mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1602 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1602 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * DCA compatible decoder
 | |
|  * Copyright (C) 2004 Gildas Bazin
 | |
|  * Copyright (C) 2004 Benjamin Zores
 | |
|  * Copyright (C) 2006 Benjamin Larsson
 | |
|  * Copyright (C) 2007 Konstantin Shishkov
 | |
|  * Copyright (C) 2012 Paul B Mahol
 | |
|  * Copyright (C) 2014 Niels Möller
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/internal.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/samplefmt.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "dca.h"
 | |
| #include "dca_syncwords.h"
 | |
| #include "dcadata.h"
 | |
| #include "dcadsp.h"
 | |
| #include "dcahuff.h"
 | |
| #include "fft.h"
 | |
| #include "fmtconvert.h"
 | |
| #include "get_bits.h"
 | |
| #include "internal.h"
 | |
| #include "mathops.h"
 | |
| #include "profiles.h"
 | |
| #include "put_bits.h"
 | |
| #include "synth_filter.h"
 | |
| 
 | |
| #if ARCH_ARM
 | |
| #   include "arm/dca.h"
 | |
| #endif
 | |
| 
 | |
| enum DCAMode {
 | |
|     DCA_MONO = 0,
 | |
|     DCA_CHANNEL,
 | |
|     DCA_STEREO,
 | |
|     DCA_STEREO_SUMDIFF,
 | |
|     DCA_STEREO_TOTAL,
 | |
|     DCA_3F,
 | |
|     DCA_2F1R,
 | |
|     DCA_3F1R,
 | |
|     DCA_2F2R,
 | |
|     DCA_3F2R,
 | |
|     DCA_4F2R
 | |
| };
 | |
| 
 | |
| /* -1 are reserved or unknown */
 | |
| static const int dca_ext_audio_descr_mask[] = {
 | |
|     DCA_EXT_XCH,
 | |
|     -1,
 | |
|     DCA_EXT_X96,
 | |
|     DCA_EXT_XCH | DCA_EXT_X96,
 | |
|     -1,
 | |
|     -1,
 | |
|     DCA_EXT_XXCH,
 | |
|     -1,
 | |
| };
 | |
| 
 | |
| /* Tables for mapping dts channel configurations to libavcodec multichannel api.
 | |
|  * Some compromises have been made for special configurations. Most configurations
 | |
|  * are never used so complete accuracy is not needed.
 | |
|  *
 | |
|  * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
 | |
|  * S  -> side, when both rear and back are configured move one of them to the side channel
 | |
|  * OV -> center back
 | |
|  * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
 | |
|  */
 | |
| static const uint64_t dca_core_channel_layout[] = {
 | |
|     AV_CH_FRONT_CENTER,                                                     ///< 1, A
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, A + B (dual mono)
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, L + R (stereo)
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, (L + R) + (L - R) (sum-difference)
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, LT + RT (left and right total)
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER,                               ///< 3, C + L + R
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER,                                ///< 3, L + R + S
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER,           ///< 4, C + L + R + S
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,               ///< 4, L + R + SL + SR
 | |
| 
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
 | |
|     AV_CH_SIDE_RIGHT,                                                       ///< 5, C + L + R + SL + SR
 | |
| 
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER,               ///< 6, CL + CR + L + R + SL + SR
 | |
| 
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
 | |
|     AV_CH_FRONT_CENTER  | AV_CH_BACK_CENTER,                                ///< 6, C + L + R + LR + RR + OV
 | |
| 
 | |
|     AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER   |
 | |
|     AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT,                                     ///< 6, CF + CR + LF + RF + LR + RR
 | |
| 
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER   |
 | |
|     AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
 | |
|     AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,                                     ///< 7, CL + C + CR + L + R + SL + SR
 | |
| 
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
 | |
|     AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT,                                     ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
 | |
| 
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER   |
 | |
|     AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
 | |
|     AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT,                 ///< 8, CL + C + CR + L + R + SL + S + SR
 | |
| };
 | |
| 
 | |
| #define DCA_DOLBY                  101           /* FIXME */
 | |
| 
 | |
| #define DCA_CHANNEL_BITS             6
 | |
| #define DCA_CHANNEL_MASK          0x3F
 | |
| 
 | |
| #define DCA_LFE                   0x80
 | |
| 
 | |
| #define HEADER_SIZE                 14
 | |
| 
 | |
| #define DCA_NSYNCAUX        0x9A1105A0
 | |
| 
 | |
| /** Bit allocation */
 | |
| typedef struct BitAlloc {
 | |
|     int offset;                 ///< code values offset
 | |
|     int maxbits[8];             ///< max bits in VLC
 | |
|     int wrap;                   ///< wrap for get_vlc2()
 | |
|     VLC vlc[8];                 ///< actual codes
 | |
| } BitAlloc;
 | |
| 
 | |
| static BitAlloc dca_bitalloc_index;    ///< indexes for samples VLC select
 | |
| static BitAlloc dca_tmode;             ///< transition mode VLCs
 | |
| static BitAlloc dca_scalefactor;       ///< scalefactor VLCs
 | |
| static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
 | |
| 
 | |
| static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
 | |
|                                          int idx)
 | |
| {
 | |
|     return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
 | |
|            ba->offset;
 | |
| }
 | |
| 
 | |
| static av_cold void dca_init_vlcs(void)
 | |
| {
 | |
|     static int vlcs_initialized = 0;
 | |
|     int i, j, c = 14;
 | |
|     static VLC_TYPE dca_table[23622][2];
 | |
| 
 | |
|     if (vlcs_initialized)
 | |
|         return;
 | |
| 
 | |
|     dca_bitalloc_index.offset = 1;
 | |
|     dca_bitalloc_index.wrap   = 2;
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         dca_bitalloc_index.vlc[i].table           = &dca_table[ff_dca_vlc_offs[i]];
 | |
|         dca_bitalloc_index.vlc[i].table_allocated = ff_dca_vlc_offs[i + 1] - ff_dca_vlc_offs[i];
 | |
|         init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
 | |
|                  bitalloc_12_bits[i], 1, 1,
 | |
|                  bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
|     dca_scalefactor.offset = -64;
 | |
|     dca_scalefactor.wrap   = 2;
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         dca_scalefactor.vlc[i].table           = &dca_table[ff_dca_vlc_offs[i + 5]];
 | |
|         dca_scalefactor.vlc[i].table_allocated = ff_dca_vlc_offs[i + 6] - ff_dca_vlc_offs[i + 5];
 | |
|         init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
 | |
|                  scales_bits[i], 1, 1,
 | |
|                  scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
|     dca_tmode.offset = 0;
 | |
|     dca_tmode.wrap   = 1;
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         dca_tmode.vlc[i].table           = &dca_table[ff_dca_vlc_offs[i + 10]];
 | |
|         dca_tmode.vlc[i].table_allocated = ff_dca_vlc_offs[i + 11] - ff_dca_vlc_offs[i + 10];
 | |
|         init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
 | |
|                  tmode_bits[i], 1, 1,
 | |
|                  tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 10; i++)
 | |
|         for (j = 0; j < 7; j++) {
 | |
|             if (!bitalloc_codes[i][j])
 | |
|                 break;
 | |
|             dca_smpl_bitalloc[i + 1].offset                 = bitalloc_offsets[i];
 | |
|             dca_smpl_bitalloc[i + 1].wrap                   = 1 + (j > 4);
 | |
|             dca_smpl_bitalloc[i + 1].vlc[j].table           = &dca_table[ff_dca_vlc_offs[c]];
 | |
|             dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = ff_dca_vlc_offs[c + 1] - ff_dca_vlc_offs[c];
 | |
| 
 | |
|             init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
 | |
|                      bitalloc_sizes[i],
 | |
|                      bitalloc_bits[i][j], 1, 1,
 | |
|                      bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|             c++;
 | |
|         }
 | |
|     vlcs_initialized = 1;
 | |
| }
 | |
| 
 | |
| static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
 | |
| {
 | |
|     while (len--)
 | |
|         *dst++ = get_bits(gb, bits);
 | |
| }
 | |
| 
 | |
| static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
 | |
| {
 | |
|     int i, j;
 | |
|     static const uint8_t adj_table[4] = { 16, 18, 20, 23 };
 | |
|     static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
 | |
|     static const int thr[11]    = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
 | |
| 
 | |
|     s->audio_header.total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
 | |
|     s->audio_header.prim_channels  = s->audio_header.total_channels;
 | |
| 
 | |
|     if (s->audio_header.prim_channels > DCA_PRIM_CHANNELS_MAX)
 | |
|         s->audio_header.prim_channels = DCA_PRIM_CHANNELS_MAX;
 | |
| 
 | |
|     for (i = base_channel; i < s->audio_header.prim_channels; i++) {
 | |
|         s->audio_header.subband_activity[i] = get_bits(&s->gb, 5) + 2;
 | |
|         if (s->audio_header.subband_activity[i] > DCA_SUBBANDS)
 | |
|             s->audio_header.subband_activity[i] = DCA_SUBBANDS;
 | |
|     }
 | |
|     for (i = base_channel; i < s->audio_header.prim_channels; i++) {
 | |
|         s->audio_header.vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
 | |
|         if (s->audio_header.vq_start_subband[i] > DCA_SUBBANDS)
 | |
|             s->audio_header.vq_start_subband[i] = DCA_SUBBANDS;
 | |
|     }
 | |
|     get_array(&s->gb, s->audio_header.joint_intensity + base_channel,
 | |
|               s->audio_header.prim_channels - base_channel, 3);
 | |
|     get_array(&s->gb, s->audio_header.transient_huffman + base_channel,
 | |
|               s->audio_header.prim_channels - base_channel, 2);
 | |
|     get_array(&s->gb, s->audio_header.scalefactor_huffman + base_channel,
 | |
|               s->audio_header.prim_channels - base_channel, 3);
 | |
|     get_array(&s->gb, s->audio_header.bitalloc_huffman + base_channel,
 | |
|               s->audio_header.prim_channels - base_channel, 3);
 | |
| 
 | |
|     /* Get codebooks quantization indexes */
 | |
|     if (!base_channel)
 | |
|         memset(s->audio_header.quant_index_huffman, 0, sizeof(s->audio_header.quant_index_huffman));
 | |
|     for (j = 1; j < 11; j++)
 | |
|         for (i = base_channel; i < s->audio_header.prim_channels; i++)
 | |
|             s->audio_header.quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
 | |
| 
 | |
|     /* Get scale factor adjustment */
 | |
|     for (j = 0; j < 11; j++)
 | |
|         for (i = base_channel; i < s->audio_header.prim_channels; i++)
 | |
|             s->audio_header.scalefactor_adj[i][j] = 16;
 | |
| 
 | |
|     for (j = 1; j < 11; j++)
 | |
|         for (i = base_channel; i < s->audio_header.prim_channels; i++)
 | |
|             if (s->audio_header.quant_index_huffman[i][j] < thr[j])
 | |
|                 s->audio_header.scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
 | |
| 
 | |
|     if (s->crc_present) {
 | |
|         /* Audio header CRC check */
 | |
|         get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     s->current_subframe    = 0;
 | |
|     s->current_subsubframe = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dca_parse_frame_header(DCAContext *s)
 | |
| {
 | |
|     init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
 | |
| 
 | |
|     /* Sync code */
 | |
|     skip_bits_long(&s->gb, 32);
 | |
| 
 | |
|     /* Frame header */
 | |
|     s->frame_type        = get_bits(&s->gb, 1);
 | |
|     s->samples_deficit   = get_bits(&s->gb, 5) + 1;
 | |
|     s->crc_present       = get_bits(&s->gb, 1);
 | |
|     s->sample_blocks     = get_bits(&s->gb, 7) + 1;
 | |
|     s->frame_size        = get_bits(&s->gb, 14) + 1;
 | |
|     if (s->frame_size < 95)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     s->amode             = get_bits(&s->gb, 6);
 | |
|     s->sample_rate       = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
 | |
|     if (!s->sample_rate)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     s->bit_rate_index    = get_bits(&s->gb, 5);
 | |
|     s->bit_rate          = ff_dca_bit_rates[s->bit_rate_index];
 | |
|     if (!s->bit_rate)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
 | |
|     s->dynrange          = get_bits(&s->gb, 1);
 | |
|     s->timestamp         = get_bits(&s->gb, 1);
 | |
|     s->aux_data          = get_bits(&s->gb, 1);
 | |
|     s->hdcd              = get_bits(&s->gb, 1);
 | |
|     s->ext_descr         = get_bits(&s->gb, 3);
 | |
|     s->ext_coding        = get_bits(&s->gb, 1);
 | |
|     s->aspf              = get_bits(&s->gb, 1);
 | |
|     s->lfe               = get_bits(&s->gb, 2);
 | |
|     s->predictor_history = get_bits(&s->gb, 1);
 | |
| 
 | |
|     if (s->lfe > 2) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /* TODO: check CRC */
 | |
|     if (s->crc_present)
 | |
|         s->header_crc    = get_bits(&s->gb, 16);
 | |
| 
 | |
|     s->multirate_inter   = get_bits(&s->gb, 1);
 | |
|     s->version           = get_bits(&s->gb, 4);
 | |
|     s->copy_history      = get_bits(&s->gb, 2);
 | |
|     s->source_pcm_res    = get_bits(&s->gb, 3);
 | |
|     s->front_sum         = get_bits(&s->gb, 1);
 | |
|     s->surround_sum      = get_bits(&s->gb, 1);
 | |
|     s->dialog_norm       = get_bits(&s->gb, 4);
 | |
| 
 | |
|     /* FIXME: channels mixing levels */
 | |
|     s->output = s->amode;
 | |
|     if (s->lfe)
 | |
|         s->output |= DCA_LFE;
 | |
| 
 | |
|     /* Primary audio coding header */
 | |
|     s->audio_header.subframes = get_bits(&s->gb, 4) + 1;
 | |
| 
 | |
|     return dca_parse_audio_coding_header(s, 0);
 | |
| }
 | |
| 
 | |
| static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
 | |
| {
 | |
|     if (level < 5) {
 | |
|         /* huffman encoded */
 | |
|         value += get_bitalloc(gb, &dca_scalefactor, level);
 | |
|         value  = av_clip(value, 0, (1 << log2range) - 1);
 | |
|     } else if (level < 8) {
 | |
|         if (level + 1 > log2range) {
 | |
|             skip_bits(gb, level + 1 - log2range);
 | |
|             value = get_bits(gb, log2range);
 | |
|         } else {
 | |
|             value = get_bits(gb, level + 1);
 | |
|         }
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
 | |
| {
 | |
|     /* Primary audio coding side information */
 | |
|     int j, k;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (!base_channel) {
 | |
|         s->subsubframes[s->current_subframe]    = get_bits(&s->gb, 2) + 1;
 | |
|         s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
 | |
|     }
 | |
| 
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         for (k = 0; k < s->audio_header.subband_activity[j]; k++)
 | |
|             s->dca_chan[j].prediction_mode[k] = get_bits(&s->gb, 1);
 | |
|     }
 | |
| 
 | |
|     /* Get prediction codebook */
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
 | |
|             if (s->dca_chan[j].prediction_mode[k] > 0) {
 | |
|                 /* (Prediction coefficient VQ address) */
 | |
|                 s->dca_chan[j].prediction_vq[k] = get_bits(&s->gb, 12);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Bit allocation index */
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         for (k = 0; k < s->audio_header.vq_start_subband[j]; k++) {
 | |
|             if (s->audio_header.bitalloc_huffman[j] == 6)
 | |
|                 s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 5);
 | |
|             else if (s->audio_header.bitalloc_huffman[j] == 5)
 | |
|                 s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 4);
 | |
|             else if (s->audio_header.bitalloc_huffman[j] == 7) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid bit allocation index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             } else {
 | |
|                 s->dca_chan[j].bitalloc[k] =
 | |
|                     get_bitalloc(&s->gb, &dca_bitalloc_index, s->audio_header.bitalloc_huffman[j]);
 | |
|             }
 | |
| 
 | |
|             if (s->dca_chan[j].bitalloc[k] > 26) {
 | |
|                 ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
 | |
|                         j, k, s->dca_chan[j].bitalloc[k]);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Transition mode */
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
 | |
|             s->dca_chan[j].transition_mode[k] = 0;
 | |
|             if (s->subsubframes[s->current_subframe] > 1 &&
 | |
|                 k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].bitalloc[k] > 0) {
 | |
|                 s->dca_chan[j].transition_mode[k] =
 | |
|                     get_bitalloc(&s->gb, &dca_tmode, s->audio_header.transient_huffman[j]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         const uint32_t *scale_table;
 | |
|         int scale_sum, log_size;
 | |
| 
 | |
|         memset(s->dca_chan[j].scale_factor, 0,
 | |
|                s->audio_header.subband_activity[j] * sizeof(s->dca_chan[j].scale_factor[0][0]) * 2);
 | |
| 
 | |
|         if (s->audio_header.scalefactor_huffman[j] == 6) {
 | |
|             scale_table = ff_dca_scale_factor_quant7;
 | |
|             log_size    = 7;
 | |
|         } else {
 | |
|             scale_table = ff_dca_scale_factor_quant6;
 | |
|             log_size    = 6;
 | |
|         }
 | |
| 
 | |
|         /* When huffman coded, only the difference is encoded */
 | |
|         scale_sum = 0;
 | |
| 
 | |
|         for (k = 0; k < s->audio_header.subband_activity[j]; k++) {
 | |
|             if (k >= s->audio_header.vq_start_subband[j] || s->dca_chan[j].bitalloc[k] > 0) {
 | |
|                 scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
 | |
|                 s->dca_chan[j].scale_factor[k][0] = scale_table[scale_sum];
 | |
|             }
 | |
| 
 | |
|             if (k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].transition_mode[k]) {
 | |
|                 /* Get second scale factor */
 | |
|                 scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size);
 | |
|                 s->dca_chan[j].scale_factor[k][1] = scale_table[scale_sum];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Joint subband scale factor codebook select */
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         /* Transmitted only if joint subband coding enabled */
 | |
|         if (s->audio_header.joint_intensity[j] > 0)
 | |
|             s->dca_chan[j].joint_huff = get_bits(&s->gb, 3);
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     /* Scale factors for joint subband coding */
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++) {
 | |
|         int source_channel;
 | |
| 
 | |
|         /* Transmitted only if joint subband coding enabled */
 | |
|         if (s->audio_header.joint_intensity[j] > 0) {
 | |
|             int scale = 0;
 | |
|             source_channel = s->audio_header.joint_intensity[j] - 1;
 | |
| 
 | |
|             /* When huffman coded, only the difference is encoded
 | |
|              * (is this valid as well for joint scales ???) */
 | |
| 
 | |
|             for (k = s->audio_header.subband_activity[j];
 | |
|                  k < s->audio_header.subband_activity[source_channel]; k++) {
 | |
|                 scale = get_scale(&s->gb, s->dca_chan[j].joint_huff, 64 /* bias */, 7);
 | |
|                 s->dca_chan[j].joint_scale_factor[k] = scale;    /*joint_scale_table[scale]; */
 | |
|             }
 | |
| 
 | |
|             if (!(s->debug_flag & 0x02)) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Joint stereo coding not supported\n");
 | |
|                 s->debug_flag |= 0x02;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Dynamic range coefficient */
 | |
|     if (!base_channel && s->dynrange)
 | |
|         s->dynrange_coef = get_bits(&s->gb, 8);
 | |
| 
 | |
|     /* Side information CRC check word */
 | |
|     if (s->crc_present) {
 | |
|         get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Primary audio data arrays
 | |
|      */
 | |
| 
 | |
|     /* VQ encoded high frequency subbands */
 | |
|     for (j = base_channel; j < s->audio_header.prim_channels; j++)
 | |
|         for (k = s->audio_header.vq_start_subband[j]; k < s->audio_header.subband_activity[j]; k++)
 | |
|             /* 1 vector -> 32 samples */
 | |
|             s->dca_chan[j].high_freq_vq[k] = get_bits(&s->gb, 10);
 | |
| 
 | |
|     /* Low frequency effect data */
 | |
|     if (!base_channel && s->lfe) {
 | |
|         /* LFE samples */
 | |
|         int lfe_samples    = 2 * s->lfe * (4 + block_index);
 | |
|         int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
 | |
|         float lfe_scale;
 | |
| 
 | |
|         for (j = lfe_samples; j < lfe_end_sample; j++) {
 | |
|             /* Signed 8 bits int */
 | |
|             s->lfe_data[j] = get_sbits(&s->gb, 8);
 | |
|         }
 | |
| 
 | |
|         /* Scale factor index */
 | |
|         skip_bits(&s->gb, 1);
 | |
|         s->lfe_scale_factor = ff_dca_scale_factor_quant7[get_bits(&s->gb, 7)];
 | |
| 
 | |
|         /* Quantization step size * scale factor */
 | |
|         lfe_scale = 0.035 * s->lfe_scale_factor;
 | |
| 
 | |
|         for (j = lfe_samples; j < lfe_end_sample; j++)
 | |
|             s->lfe_data[j] *= lfe_scale;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void qmf_32_subbands(DCAContext *s, int chans,
 | |
|                             float samples_in[DCA_SUBBANDS][SAMPLES_PER_SUBBAND], float *samples_out,
 | |
|                             float scale)
 | |
| {
 | |
|     const float *prCoeff;
 | |
| 
 | |
|     int sb_act = s->audio_header.subband_activity[chans];
 | |
| 
 | |
|     scale *= sqrt(1 / 8.0);
 | |
| 
 | |
|     /* Select filter */
 | |
|     if (!s->multirate_inter)    /* Non-perfect reconstruction */
 | |
|         prCoeff = ff_dca_fir_32bands_nonperfect;
 | |
|     else                        /* Perfect reconstruction */
 | |
|         prCoeff = ff_dca_fir_32bands_perfect;
 | |
| 
 | |
|     s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
 | |
|                               s->dca_chan[chans].subband_fir_hist,
 | |
|                               &s->dca_chan[chans].hist_index,
 | |
|                               s->dca_chan[chans].subband_fir_noidea, prCoeff,
 | |
|                               samples_out, s->raXin, scale);
 | |
| }
 | |
| 
 | |
| static QMF64_table *qmf64_precompute(void)
 | |
| {
 | |
|     unsigned i, j;
 | |
|     QMF64_table *table = av_malloc(sizeof(*table));
 | |
|     if (!table)
 | |
|         return NULL;
 | |
| 
 | |
|     for (i = 0; i < 32; i++)
 | |
|         for (j = 0; j < 32; j++)
 | |
|             table->dct4_coeff[i][j] = cos((2 * i + 1) * (2 * j + 1) * M_PI / 128);
 | |
|     for (i = 0; i < 32; i++)
 | |
|         for (j = 0; j < 32; j++)
 | |
|             table->dct2_coeff[i][j] = cos((2 * i + 1) *      j      * M_PI /  64);
 | |
| 
 | |
|     /* FIXME: Is the factor 0.125 = 1/8 right? */
 | |
|     for (i = 0; i < 32; i++)
 | |
|         table->rcos[i] =  0.125 / cos((2 * i + 1) * M_PI / 256);
 | |
|     for (i = 0; i < 32; i++)
 | |
|         table->rsin[i] = -0.125 / sin((2 * i + 1) * M_PI / 256);
 | |
| 
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| /* FIXME: Totally unoptimized. Based on the reference code and
 | |
|  * http://multimedia.cx/mirror/dca-transform.pdf, with guessed tweaks
 | |
|  * for doubling the size. */
 | |
| static void qmf_64_subbands(DCAContext *s, int chans,
 | |
|                             float samples_in[DCA_SUBBANDS_X96K][SAMPLES_PER_SUBBAND],
 | |
|                             float *samples_out, float scale)
 | |
| {
 | |
|     float raXin[64];
 | |
|     float A[32], B[32];
 | |
|     float *raX = s->dca_chan[chans].subband_fir_hist;
 | |
|     float *raZ = s->dca_chan[chans].subband_fir_noidea;
 | |
|     unsigned i, j, k, subindex;
 | |
| 
 | |
|     for (i = s->audio_header.subband_activity[chans]; i < DCA_SUBBANDS_X96K; i++)
 | |
|         raXin[i] = 0.0;
 | |
|     for (subindex = 0; subindex < SAMPLES_PER_SUBBAND; subindex++) {
 | |
|         for (i = 0; i < s->audio_header.subband_activity[chans]; i++)
 | |
|             raXin[i] = samples_in[i][subindex];
 | |
| 
 | |
|         for (k = 0; k < 32; k++) {
 | |
|             A[k] = 0.0;
 | |
|             for (i = 0; i < 32; i++)
 | |
|                 A[k] += (raXin[2 * i] + raXin[2 * i + 1]) * s->qmf64_table->dct4_coeff[k][i];
 | |
|         }
 | |
|         for (k = 0; k < 32; k++) {
 | |
|             B[k] = raXin[0] * s->qmf64_table->dct2_coeff[k][0];
 | |
|             for (i = 1; i < 32; i++)
 | |
|                 B[k] += (raXin[2 * i] + raXin[2 * i - 1]) * s->qmf64_table->dct2_coeff[k][i];
 | |
|         }
 | |
|         for (k = 0; k < 32; k++) {
 | |
|             raX[k]      = s->qmf64_table->rcos[k] * (A[k] + B[k]);
 | |
|             raX[63 - k] = s->qmf64_table->rsin[k] * (A[k] - B[k]);
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < DCA_SUBBANDS_X96K; i++) {
 | |
|             float out = raZ[i];
 | |
|             for (j = 0; j < 1024; j += 128)
 | |
|                 out += ff_dca_fir_64bands[j + i] * (raX[j + i] - raX[j + 63 - i]);
 | |
|             *samples_out++ = out * scale;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < DCA_SUBBANDS_X96K; i++) {
 | |
|             float hist = 0.0;
 | |
|             for (j = 0; j < 1024; j += 128)
 | |
|                 hist += ff_dca_fir_64bands[64 + j + i] * (-raX[i + j] - raX[j + 63 - i]);
 | |
| 
 | |
|             raZ[i] = hist;
 | |
|         }
 | |
| 
 | |
|         /* FIXME: Make buffer circular, to avoid this move. */
 | |
|         memmove(raX + 64, raX, (1024 - 64) * sizeof(*raX));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lfe_interpolation_fir(DCAContext *s, const float *samples_in,
 | |
|                                   float *samples_out)
 | |
| {
 | |
|     /* samples_in: An array holding decimated samples.
 | |
|      *   Samples in current subframe starts from samples_in[0],
 | |
|      *   while samples_in[-1], samples_in[-2], ..., stores samples
 | |
|      *   from last subframe as history.
 | |
|      *
 | |
|      * samples_out: An array holding interpolated samples
 | |
|      */
 | |
| 
 | |
|     int idx;
 | |
|     const float *prCoeff;
 | |
|     int deciindex;
 | |
| 
 | |
|     /* Select decimation filter */
 | |
|     if (s->lfe == 1) {
 | |
|         idx     = 1;
 | |
|         prCoeff = ff_dca_lfe_fir_128;
 | |
|     } else {
 | |
|         idx = 0;
 | |
|         if (s->exss_ext_mask & DCA_EXT_EXSS_XLL)
 | |
|             prCoeff = ff_dca_lfe_xll_fir_64;
 | |
|         else
 | |
|             prCoeff = ff_dca_lfe_fir_64;
 | |
|     }
 | |
|     /* Interpolation */
 | |
|     for (deciindex = 0; deciindex < 2 * s->lfe; deciindex++) {
 | |
|         s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
 | |
|         samples_in++;
 | |
|         samples_out += 2 * 32 * (1 + idx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* downmixing routines */
 | |
| #define MIX_REAR1(samples, s1, rs, coef)            \
 | |
|     samples[0][i] += samples[s1][i] * coef[rs][0];  \
 | |
|     samples[1][i] += samples[s1][i] * coef[rs][1];
 | |
| 
 | |
| #define MIX_REAR2(samples, s1, s2, rs, coef)                                          \
 | |
|     samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
 | |
|     samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
 | |
| 
 | |
| #define MIX_FRONT3(samples, coef)                                      \
 | |
|     t = samples[c][i];                                                 \
 | |
|     u = samples[l][i];                                                 \
 | |
|     v = samples[r][i];                                                 \
 | |
|     samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0];  \
 | |
|     samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
 | |
| 
 | |
| #define DOWNMIX_TO_STEREO(op1, op2)             \
 | |
|     for (i = 0; i < 256; i++) {                 \
 | |
|         op1                                     \
 | |
|         op2                                     \
 | |
|     }
 | |
| 
 | |
| static void dca_downmix(float **samples, int srcfmt, int lfe_present,
 | |
|                         float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
 | |
|                         const int8_t *channel_mapping)
 | |
| {
 | |
|     int c, l, r, sl, sr, s;
 | |
|     int i;
 | |
|     float t, u, v;
 | |
| 
 | |
|     switch (srcfmt) {
 | |
|     case DCA_MONO:
 | |
|     case DCA_4F2R:
 | |
|         av_log(NULL, 0, "Not implemented!\n");
 | |
|         break;
 | |
|     case DCA_CHANNEL:
 | |
|     case DCA_STEREO:
 | |
|     case DCA_STEREO_TOTAL:
 | |
|     case DCA_STEREO_SUMDIFF:
 | |
|         break;
 | |
|     case DCA_3F:
 | |
|         c = channel_mapping[0];
 | |
|         l = channel_mapping[1];
 | |
|         r = channel_mapping[2];
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
 | |
|         break;
 | |
|     case DCA_2F1R:
 | |
|         s = channel_mapping[2];
 | |
|         DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
 | |
|         break;
 | |
|     case DCA_3F1R:
 | |
|         c = channel_mapping[0];
 | |
|         l = channel_mapping[1];
 | |
|         r = channel_mapping[2];
 | |
|         s = channel_mapping[3];
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
 | |
|                           MIX_REAR1(samples, s, 3, coef));
 | |
|         break;
 | |
|     case DCA_2F2R:
 | |
|         sl = channel_mapping[2];
 | |
|         sr = channel_mapping[3];
 | |
|         DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
 | |
|         break;
 | |
|     case DCA_3F2R:
 | |
|         c  = channel_mapping[0];
 | |
|         l  = channel_mapping[1];
 | |
|         r  = channel_mapping[2];
 | |
|         sl = channel_mapping[3];
 | |
|         sr = channel_mapping[4];
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
 | |
|                           MIX_REAR2(samples, sl, sr, 3, coef));
 | |
|         break;
 | |
|     }
 | |
|     if (lfe_present) {
 | |
|         int lf_buf = ff_dca_lfe_index[srcfmt];
 | |
|         int lf_idx =  ff_dca_channels[srcfmt];
 | |
|         for (i = 0; i < 256; i++) {
 | |
|             samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
 | |
|             samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef decode_blockcodes
 | |
| /* Very compact version of the block code decoder that does not use table
 | |
|  * look-up but is slightly slower */
 | |
| static int decode_blockcode(int code, int levels, int32_t *values)
 | |
| {
 | |
|     int i;
 | |
|     int offset = (levels - 1) >> 1;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         int div = FASTDIV(code, levels);
 | |
|         values[i] = code - offset - div * levels;
 | |
|         code      = div;
 | |
|     }
 | |
| 
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
 | |
| {
 | |
|     return decode_blockcode(code1, levels, values) |
 | |
|            decode_blockcode(code2, levels, values + 4);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const uint8_t abits_sizes[7]  = { 7, 10, 12, 13, 15, 17, 19 };
 | |
| static const uint8_t abits_levels[7] = { 3,  5,  7,  9, 13, 17, 25 };
 | |
| 
 | |
| static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
 | |
| {
 | |
|     int k, l;
 | |
|     int subsubframe = s->current_subsubframe;
 | |
|     const uint32_t *quant_step_table;
 | |
| 
 | |
|     /*
 | |
|      * Audio data
 | |
|      */
 | |
| 
 | |
|     /* Select quantization step size table */
 | |
|     if (s->bit_rate_index == 0x1f)
 | |
|         quant_step_table = ff_dca_lossless_quant;
 | |
|     else
 | |
|         quant_step_table = ff_dca_lossy_quant;
 | |
| 
 | |
|     for (k = base_channel; k < s->audio_header.prim_channels; k++) {
 | |
|         int32_t (*subband_samples)[8] = s->dca_chan[k].subband_samples[block_index];
 | |
| 
 | |
|         if (get_bits_left(&s->gb) < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
 | |
|             int m;
 | |
| 
 | |
|             /* Select the mid-tread linear quantizer */
 | |
|             int abits = s->dca_chan[k].bitalloc[l];
 | |
| 
 | |
|             uint32_t quant_step_size = quant_step_table[abits];
 | |
| 
 | |
|             /*
 | |
|              * Extract bits from the bit stream
 | |
|              */
 | |
|             if (!abits)
 | |
|                 memset(subband_samples[l], 0, SAMPLES_PER_SUBBAND *
 | |
|                        sizeof(subband_samples[l][0]));
 | |
|             else {
 | |
|                 uint32_t rscale;
 | |
|                 /* Deal with transients */
 | |
|                 int sfi = s->dca_chan[k].transition_mode[l] &&
 | |
|                     subsubframe >= s->dca_chan[k].transition_mode[l];
 | |
|                 /* Determine quantization index code book and its type.
 | |
|                    Select quantization index code book */
 | |
|                 int sel = s->audio_header.quant_index_huffman[k][abits];
 | |
| 
 | |
|                 rscale = (s->dca_chan[k].scale_factor[l][sfi] *
 | |
|                           s->audio_header.scalefactor_adj[k][sel] + 8) >> 4;
 | |
| 
 | |
|                 if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
 | |
|                     if (abits <= 7) {
 | |
|                         /* Block code */
 | |
|                         int block_code1, block_code2, size, levels, err;
 | |
| 
 | |
|                         size   = abits_sizes[abits - 1];
 | |
|                         levels = abits_levels[abits - 1];
 | |
| 
 | |
|                         block_code1 = get_bits(&s->gb, size);
 | |
|                         block_code2 = get_bits(&s->gb, size);
 | |
|                         err         = decode_blockcodes(block_code1, block_code2,
 | |
|                                                         levels, subband_samples[l]);
 | |
|                         if (err) {
 | |
|                             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                    "ERROR: block code look-up failed\n");
 | |
|                             return AVERROR_INVALIDDATA;
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* no coding */
 | |
|                         for (m = 0; m < SAMPLES_PER_SUBBAND; m++)
 | |
|                             subband_samples[l][m] = get_sbits(&s->gb, abits - 3);
 | |
|                     }
 | |
|                 } else {
 | |
|                     /* Huffman coded */
 | |
|                     for (m = 0; m < SAMPLES_PER_SUBBAND; m++)
 | |
|                         subband_samples[l][m] = get_bitalloc(&s->gb,
 | |
|                                                              &dca_smpl_bitalloc[abits], sel);
 | |
|                 }
 | |
|                 s->dcadsp.dequantize(subband_samples[l], quant_step_size, rscale);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) {
 | |
|             int m;
 | |
|             /*
 | |
|              * Inverse ADPCM if in prediction mode
 | |
|              */
 | |
|             if (s->dca_chan[k].prediction_mode[l]) {
 | |
|                 int n;
 | |
|                 if (s->predictor_history)
 | |
|                     subband_samples[l][0] += (ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
 | |
|                                               (int64_t)s->dca_chan[k].subband_samples_hist[l][3] +
 | |
|                                               ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][1] *
 | |
|                                               (int64_t)s->dca_chan[k].subband_samples_hist[l][2] +
 | |
|                                               ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][2] *
 | |
|                                               (int64_t)s->dca_chan[k].subband_samples_hist[l][1] +
 | |
|                                               ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][3] *
 | |
|                                               (int64_t)s->dca_chan[k].subband_samples_hist[l][0]) +
 | |
|                                               (1 << 12) >> 13;
 | |
|                 for (m = 1; m < SAMPLES_PER_SUBBAND; m++) {
 | |
|                     int64_t sum = ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] *
 | |
|                                   (int64_t)subband_samples[l][m - 1];
 | |
|                     for (n = 2; n <= 4; n++)
 | |
|                         if (m >= n)
 | |
|                             sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
 | |
|                                    (int64_t)subband_samples[l][m - n];
 | |
|                         else if (s->predictor_history)
 | |
|                             sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] *
 | |
|                                    (int64_t)s->dca_chan[k].subband_samples_hist[l][m - n + 4];
 | |
|                     subband_samples[l][m] += (int32_t)(sum + (1 << 12) >> 13);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         }
 | |
|         /* Backup predictor history for adpcm */
 | |
|         for (l = 0; l < DCA_SUBBANDS; l++)
 | |
|             AV_COPY128(s->dca_chan[k].subband_samples_hist[l], &subband_samples[l][4]);
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Decode VQ encoded high frequencies
 | |
|          */
 | |
|         if (s->audio_header.subband_activity[k] > s->audio_header.vq_start_subband[k]) {
 | |
|             if (!s->debug_flag & 0x01) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Stream with high frequencies VQ coding\n");
 | |
|                 s->debug_flag |= 0x01;
 | |
|             }
 | |
| 
 | |
|             s->dcadsp.decode_hf(subband_samples, s->dca_chan[k].high_freq_vq,
 | |
|                                 ff_dca_high_freq_vq,
 | |
|                                 subsubframe * SAMPLES_PER_SUBBAND,
 | |
|                                 s->dca_chan[k].scale_factor,
 | |
|                                 s->audio_header.vq_start_subband[k],
 | |
|                                 s->audio_header.subband_activity[k]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check for DSYNC after subsubframe */
 | |
|     if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
 | |
|         if (get_bits(&s->gb, 16) != 0xFFFF) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dca_filter_channels(DCAContext *s, int block_index, int upsample)
 | |
| {
 | |
|     int k;
 | |
| 
 | |
|     if (upsample) {
 | |
|         LOCAL_ALIGNED(32, float, samples, [DCA_SUBBANDS_X96K], [SAMPLES_PER_SUBBAND]);
 | |
| 
 | |
|         if (!s->qmf64_table) {
 | |
|             s->qmf64_table = qmf64_precompute();
 | |
|             if (!s->qmf64_table)
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
| 
 | |
|         /* 64 subbands QMF */
 | |
|         for (k = 0; k < s->audio_header.prim_channels; k++) {
 | |
|             int32_t (*subband_samples)[SAMPLES_PER_SUBBAND] =
 | |
|                      s->dca_chan[k].subband_samples[block_index];
 | |
| 
 | |
|             s->fmt_conv.int32_to_float(samples[0], subband_samples[0],
 | |
|                                        DCA_SUBBANDS_X96K * SAMPLES_PER_SUBBAND);
 | |
| 
 | |
|             if (s->channel_order_tab[k] >= 0)
 | |
|                 qmf_64_subbands(s, k, samples,
 | |
|                                 s->samples_chanptr[s->channel_order_tab[k]],
 | |
|                                 /* Upsampling needs a factor 2 here. */
 | |
|                                 M_SQRT2 / 32768.0);
 | |
|         }
 | |
|     } else {
 | |
|         /* 32 subbands QMF */
 | |
|         LOCAL_ALIGNED(32, float, samples, [DCA_SUBBANDS], [SAMPLES_PER_SUBBAND]);
 | |
| 
 | |
|         for (k = 0; k < s->audio_header.prim_channels; k++) {
 | |
|             int32_t (*subband_samples)[SAMPLES_PER_SUBBAND] =
 | |
|                      s->dca_chan[k].subband_samples[block_index];
 | |
| 
 | |
|             s->fmt_conv.int32_to_float(samples[0], subband_samples[0],
 | |
|                                        DCA_SUBBANDS * SAMPLES_PER_SUBBAND);
 | |
| 
 | |
|             if (s->channel_order_tab[k] >= 0)
 | |
|                 qmf_32_subbands(s, k, samples,
 | |
|                                 s->samples_chanptr[s->channel_order_tab[k]],
 | |
|                                 M_SQRT1_2 / 32768.0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Generate LFE samples for this subsubframe FIXME!!! */
 | |
|     if (s->lfe) {
 | |
|         float *samples = s->samples_chanptr[ff_dca_lfe_index[s->amode]];
 | |
|         lfe_interpolation_fir(s,
 | |
|                               s->lfe_data + 2 * s->lfe * (block_index + 4),
 | |
|                               samples);
 | |
|         if (upsample) {
 | |
|             unsigned i;
 | |
|             /* Should apply the filter in Table 6-11 when upsampling. For
 | |
|              * now, just duplicate. */
 | |
|             for (i = 511; i > 0; i--) {
 | |
|                 samples[2 * i]     =
 | |
|                 samples[2 * i + 1] = samples[i];
 | |
|             }
 | |
|             samples[1] = samples[0];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* FIXME: This downmixing is probably broken with upsample.
 | |
|      * Probably totally broken also with XLL in general. */
 | |
|     /* Downmixing to Stereo */
 | |
|     if (s->audio_header.prim_channels + !!s->lfe > 2 &&
 | |
|         s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
 | |
|         dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
 | |
|                     s->channel_order_tab);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dca_subframe_footer(DCAContext *s, int base_channel)
 | |
| {
 | |
|     int in, out, aux_data_count, aux_data_end, reserved;
 | |
|     uint32_t nsyncaux;
 | |
| 
 | |
|     /*
 | |
|      * Unpack optional information
 | |
|      */
 | |
| 
 | |
|     /* presumably optional information only appears in the core? */
 | |
|     if (!base_channel) {
 | |
|         if (s->timestamp)
 | |
|             skip_bits_long(&s->gb, 32);
 | |
| 
 | |
|         if (s->aux_data) {
 | |
|             aux_data_count = get_bits(&s->gb, 6);
 | |
| 
 | |
|             // align (32-bit)
 | |
|             skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
 | |
| 
 | |
|             aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
 | |
| 
 | |
|             if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
 | |
|                        nsyncaux);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
 | |
|                 avpriv_request_sample(s->avctx,
 | |
|                                       "Auxiliary Decode Time Stamp Flag");
 | |
|                 // align (4-bit)
 | |
|                 skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
 | |
|                 // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
 | |
|                 skip_bits_long(&s->gb, 44);
 | |
|             }
 | |
| 
 | |
|             if ((s->core_downmix = get_bits1(&s->gb))) {
 | |
|                 int am = get_bits(&s->gb, 3);
 | |
|                 switch (am) {
 | |
|                 case 0:
 | |
|                     s->core_downmix_amode = DCA_MONO;
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     s->core_downmix_amode = DCA_STEREO;
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     s->core_downmix_amode = DCA_STEREO_TOTAL;
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     s->core_downmix_amode = DCA_3F;
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     s->core_downmix_amode = DCA_2F1R;
 | |
|                     break;
 | |
|                 case 5:
 | |
|                     s->core_downmix_amode = DCA_2F2R;
 | |
|                     break;
 | |
|                 case 6:
 | |
|                     s->core_downmix_amode = DCA_3F1R;
 | |
|                     break;
 | |
|                 default:
 | |
|                     av_log(s->avctx, AV_LOG_ERROR,
 | |
|                            "Invalid mode %d for embedded downmix coefficients\n",
 | |
|                            am);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) {
 | |
|                     for (in = 0; in < s->audio_header.prim_channels + !!s->lfe; in++) {
 | |
|                         uint16_t tmp = get_bits(&s->gb, 9);
 | |
|                         if ((tmp & 0xFF) > 241) {
 | |
|                             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                    "Invalid downmix coefficient code %"PRIu16"\n",
 | |
|                                    tmp);
 | |
|                             return AVERROR_INVALIDDATA;
 | |
|                         }
 | |
|                         s->core_downmix_codes[in][out] = tmp;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             align_get_bits(&s->gb); // byte align
 | |
|             skip_bits(&s->gb, 16);  // nAUXCRC16
 | |
| 
 | |
|             /*
 | |
|              * additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
 | |
|              *
 | |
|              * Note: don't check for overreads, aux_data_count can't be trusted.
 | |
|              */
 | |
|             if ((reserved = (aux_data_end - get_bits_count(&s->gb))) > 0) {
 | |
|                 avpriv_request_sample(s->avctx,
 | |
|                                       "Core auxiliary data reserved content");
 | |
|                 skip_bits_long(&s->gb, reserved);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->crc_present && s->dynrange)
 | |
|             get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a dca frame block
 | |
|  *
 | |
|  * @param s     pointer to the DCAContext
 | |
|  */
 | |
| 
 | |
| static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Sanity check */
 | |
|     if (s->current_subframe >= s->audio_header.subframes) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
 | |
|                s->current_subframe, s->audio_header.subframes);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!s->current_subsubframe) {
 | |
|         /* Read subframe header */
 | |
|         if ((ret = dca_subframe_header(s, base_channel, block_index)))
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     /* Read subsubframe */
 | |
|     if ((ret = dca_subsubframe(s, base_channel, block_index)))
 | |
|         return ret;
 | |
| 
 | |
|     /* Update state */
 | |
|     s->current_subsubframe++;
 | |
|     if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
 | |
|         s->current_subsubframe = 0;
 | |
|         s->current_subframe++;
 | |
|     }
 | |
|     if (s->current_subframe >= s->audio_header.subframes) {
 | |
|         /* Read subframe footer */
 | |
|         if ((ret = dca_subframe_footer(s, base_channel)))
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static float dca_dmix_code(unsigned code)
 | |
| {
 | |
|     int sign = (code >> 8) - 1;
 | |
|     code &= 0xff;
 | |
|     return ((ff_dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1U << 15));
 | |
| }
 | |
| 
 | |
| static int scan_for_extensions(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int core_ss_end, ret = 0;
 | |
| 
 | |
|     core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
 | |
| 
 | |
|     /* only scan for extensions if ext_descr was unknown or indicated a
 | |
|      * supported XCh extension */
 | |
|     if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
 | |
|         /* if ext_descr was unknown, clear s->core_ext_mask so that the
 | |
|          * extensions scan can fill it up */
 | |
|         s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
 | |
| 
 | |
|         /* extensions start at 32-bit boundaries into bitstream */
 | |
|         skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
 | |
| 
 | |
|         while (core_ss_end - get_bits_count(&s->gb) >= 32) {
 | |
|             uint32_t bits = get_bits_long(&s->gb, 32);
 | |
|             int i;
 | |
| 
 | |
|             switch (bits) {
 | |
|             case DCA_SYNCWORD_XCH: {
 | |
|                 int ext_amode, xch_fsize;
 | |
| 
 | |
|                 s->xch_base_channel = s->audio_header.prim_channels;
 | |
| 
 | |
|                 /* validate sync word using XCHFSIZE field */
 | |
|                 xch_fsize = show_bits(&s->gb, 10);
 | |
|                 if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
 | |
|                     (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
 | |
|                     continue;
 | |
| 
 | |
|                 /* skip length-to-end-of-frame field for the moment */
 | |
|                 skip_bits(&s->gb, 10);
 | |
| 
 | |
|                 s->core_ext_mask |= DCA_EXT_XCH;
 | |
| 
 | |
|                 /* extension amode(number of channels in extension) should be 1 */
 | |
|                 /* AFAIK XCh is not used for more channels */
 | |
|                 if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
 | |
|                     av_log(avctx, AV_LOG_ERROR,
 | |
|                            "XCh extension amode %d not supported!\n",
 | |
|                            ext_amode);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 /* much like core primary audio coding header */
 | |
|                 dca_parse_audio_coding_header(s, s->xch_base_channel);
 | |
| 
 | |
|                 for (i = 0; i < (s->sample_blocks / 8); i++)
 | |
|                     if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
 | |
|                         av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                 s->xch_present = 1;
 | |
|                 break;
 | |
|             }
 | |
|             case DCA_SYNCWORD_XXCH:
 | |
|                 /* XXCh: extended channels */
 | |
|                 /* usually found either in core or HD part in DTS-HD HRA streams,
 | |
|                  * but not in DTS-ES which contains XCh extensions instead */
 | |
|                 s->core_ext_mask |= DCA_EXT_XXCH;
 | |
|                 break;
 | |
| 
 | |
|             case 0x1d95f262: {
 | |
|                 int fsize96 = show_bits(&s->gb, 12) + 1;
 | |
|                 if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
 | |
|                     continue;
 | |
| 
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
 | |
|                        get_bits_count(&s->gb));
 | |
|                 skip_bits(&s->gb, 12);
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
 | |
| 
 | |
|                 s->core_ext_mask |= DCA_EXT_X96;
 | |
|                 break;
 | |
|             }
 | |
|             }
 | |
| 
 | |
|             skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
 | |
|         }
 | |
|     } else {
 | |
|         /* no supported extensions, skip the rest of the core substream */
 | |
|         skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
 | |
|     }
 | |
| 
 | |
|     if (s->core_ext_mask & DCA_EXT_X96)
 | |
|         s->profile = FF_PROFILE_DTS_96_24;
 | |
|     else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
 | |
|         s->profile = FF_PROFILE_DTS_ES;
 | |
| 
 | |
|     /* check for ExSS (HD part) */
 | |
|     if (s->dca_buffer_size - s->frame_size > 32 &&
 | |
|         get_bits_long(&s->gb, 32) == DCA_SYNCWORD_SUBSTREAM)
 | |
|         ff_dca_exss_parse_header(s);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int set_channel_layout(AVCodecContext *avctx, int channels, int num_core_channels)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     if (s->amode < 16) {
 | |
|         avctx->channel_layout = dca_core_channel_layout[s->amode];
 | |
| 
 | |
|         if (s->audio_header.prim_channels + !!s->lfe > 2 &&
 | |
|             avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
 | |
|             /*
 | |
|              * Neither the core's auxiliary data nor our default tables contain
 | |
|              * downmix coefficients for the additional channel coded in the XCh
 | |
|              * extension, so when we're doing a Stereo downmix, don't decode it.
 | |
|              */
 | |
|             s->xch_disable = 1;
 | |
|         }
 | |
| 
 | |
|         if (s->xch_present && !s->xch_disable) {
 | |
|             avctx->channel_layout |= AV_CH_BACK_CENTER;
 | |
|             if (s->lfe) {
 | |
|                 avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
 | |
|                 s->channel_order_tab = ff_dca_channel_reorder_lfe_xch[s->amode];
 | |
|             } else {
 | |
|                 s->channel_order_tab = ff_dca_channel_reorder_nolfe_xch[s->amode];
 | |
|             }
 | |
|         } else {
 | |
|             channels       = num_core_channels + !!s->lfe;
 | |
|             s->xch_present = 0; /* disable further xch processing */
 | |
|             if (s->lfe) {
 | |
|                 avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
 | |
|                 s->channel_order_tab = ff_dca_channel_reorder_lfe[s->amode];
 | |
|             } else
 | |
|                 s->channel_order_tab = ff_dca_channel_reorder_nolfe[s->amode];
 | |
|         }
 | |
| 
 | |
|         if (channels > !!s->lfe &&
 | |
|             s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         if (num_core_channels + !!s->lfe > 2 &&
 | |
|             avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
 | |
|             channels              = 2;
 | |
|             s->output             = s->audio_header.prim_channels == 2 ? s->amode : DCA_STEREO;
 | |
|             avctx->channel_layout = AV_CH_LAYOUT_STEREO;
 | |
| 
 | |
|             /* Stereo downmix coefficients
 | |
|              *
 | |
|              * The decoder can only downmix to 2-channel, so we need to ensure
 | |
|              * embedded downmix coefficients are actually targeting 2-channel.
 | |
|              */
 | |
|             if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
 | |
|                                     s->core_downmix_amode == DCA_STEREO_TOTAL)) {
 | |
|                 for (i = 0; i < num_core_channels + !!s->lfe; i++) {
 | |
|                     /* Range checked earlier */
 | |
|                     s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
 | |
|                     s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
 | |
|                 }
 | |
|                 s->output = s->core_downmix_amode;
 | |
|             } else {
 | |
|                 int am = s->amode & DCA_CHANNEL_MASK;
 | |
|                 if (am >= FF_ARRAY_ELEMS(ff_dca_default_coeffs)) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR,
 | |
|                            "Invalid channel mode %d\n", am);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 if (num_core_channels + !!s->lfe >
 | |
|                     FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
 | |
|                     avpriv_request_sample(s->avctx, "Downmixing %d channels",
 | |
|                                           s->audio_header.prim_channels + !!s->lfe);
 | |
|                     return AVERROR_PATCHWELCOME;
 | |
|                 }
 | |
|                 for (i = 0; i < num_core_channels + !!s->lfe; i++) {
 | |
|                     s->downmix_coef[i][0] = ff_dca_default_coeffs[am][i][0];
 | |
|                     s->downmix_coef[i][1] = ff_dca_default_coeffs[am][i][1];
 | |
|                 }
 | |
|             }
 | |
|             ff_dlog(s->avctx, "Stereo downmix coeffs:\n");
 | |
|             for (i = 0; i < num_core_channels + !!s->lfe; i++) {
 | |
|                 ff_dlog(s->avctx, "L, input channel %d = %f\n", i,
 | |
|                         s->downmix_coef[i][0]);
 | |
|                 ff_dlog(s->avctx, "R, input channel %d = %f\n", i,
 | |
|                         s->downmix_coef[i][1]);
 | |
|             }
 | |
|             ff_dlog(s->avctx, "\n");
 | |
|         }
 | |
|     } else {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Nonstandard configuration %d !\n", s->amode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Main frame decoding function
 | |
|  * FIXME add arguments
 | |
|  */
 | |
| static int dca_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                             int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
| 
 | |
|     int lfe_samples;
 | |
|     int num_core_channels = 0;
 | |
|     int i, ret;
 | |
|     float  **samples_flt;
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int channels, full_channels;
 | |
|     int upsample = 0;
 | |
| 
 | |
|     s->exss_ext_mask = 0;
 | |
|     s->xch_present   = 0;
 | |
| 
 | |
|     s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
 | |
|                                                   DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
 | |
|     if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if ((ret = dca_parse_frame_header(s)) < 0) {
 | |
|         // seems like the frame is corrupt, try with the next one
 | |
|         return ret;
 | |
|     }
 | |
|     // set AVCodec values with parsed data
 | |
|     avctx->sample_rate = s->sample_rate;
 | |
|     avctx->bit_rate    = s->bit_rate;
 | |
| 
 | |
|     s->profile = FF_PROFILE_DTS;
 | |
| 
 | |
|     for (i = 0; i < (s->sample_blocks / SAMPLES_PER_SUBBAND); i++) {
 | |
|         if ((ret = dca_decode_block(s, 0, i))) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* record number of core channels incase less than max channels are requested */
 | |
|     num_core_channels = s->audio_header.prim_channels;
 | |
| 
 | |
|     if (s->ext_coding)
 | |
|         s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
 | |
|     else
 | |
|         s->core_ext_mask = 0;
 | |
| 
 | |
|     ret = scan_for_extensions(avctx);
 | |
| 
 | |
|     avctx->profile = s->profile;
 | |
| 
 | |
|     full_channels = channels = s->audio_header.prim_channels + !!s->lfe;
 | |
| 
 | |
|     ret = set_channel_layout(avctx, channels, num_core_channels);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     avctx->channels = channels;
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = 256 * (s->sample_blocks / SAMPLES_PER_SUBBAND);
 | |
|     if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) {
 | |
|         int xll_nb_samples = s->xll_segments * s->xll_smpl_in_seg;
 | |
|         /* Check for invalid/unsupported conditions first */
 | |
|         if (s->xll_residual_channels > channels) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING,
 | |
|                    "DCA: too many residual channels (%d, core channels %d). Disabling XLL\n",
 | |
|                    s->xll_residual_channels, channels);
 | |
|             s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL;
 | |
|         } else if (xll_nb_samples != frame->nb_samples &&
 | |
|                    2 * frame->nb_samples != xll_nb_samples) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING,
 | |
|                    "DCA: unsupported upsampling (%d XLL samples, %d core samples). Disabling XLL\n",
 | |
|                    xll_nb_samples, frame->nb_samples);
 | |
|             s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL;
 | |
|         } else {
 | |
|             if (2 * frame->nb_samples == xll_nb_samples) {
 | |
|                 av_log(s->avctx, AV_LOG_INFO,
 | |
|                        "XLL: upsampling core channels by a factor of 2\n");
 | |
|                 upsample = 1;
 | |
| 
 | |
|                 frame->nb_samples = xll_nb_samples;
 | |
|                 // FIXME: Is it good enough to copy from the first channel set?
 | |
|                 avctx->sample_rate = s->xll_chsets[0].sampling_frequency;
 | |
|             }
 | |
|             /* If downmixing to stereo, don't decode additional channels.
 | |
|              * FIXME: Using the xch_disable flag for this doesn't seem right. */
 | |
|             if (!s->xch_disable)
 | |
|                 avctx->channels += s->xll_channels - s->xll_residual_channels;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* FIXME: This is an ugly hack, to just revert to the default
 | |
|      * layout if we have additional channels. Need to convert the XLL
 | |
|      * channel masks to libav channel_layout mask. */
 | |
|     if (av_get_channel_layout_nb_channels(avctx->channel_layout) != avctx->channels)
 | |
|         avctx->channel_layout = 0;
 | |
| 
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         return ret;
 | |
|     }
 | |
|     samples_flt = (float **) frame->extended_data;
 | |
| 
 | |
|     /* allocate buffer for extra channels if downmixing */
 | |
|     if (avctx->channels < full_channels) {
 | |
|         ret = av_samples_get_buffer_size(NULL, full_channels - channels,
 | |
|                                          frame->nb_samples,
 | |
|                                          avctx->sample_fmt, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         av_fast_malloc(&s->extra_channels_buffer,
 | |
|                        &s->extra_channels_buffer_size, ret);
 | |
|         if (!s->extra_channels_buffer)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
 | |
|                                      s->extra_channels_buffer,
 | |
|                                      full_channels - channels,
 | |
|                                      frame->nb_samples, avctx->sample_fmt, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     /* filter to get final output */
 | |
|     for (i = 0; i < (s->sample_blocks / SAMPLES_PER_SUBBAND); i++) {
 | |
|         int ch;
 | |
|         unsigned block = upsample ? 512 : 256;
 | |
|         for (ch = 0; ch < channels; ch++)
 | |
|             s->samples_chanptr[ch] = samples_flt[ch] + i * block;
 | |
|         for (; ch < full_channels; ch++)
 | |
|             s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * block;
 | |
| 
 | |
|         dca_filter_channels(s, i, upsample);
 | |
| 
 | |
|         /* If this was marked as a DTS-ES stream we need to subtract back- */
 | |
|         /* channel from SL & SR to remove matrixed back-channel signal */
 | |
|         if ((s->source_pcm_res & 1) && s->xch_present) {
 | |
|             float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
 | |
|             float *lt_chan   = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
 | |
|             float *rt_chan   = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
 | |
|             s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
 | |
|             s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* update lfe history */
 | |
|     lfe_samples = 2 * s->lfe * (s->sample_blocks / SAMPLES_PER_SUBBAND);
 | |
|     for (i = 0; i < 2 * s->lfe * 4; i++)
 | |
|         s->lfe_data[i] = s->lfe_data[i + lfe_samples];
 | |
| 
 | |
|     if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) {
 | |
|         ret = ff_dca_xll_decode_audio(s, frame);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
|     /* AVMatrixEncoding
 | |
|      *
 | |
|      * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
 | |
|     ret = ff_side_data_update_matrix_encoding(frame,
 | |
|                                               (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
 | |
|                                               AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * DCA initialization
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static av_cold int dca_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     dca_init_vlcs();
 | |
| 
 | |
|     avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
 | |
|     ff_mdct_init(&s->imdct, 6, 1, 1.0);
 | |
|     ff_synth_filter_init(&s->synth);
 | |
|     ff_dcadsp_init(&s->dcadsp);
 | |
|     ff_fmt_convert_init(&s->fmt_conv, avctx);
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
| 
 | |
|     /* allow downmixing to stereo */
 | |
|     if (avctx->channels > 2 &&
 | |
|         avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
 | |
|         avctx->channels = 2;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dca_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     ff_mdct_end(&s->imdct);
 | |
|     av_freep(&s->extra_channels_buffer);
 | |
|     av_freep(&s->xll_sample_buf);
 | |
|     av_freep(&s->qmf64_table);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const AVOption options[] = {
 | |
|     { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
 | |
|     { "disable_xll", "disable decoding of the XLL extension", offsetof(DCAContext, xll_disable), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass dca_decoder_class = {
 | |
|     .class_name = "DCA decoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_dca_decoder = {
 | |
|     .name            = "dca",
 | |
|     .long_name       = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
 | |
|     .type            = AVMEDIA_TYPE_AUDIO,
 | |
|     .id              = AV_CODEC_ID_DTS,
 | |
|     .priv_data_size  = sizeof(DCAContext),
 | |
|     .init            = dca_decode_init,
 | |
|     .decode          = dca_decode_frame,
 | |
|     .close           = dca_decode_end,
 | |
|     .capabilities    = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
 | |
|     .sample_fmts     = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                        AV_SAMPLE_FMT_NONE },
 | |
|     .profiles        = NULL_IF_CONFIG_SMALL(ff_dca_profiles),
 | |
|     .priv_class      = &dca_decoder_class,
 | |
| };
 | 
