++)
 | |
|         for (i = 0; i < 64; i++)
 | |
|             s->base_matrix[n][i] = get_bits(gb, 8);
 | |
| 
 | |
|     for (inter = 0; inter <= 1; inter++) {
 | |
|         for (plane = 0; plane <= 2; plane++) {
 | |
|             int newqr = 1;
 | |
|             if (inter || plane > 0)
 | |
|                 newqr = get_bits1(gb);
 | |
|             if (!newqr) {
 | |
|                 int qtj, plj;
 | |
|                 if (inter && get_bits1(gb)) {
 | |
|                     qtj = 0;
 | |
|                     plj = plane;
 | |
|                 } else {
 | |
|                     qtj = (3 * inter + plane - 1) / 3;
 | |
|                     plj = (plane + 2) % 3;
 | |
|                 }
 | |
|                 s->qr_count[inter][plane] = s->qr_count[qtj][plj];
 | |
|                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
 | |
|                        sizeof(s->qr_size[0][0]));
 | |
|                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
 | |
|                        sizeof(s->qr_base[0][0]));
 | |
|             } else {
 | |
|                 int qri = 0;
 | |
|                 int qi  = 0;
 | |
| 
 | |
|                 for (;;) {
 | |
|                     i = get_bits(gb, av_log2(matrices - 1) + 1);
 | |
|                     if (i >= matrices) {
 | |
|                         av_log(avctx, AV_LOG_ERROR,
 | |
|                                "invalid base matrix index\n");
 | |
|                         return -1;
 | |
|                     }
 | |
|                     s->qr_base[inter][plane][qri] = i;
 | |
|                     if (qi >= 63)
 | |
|                         break;
 | |
|                     i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
 | |
|                     s->qr_size[inter][plane][qri++] = i;
 | |
|                     qi += i;
 | |
|                 }
 | |
| 
 | |
|                 if (qi > 63) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 s->qr_count[inter][plane] = qri;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Huffman tables */
 | |
|     for (s->hti = 0; s->hti < 80; s->hti++) {
 | |
|         s->entries        = 0;
 | |
|         s->huff_code_size = 1;
 | |
|         if (!get_bits1(gb)) {
 | |
|             s->hbits = 0;
 | |
|             if (read_huffman_tree(avctx, gb))
 | |
|                 return -1;
 | |
|             s->hbits = 1;
 | |
|             if (read_huffman_tree(avctx, gb))
 | |
|                 return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->theora_tables = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int theora_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int ptype;
 | |
|     uint8_t *header_start[3];
 | |
|     int header_len[3];
 | |
|     int i;
 | |
| 
 | |
|     s->theora = 1;
 | |
| 
 | |
|     if (!avctx->extradata_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
 | |
|                                   42, header_start, header_len) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         if (header_len[i] <= 0)
 | |
|             continue;
 | |
|         init_get_bits(&gb, header_start[i], header_len[i] * 8);
 | |
| 
 | |
|         ptype = get_bits(&gb, 8);
 | |
| 
 | |
|         if (!(ptype & 0x80)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
 | |
| //          return -1;
 | |
|         }
 | |
| 
 | |
|         // FIXME: Check for this as well.
 | |
|         skip_bits_long(&gb, 6 * 8); /* "theora" */
 | |
| 
 | |
|         switch (ptype) {
 | |
|         case 0x80:
 | |
|             theora_decode_header(avctx, &gb);
 | |
|             break;
 | |
|         case 0x81:
 | |
| // FIXME: is this needed? it breaks sometimes
 | |
| //            theora_decode_comments(avctx, gb);
 | |
|             break;
 | |
|         case 0x82:
 | |
|             if (theora_decode_tables(avctx, &gb))
 | |
|                 return -1;
 | |
|             break;
 | |
|         default:
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "Unknown Theora config packet: %d\n", ptype & ~0x80);
 | |
|             break;
 | |
|         }
 | |
|         if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
 | |
|             av_log(avctx, AV_LOG_WARNING,
 | |
|                    "%d bits left in packet %X\n",
 | |
|                    8 * header_len[i] - get_bits_count(&gb), ptype);
 | |
|         if (s->theora < 0x030200)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     return vp3_decode_init(avctx);
 | |
| }
 | |
| 
 | |
| AVCodec ff_theora_decoder = {
 | |
|     .name                  = "theora",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("Theora"),
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_THEORA,
 | |
|     .priv_data_size        = sizeof(Vp3DecodeContext),
 | |
|     .init                  = theora_decode_init,
 | |
|     .close                 = vp3_decode_end,
 | |
|     .decode                = vp3_decode_frame,
 | |
|     .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | |
|                              AV_CODEC_CAP_FRAME_THREADS,
 | |
|     .flush                 = vp3_decode_flush,
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
 | |
| };
 | |
| #endif
 | |
| 
 | |
| AVCodec ff_vp3_decoder = {
 | |
|     .name                  = "vp3",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("On2 VP3"),
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_VP3,
 | |
|     .priv_data_size        = sizeof(Vp3DecodeContext),
 | |
|     .init                  = vp3_decode_init,
 | |
|     .close                 = vp3_decode_end,
 | |
|     .decode                = vp3_decode_frame,
 | |
|     .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | |
|                              AV_CODEC_CAP_FRAME_THREADS,
 | |
|     .flush                 = vp3_decode_flush,
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
 | |
| };
 | 
