mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1783 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1783 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * H.26L/H.264/AVC/JVT/14496-10/... decoder
 | |
|  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * H.264 / AVC / MPEG4 part10 codec.
 | |
|  * @author Michael Niedermayer <michaelni@gmx.at>
 | |
|  */
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/display.h"
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/stereo3d.h"
 | |
| #include "libavutil/timer.h"
 | |
| #include "internal.h"
 | |
| #include "cabac.h"
 | |
| #include "cabac_functions.h"
 | |
| #include "error_resilience.h"
 | |
| #include "avcodec.h"
 | |
| #include "h264.h"
 | |
| #include "h264data.h"
 | |
| #include "h264chroma.h"
 | |
| #include "h264_mvpred.h"
 | |
| #include "golomb.h"
 | |
| #include "mathops.h"
 | |
| #include "me_cmp.h"
 | |
| #include "mpegutils.h"
 | |
| #include "rectangle.h"
 | |
| #include "svq3.h"
 | |
| #include "thread.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 };
 | |
| 
 | |
| static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type,
 | |
|                               int (*mv)[2][4][2],
 | |
|                               int mb_x, int mb_y, int mb_intra, int mb_skipped)
 | |
| {
 | |
|     H264Context *h = opaque;
 | |
|     H264SliceContext *sl = &h->slice_ctx[0];
 | |
| 
 | |
|     sl->mb_x = mb_x;
 | |
|     sl->mb_y = mb_y;
 | |
|     sl->mb_xy = mb_x + mb_y * h->mb_stride;
 | |
|     memset(sl->non_zero_count_cache, 0, sizeof(sl->non_zero_count_cache));
 | |
|     assert(ref >= 0);
 | |
|     /* FIXME: It is possible albeit uncommon that slice references
 | |
|      * differ between slices. We take the easy approach and ignore
 | |
|      * it for now. If this turns out to have any relevance in
 | |
|      * practice then correct remapping should be added. */
 | |
|     if (ref >= sl->ref_count[0])
 | |
|         ref = 0;
 | |
|     fill_rectangle(&h->cur_pic.ref_index[0][4 * sl->mb_xy],
 | |
|                    2, 2, 2, ref, 1);
 | |
|     fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
 | |
|     fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8,
 | |
|                    pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4);
 | |
|     assert(!FRAME_MBAFF(h));
 | |
|     ff_h264_hl_decode_mb(h, &h->slice_ctx[0]);
 | |
| }
 | |
| 
 | |
| void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl,
 | |
|                              int y, int height)
 | |
| {
 | |
|     AVCodecContext *avctx = h->avctx;
 | |
|     const AVFrame   *src  = h->cur_pic.f;
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
 | |
|     int vshift = desc->log2_chroma_h;
 | |
|     const int field_pic = h->picture_structure != PICT_FRAME;
 | |
|     if (field_pic) {
 | |
|         height <<= 1;
 | |
|         y      <<= 1;
 | |
|     }
 | |
| 
 | |
|     height = FFMIN(height, avctx->height - y);
 | |
| 
 | |
|     if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD))
 | |
|         return;
 | |
| 
 | |
|     if (avctx->draw_horiz_band) {
 | |
|         int offset[AV_NUM_DATA_POINTERS];
 | |
|         int i;
 | |
| 
 | |
|         offset[0] = y * src->linesize[0];
 | |
|         offset[1] =
 | |
|         offset[2] = (y >> vshift) * src->linesize[1];
 | |
|         for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
 | |
|             offset[i] = 0;
 | |
| 
 | |
|         emms_c();
 | |
| 
 | |
|         avctx->draw_horiz_band(avctx, src, offset,
 | |
|                                y, h->picture_structure, height);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Check if the top & left blocks are available if needed and
 | |
|  * change the dc mode so it only uses the available blocks.
 | |
|  */
 | |
| int ff_h264_check_intra4x4_pred_mode(const H264Context *h, H264SliceContext *sl)
 | |
| {
 | |
|     static const int8_t top[12] = {
 | |
|         -1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0
 | |
|     };
 | |
|     static const int8_t left[12] = {
 | |
|         0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED
 | |
|     };
 | |
|     int i;
 | |
| 
 | |
|     if (!(sl->top_samples_available & 0x8000)) {
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             int status = top[sl->intra4x4_pred_mode_cache[scan8[0] + i]];
 | |
|             if (status < 0) {
 | |
|                 av_log(h->avctx, AV_LOG_ERROR,
 | |
|                        "top block unavailable for requested intra4x4 mode %d at %d %d\n",
 | |
|                        status, sl->mb_x, sl->mb_y);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             } else if (status) {
 | |
|                 sl->intra4x4_pred_mode_cache[scan8[0] + i] = status;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((sl->left_samples_available & 0x8888) != 0x8888) {
 | |
|         static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 };
 | |
|         for (i = 0; i < 4; i++)
 | |
|             if (!(sl->left_samples_available & mask[i])) {
 | |
|                 int status = left[sl->intra4x4_pred_mode_cache[scan8[0] + 8 * i]];
 | |
|                 if (status < 0) {
 | |
|                     av_log(h->avctx, AV_LOG_ERROR,
 | |
|                            "left block unavailable for requested intra4x4 mode %d at %d %d\n",
 | |
|                            status, sl->mb_x, sl->mb_y);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 } else if (status) {
 | |
|                     sl->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status;
 | |
|                 }
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| } // FIXME cleanup like ff_h264_check_intra_pred_mode
 | |
| 
 | |
| /**
 | |
|  * Check if the top & left blocks are available if needed and
 | |
|  * change the dc mode so it only uses the available blocks.
 | |
|  */
 | |
| int ff_h264_check_intra_pred_mode(const H264Context *h, H264SliceContext *sl,
 | |
|                                   int mode, int is_chroma)
 | |
| {
 | |
|     static const int8_t top[4]  = { LEFT_DC_PRED8x8, 1, -1, -1 };
 | |
|     static const int8_t left[5] = { TOP_DC_PRED8x8, -1,  2, -1, DC_128_PRED8x8 };
 | |
| 
 | |
|     if (mode > 3U) {
 | |
|         av_log(h->avctx, AV_LOG_ERROR,
 | |
|                "out of range intra chroma pred mode at %d %d\n",
 | |
|                sl->mb_x, sl->mb_y);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!(sl->top_samples_available & 0x8000)) {
 | |
|         mode = top[mode];
 | |
|         if (mode < 0) {
 | |
|             av_log(h->avctx, AV_LOG_ERROR,
 | |
|                    "top block unavailable for requested intra mode at %d %d\n",
 | |
|                    sl->mb_x, sl->mb_y);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((sl->left_samples_available & 0x8080) != 0x8080) {
 | |
|         mode = left[mode];
 | |
|         if (is_chroma && (sl->left_samples_available & 0x8080)) {
 | |
|             // mad cow disease mode, aka MBAFF + constrained_intra_pred
 | |
|             mode = ALZHEIMER_DC_L0T_PRED8x8 +
 | |
|                    (!(sl->left_samples_available & 0x8000)) +
 | |
|                    2 * (mode == DC_128_PRED8x8);
 | |
|         }
 | |
|         if (mode < 0) {
 | |
|             av_log(h->avctx, AV_LOG_ERROR,
 | |
|                    "left block unavailable for requested intra mode at %d %d\n",
 | |
|                    sl->mb_x, sl->mb_y);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return mode;
 | |
| }
 | |
| 
 | |
| const uint8_t *ff_h264_decode_nal(H264Context *h, H264SliceContext *sl,
 | |
|                                   const uint8_t *src,
 | |
|                                   int *dst_length, int *consumed, int length)
 | |
| {
 | |
|     int i, si, di;
 | |
|     uint8_t *dst;
 | |
| 
 | |
|     // src[0]&0x80; // forbidden bit
 | |
|     h->nal_ref_idc   = src[0] >> 5;
 | |
|     h->nal_unit_type = src[0] & 0x1F;
 | |
| 
 | |
|     src++;
 | |
|     length--;
 | |
| 
 | |
| #define STARTCODE_TEST                                                  \
 | |
|     if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {         \
 | |
|         if (src[i + 2] != 3) {                                          \
 | |
|             /* startcode, so we must be past the end */                 \
 | |
|             length = i;                                                 \
 | |
|         }                                                               \
 | |
|         break;                                                          \
 | |
|     }
 | |
| 
 | |
| #if HAVE_FAST_UNALIGNED
 | |
| #define FIND_FIRST_ZERO                                                 \
 | |
|     if (i > 0 && !src[i])                                               \
 | |
|         i--;                                                            \
 | |
|     while (src[i])                                                      \
 | |
|         i++
 | |
| 
 | |
| #if HAVE_FAST_64BIT
 | |
|     for (i = 0; i + 1 < length; i += 9) {
 | |
|         if (!((~AV_RN64A(src + i) &
 | |
|                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
 | |
|               0x8000800080008080ULL))
 | |
|             continue;
 | |
|         FIND_FIRST_ZERO;
 | |
|         STARTCODE_TEST;
 | |
|         i -= 7;
 | |
|     }
 | |
| #else
 | |
|     for (i = 0; i + 1 < length; i += 5) {
 | |
|         if (!((~AV_RN32A(src + i) &
 | |
|                (AV_RN32A(src + i) - 0x01000101U)) &
 | |
|               0x80008080U))
 | |
|             continue;
 | |
|         FIND_FIRST_ZERO;
 | |
|         STARTCODE_TEST;
 | |
|         i -= 3;
 | |
|     }
 | |
| #endif
 | |
| #else
 | |
|     for (i = 0; i + 1 < length; i += 2) {
 | |
|         if (src[i])
 | |
|             continue;
 | |
|         if (i > 0 && src[i - 1] == 0)
 | |
|             i--;
 | |
|         STARTCODE_TEST;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (i >= length - 1) { // no escaped 0
 | |
|         *dst_length = length;
 | |
|         *consumed   = length + 1; // +1 for the header
 | |
|         return src;
 | |
|     }
 | |
| 
 | |
|     av_fast_malloc(&sl->rbsp_buffer, &sl->rbsp_buffer_size,
 | |
|                    length + FF_INPUT_BUFFER_PADDING_SIZE);
 | |
|     dst = sl->rbsp_buffer;
 | |
| 
 | |
|     if (!dst)
 | |
|         return NULL;
 | |
| 
 | |
|     memcpy(dst, src, i);
 | |
|     si = di = i;
 | |
|     while (si + 2 < length) {
 | |
|         // remove escapes (very rare 1:2^22)
 | |
|         if (src[si + 2] > 3) {
 | |
|             dst[di++] = src[si++];
 | |
|             dst[di++] = src[si++];
 | |
|         } else if (src[si] == 0 && src[si + 1] == 0) {
 | |
|             if (src[si + 2] == 3) { // escape
 | |
|                 dst[di++]  = 0;
 | |
|                 dst[di++]  = 0;
 | |
|                 si        += 3;
 | |
|                 continue;
 | |
|             } else // next start code
 | |
|                 goto nsc;
 | |
|         }
 | |
| 
 | |
|         dst[di++] = src[si++];
 | |
|     }
 | |
|     while (si < length)
 | |
|         dst[di++] = src[si++];
 | |
| 
 | |
| nsc:
 | |
|     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
 | |
| 
 | |
|     *dst_length = di;
 | |
|     *consumed   = si + 1; // +1 for the header
 | |
|     /* FIXME store exact number of bits in the getbitcontext
 | |
|      * (it is needed for decoding) */
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Identify the exact end of the bitstream
 | |
|  * @return the length of the trailing, or 0 if damaged
 | |
|  */
 | |
| static int decode_rbsp_trailing(H264Context *h, const uint8_t *src)
 | |
| {
 | |
|     int v = *src;
 | |
|     int r;
 | |
| 
 | |
|     ff_tlog(h->avctx, "rbsp trailing %X\n", v);
 | |
| 
 | |
|     for (r = 1; r < 9; r++) {
 | |
|         if (v & 1)
 | |
|             return r;
 | |
|         v >>= 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void ff_h264_free_tables(H264Context *h)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     av_freep(&h->intra4x4_pred_mode);
 | |
|     av_freep(&h->chroma_pred_mode_table);
 | |
|     av_freep(&h->cbp_table);
 | |
|     av_freep(&h->mvd_table[0]);
 | |
|     av_freep(&h->mvd_table[1]);
 | |
|     av_freep(&h->direct_table);
 | |
|     av_freep(&h->non_zero_count);
 | |
|     av_freep(&h->slice_table_base);
 | |
|     h->slice_table = NULL;
 | |
|     av_freep(&h->list_counts);
 | |
| 
 | |
|     av_freep(&h->mb2b_xy);
 | |
|     av_freep(&h->mb2br_xy);
 | |
| 
 | |
|     av_buffer_pool_uninit(&h->qscale_table_pool);
 | |
|     av_buffer_pool_uninit(&h->mb_type_pool);
 | |
|     av_buffer_pool_uninit(&h->motion_val_pool);
 | |
|     av_buffer_pool_uninit(&h->ref_index_pool);
 | |
| 
 | |
|     for (i = 0; i < h->nb_slice_ctx; i++) {
 | |
|         H264SliceContext *sl = &h->slice_ctx[i];
 | |
| 
 | |
|         av_freep(&sl->dc_val_base);
 | |
|         av_freep(&sl->er.mb_index2xy);
 | |
|         av_freep(&sl->er.error_status_table);
 | |
|         av_freep(&sl->er.er_temp_buffer);
 | |
| 
 | |
|         av_freep(&sl->bipred_scratchpad);
 | |
|         av_freep(&sl->edge_emu_buffer);
 | |
|         av_freep(&sl->top_borders[0]);
 | |
|         av_freep(&sl->top_borders[1]);
 | |
| 
 | |
|         sl->bipred_scratchpad_allocated = 0;
 | |
|         sl->edge_emu_buffer_allocated   = 0;
 | |
|         sl->top_borders_allocated[0]    = 0;
 | |
|         sl->top_borders_allocated[1]    = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_h264_alloc_tables(H264Context *h)
 | |
| {
 | |
|     const int big_mb_num = h->mb_stride * (h->mb_height + 1);
 | |
|     const int row_mb_num = h->mb_stride * 2 * h->avctx->thread_count;
 | |
|     int x, y;
 | |
| 
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode,
 | |
|                       row_mb_num * 8 * sizeof(uint8_t), fail)
 | |
|     h->slice_ctx[0].intra4x4_pred_mode = h->intra4x4_pred_mode;
 | |
| 
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count,
 | |
|                       big_mb_num * 48 * sizeof(uint8_t), fail)
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base,
 | |
|                       (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail)
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table,
 | |
|                       big_mb_num * sizeof(uint16_t), fail)
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table,
 | |
|                       big_mb_num * sizeof(uint8_t), fail)
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0],
 | |
|                       16 * row_mb_num * sizeof(uint8_t), fail);
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1],
 | |
|                       16 * row_mb_num * sizeof(uint8_t), fail);
 | |
|     h->slice_ctx[0].mvd_table[0] = h->mvd_table[0];
 | |
|     h->slice_ctx[0].mvd_table[1] = h->mvd_table[1];
 | |
| 
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table,
 | |
|                       4 * big_mb_num * sizeof(uint8_t), fail);
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts,
 | |
|                       big_mb_num * sizeof(uint8_t), fail)
 | |
| 
 | |
|     memset(h->slice_table_base, -1,
 | |
|            (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base));
 | |
|     h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1;
 | |
| 
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy,
 | |
|                       big_mb_num * sizeof(uint32_t), fail);
 | |
|     FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy,
 | |
|                       big_mb_num * sizeof(uint32_t), fail);
 | |
|     for (y = 0; y < h->mb_height; y++)
 | |
|         for (x = 0; x < h->mb_width; x++) {
 | |
|             const int mb_xy = x + y * h->mb_stride;
 | |
|             const int b_xy  = 4 * x + 4 * y * h->b_stride;
 | |
| 
 | |
|             h->mb2b_xy[mb_xy]  = b_xy;
 | |
|             h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride)));
 | |
|         }
 | |
| 
 | |
|     if (!h->dequant4_coeff[0])
 | |
|         h264_init_dequant_tables(h);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     ff_h264_free_tables(h);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Init context
 | |
|  * Allocate buffers which are not shared amongst multiple threads.
 | |
|  */
 | |
| int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
 | |
| {
 | |
|     ERContext *er = &sl->er;
 | |
|     int mb_array_size = h->mb_height * h->mb_stride;
 | |
|     int y_size  = (2 * h->mb_width + 1) * (2 * h->mb_height + 1);
 | |
|     int c_size  = h->mb_stride * (h->mb_height + 1);
 | |
|     int yc_size = y_size + 2   * c_size;
 | |
|     int x, y, i;
 | |
| 
 | |
|     sl->ref_cache[0][scan8[5]  + 1] =
 | |
|     sl->ref_cache[0][scan8[7]  + 1] =
 | |
|     sl->ref_cache[0][scan8[13] + 1] =
 | |
|     sl->ref_cache[1][scan8[5]  + 1] =
 | |
|     sl->ref_cache[1][scan8[7]  + 1] =
 | |
|     sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE;
 | |
| 
 | |
|     if (CONFIG_ERROR_RESILIENCE) {
 | |
|         /* init ER */
 | |
|         er->avctx          = h->avctx;
 | |
|         er->decode_mb      = h264_er_decode_mb;
 | |
|         er->opaque         = h;
 | |
|         er->quarter_sample = 1;
 | |
| 
 | |
|         er->mb_num      = h->mb_num;
 | |
|         er->mb_width    = h->mb_width;
 | |
|         er->mb_height   = h->mb_height;
 | |
|         er->mb_stride   = h->mb_stride;
 | |
|         er->b8_stride   = h->mb_width * 2 + 1;
 | |
| 
 | |
|         // error resilience code looks cleaner with this
 | |
|         FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy,
 | |
|                           (h->mb_num + 1) * sizeof(int), fail);
 | |
| 
 | |
|         for (y = 0; y < h->mb_height; y++)
 | |
|             for (x = 0; x < h->mb_width; x++)
 | |
|                 er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride;
 | |
| 
 | |
|         er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) *
 | |
|                                                       h->mb_stride + h->mb_width;
 | |
| 
 | |
|         FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table,
 | |
|                           mb_array_size * sizeof(uint8_t), fail);
 | |
| 
 | |
|         FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer,
 | |
|                          h->mb_height * h->mb_stride, fail);
 | |
| 
 | |
|         FF_ALLOCZ_OR_GOTO(h->avctx, sl->dc_val_base,
 | |
|                           yc_size * sizeof(int16_t), fail);
 | |
|         er->dc_val[0] = sl->dc_val_base + h->mb_width * 2 + 2;
 | |
|         er->dc_val[1] = sl->dc_val_base + y_size + h->mb_stride + 1;
 | |
|         er->dc_val[2] = er->dc_val[1] + c_size;
 | |
|         for (i = 0; i < yc_size; i++)
 | |
|             sl->dc_val_base[i] = 1024;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us
 | |
| }
 | |
| 
 | |
| static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
 | |
|                             int parse_extradata);
 | |
| 
 | |
| int ff_h264_decode_extradata(H264Context *h)
 | |
| {
 | |
|     AVCodecContext *avctx = h->avctx;
 | |
|     int ret;
 | |
| 
 | |
|     if (avctx->extradata[0] == 1) {
 | |
|         int i, cnt, nalsize;
 | |
|         unsigned char *p = avctx->extradata;
 | |
| 
 | |
|         h->is_avc = 1;
 | |
| 
 | |
|         if (avctx->extradata_size < 7) {
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "avcC %d too short\n", avctx->extradata_size);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         /* sps and pps in the avcC always have length coded with 2 bytes,
 | |
|          * so put a fake nal_length_size = 2 while parsing them */
 | |
|         h->nal_length_size = 2;
 | |
|         // Decode sps from avcC
 | |
|         cnt = *(p + 5) & 0x1f; // Number of sps
 | |
|         p  += 6;
 | |
|         for (i = 0; i < cnt; i++) {
 | |
|             nalsize = AV_RB16(p) + 2;
 | |
|             if (p - avctx->extradata + nalsize > avctx->extradata_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             ret = decode_nal_units(h, p, nalsize, 1);
 | |
|             if (ret < 0) {
 | |
|                 av_log(avctx, AV_LOG_ERROR,
 | |
|                        "Decoding sps %d from avcC failed\n", i);
 | |
|                 return ret;
 | |
|             }
 | |
|             p += nalsize;
 | |
|         }
 | |
|         // Decode pps from avcC
 | |
|         cnt = *(p++); // Number of pps
 | |
|         for (i = 0; i < cnt; i++) {
 | |
|             nalsize = AV_RB16(p) + 2;
 | |
|             if (p - avctx->extradata + nalsize > avctx->extradata_size)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             ret = decode_nal_units(h, p, nalsize, 1);
 | |
|             if (ret < 0) {
 | |
|                 av_log(avctx, AV_LOG_ERROR,
 | |
|                        "Decoding pps %d from avcC failed\n", i);
 | |
|                 return ret;
 | |
|             }
 | |
|             p += nalsize;
 | |
|         }
 | |
|         // Store right nal length size that will be used to parse all other nals
 | |
|         h->nal_length_size = (avctx->extradata[4] & 0x03) + 1;
 | |
|     } else {
 | |
|         h->is_avc = 0;
 | |
|         ret = decode_nal_units(h, avctx->extradata, avctx->extradata_size, 1);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int h264_init_context(AVCodecContext *avctx, H264Context *h)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     h->avctx                 = avctx;
 | |
|     h->dequant_coeff_pps     = -1;
 | |
| 
 | |
|     h->picture_structure     = PICT_FRAME;
 | |
|     h->slice_context_count   = 1;
 | |
|     h->workaround_bugs       = avctx->workaround_bugs;
 | |
|     h->flags                 = avctx->flags;
 | |
|     h->prev_poc_msb          = 1 << 16;
 | |
|     h->x264_build            = -1;
 | |
|     h->recovery_frame        = -1;
 | |
|     h->frame_recovered       = 0;
 | |
| 
 | |
|     h->next_outputed_poc = INT_MIN;
 | |
|     for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
 | |
|         h->last_pocs[i] = INT_MIN;
 | |
| 
 | |
|     ff_h264_reset_sei(h);
 | |
| 
 | |
|     avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
 | |
| 
 | |
|     h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ?  H264_MAX_THREADS : 1;
 | |
|     h->slice_ctx = av_mallocz_array(h->nb_slice_ctx, sizeof(*h->slice_ctx));
 | |
|     if (!h->slice_ctx) {
 | |
|         h->nb_slice_ctx = 0;
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
 | |
|         h->DPB[i].f = av_frame_alloc();
 | |
|         if (!h->DPB[i].f)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     h->cur_pic.f = av_frame_alloc();
 | |
|     if (!h->cur_pic.f)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     for (i = 0; i < h->nb_slice_ctx; i++)
 | |
|         h->slice_ctx[i].h264 = h;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold int ff_h264_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     H264Context *h = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     ret = h264_init_context(avctx, h);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* set defaults */
 | |
|     if (!avctx->has_b_frames)
 | |
|         h->low_delay = 1;
 | |
| 
 | |
|     ff_h264_decode_init_vlc();
 | |
| 
 | |
|     ff_init_cabac_states();
 | |
| 
 | |
|     if (avctx->codec_id == AV_CODEC_ID_H264) {
 | |
|         if (avctx->ticks_per_frame == 1)
 | |
|             h->avctx->framerate.num *= 2;
 | |
|         avctx->ticks_per_frame = 2;
 | |
|     }
 | |
| 
 | |
|     if (avctx->extradata_size > 0 && avctx->extradata) {
 | |
|        ret = ff_h264_decode_extradata(h);
 | |
|        if (ret < 0) {
 | |
|            ff_h264_free_context(h);
 | |
|            return ret;
 | |
|        }
 | |
|     }
 | |
| 
 | |
|     if (h->sps.bitstream_restriction_flag &&
 | |
|         h->avctx->has_b_frames < h->sps.num_reorder_frames) {
 | |
|         h->avctx->has_b_frames = h->sps.num_reorder_frames;
 | |
|         h->low_delay           = 0;
 | |
|     }
 | |
| 
 | |
|     avctx->internal->allocate_progress = 1;
 | |
| 
 | |
|     if (h->enable_er) {
 | |
|         av_log(avctx, AV_LOG_WARNING,
 | |
|                "Error resilience is enabled. It is unsafe and unsupported and may crash. "
 | |
|                "Use it at your own risk\n");
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int decode_init_thread_copy(AVCodecContext *avctx)
 | |
| {
 | |
|     H264Context *h = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     if (!avctx->internal->is_copy)
 | |
|         return 0;
 | |
| 
 | |
|     memset(h, 0, sizeof(*h));
 | |
| 
 | |
|     ret = h264_init_context(avctx, h);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     h->context_initialized = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Run setup operations that must be run after slice header decoding.
 | |
|  * This includes finding the next displayed frame.
 | |
|  *
 | |
|  * @param h h264 master context
 | |
|  * @param setup_finished enough NALs have been read that we can call
 | |
|  * ff_thread_finish_setup()
 | |
|  */
 | |
| static void decode_postinit(H264Context *h, int setup_finished)
 | |
| {
 | |
|     H264Picture *out = h->cur_pic_ptr;
 | |
|     H264Picture *cur = h->cur_pic_ptr;
 | |
|     int i, pics, out_of_order, out_idx;
 | |
|     int invalid = 0, cnt = 0;
 | |
| 
 | |
|     h->cur_pic_ptr->f->pict_type = h->pict_type;
 | |
| 
 | |
|     if (h->next_output_pic)
 | |
|         return;
 | |
| 
 | |
|     if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) {
 | |
|         /* FIXME: if we have two PAFF fields in one packet, we can't start
 | |
|          * the next thread here. If we have one field per packet, we can.
 | |
|          * The check in decode_nal_units() is not good enough to find this
 | |
|          * yet, so we assume the worst for now. */
 | |
|         // if (setup_finished)
 | |
|         //    ff_thread_finish_setup(h->avctx);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cur->f->interlaced_frame = 0;
 | |
|     cur->f->repeat_pict      = 0;
 | |
| 
 | |
|     /* Signal interlacing information externally. */
 | |
|     /* Prioritize picture timing SEI information over used
 | |
|      * decoding process if it exists. */
 | |
| 
 | |
|     if (h->sps.pic_struct_present_flag) {
 | |
|         switch (h->sei_pic_struct) {
 | |
|         case SEI_PIC_STRUCT_FRAME:
 | |
|             break;
 | |
|         case SEI_PIC_STRUCT_TOP_FIELD:
 | |
|         case SEI_PIC_STRUCT_BOTTOM_FIELD:
 | |
|             cur->f->interlaced_frame = 1;
 | |
|             break;
 | |
|         case SEI_PIC_STRUCT_TOP_BOTTOM:
 | |
|         case SEI_PIC_STRUCT_BOTTOM_TOP:
 | |
|             if (FIELD_OR_MBAFF_PICTURE(h))
 | |
|                 cur->f->interlaced_frame = 1;
 | |
|             else
 | |
|                 // try to flag soft telecine progressive
 | |
|                 cur->f->interlaced_frame = h->prev_interlaced_frame;
 | |
|             break;
 | |
|         case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
 | |
|         case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
 | |
|             /* Signal the possibility of telecined film externally
 | |
|              * (pic_struct 5,6). From these hints, let the applications
 | |
|              * decide if they apply deinterlacing. */
 | |
|             cur->f->repeat_pict = 1;
 | |
|             break;
 | |
|         case SEI_PIC_STRUCT_FRAME_DOUBLING:
 | |
|             cur->f->repeat_pict = 2;
 | |
|             break;
 | |
|         case SEI_PIC_STRUCT_FRAME_TRIPLING:
 | |
|             cur->f->repeat_pict = 4;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((h->sei_ct_type & 3) &&
 | |
|             h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
 | |
|             cur->f->interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
 | |
|     } else {
 | |
|         /* Derive interlacing flag from used decoding process. */
 | |
|         cur->f->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
 | |
|     }
 | |
|     h->prev_interlaced_frame = cur->f->interlaced_frame;
 | |
| 
 | |
|     if (cur->field_poc[0] != cur->field_poc[1]) {
 | |
|         /* Derive top_field_first from field pocs. */
 | |
|         cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1];
 | |
|     } else {
 | |
|         if (cur->f->interlaced_frame || h->sps.pic_struct_present_flag) {
 | |
|             /* Use picture timing SEI information. Even if it is a
 | |
|              * information of a past frame, better than nothing. */
 | |
|             if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM ||
 | |
|                 h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
 | |
|                 cur->f->top_field_first = 1;
 | |
|             else
 | |
|                 cur->f->top_field_first = 0;
 | |
|         } else {
 | |
|             /* Most likely progressive */
 | |
|             cur->f->top_field_first = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (h->sei_frame_packing_present &&
 | |
|         h->frame_packing_arrangement_type >= 0 &&
 | |
|         h->frame_packing_arrangement_type <= 6 &&
 | |
|         h->content_interpretation_type > 0 &&
 | |
|         h->content_interpretation_type < 3) {
 | |
|         AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f);
 | |
|         if (!stereo)
 | |
|             return;
 | |
| 
 | |
|         switch (h->frame_packing_arrangement_type) {
 | |
|         case 0:
 | |
|             stereo->type = AV_STEREO3D_CHECKERBOARD;
 | |
|             break;
 | |
|         case 1:
 | |
|             stereo->type = AV_STEREO3D_COLUMNS;
 | |
|             break;
 | |
|         case 2:
 | |
|             stereo->type = AV_STEREO3D_LINES;
 | |
|             break;
 | |
|         case 3:
 | |
|             if (h->quincunx_subsampling)
 | |
|                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
 | |
|             else
 | |
|                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
 | |
|             break;
 | |
|         case 4:
 | |
|             stereo->type = AV_STEREO3D_TOPBOTTOM;
 | |
|             break;
 | |
|         case 5:
 | |
|             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
 | |
|             break;
 | |
|         case 6:
 | |
|             stereo->type = AV_STEREO3D_2D;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (h->content_interpretation_type == 2)
 | |
|             stereo->flags = AV_STEREO3D_FLAG_INVERT;
 | |
|     }
 | |
| 
 | |
|     if (h->sei_display_orientation_present &&
 | |
|         (h->sei_anticlockwise_rotation || h->sei_hflip || h->sei_vflip)) {
 | |
|         double angle = h->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
 | |
|         AVFrameSideData *rotation = av_frame_new_side_data(cur->f,
 | |
|                                                            AV_FRAME_DATA_DISPLAYMATRIX,
 | |
|                                                            sizeof(int32_t) * 9);
 | |
|         if (!rotation)
 | |
|             return;
 | |
| 
 | |
|         av_display_rotation_set((int32_t *)rotation->data, angle);
 | |
|         av_display_matrix_flip((int32_t *)rotation->data,
 | |
|                                h->sei_hflip, h->sei_vflip);
 | |
|     }
 | |
| 
 | |
|     // FIXME do something with unavailable reference frames
 | |
| 
 | |
|     /* Sort B-frames into display order */
 | |
| 
 | |
|     if (h->sps.bitstream_restriction_flag &&
 | |
|         h->avctx->has_b_frames < h->sps.num_reorder_frames) {
 | |
|         h->avctx->has_b_frames = h->sps.num_reorder_frames;
 | |
|         h->low_delay           = 0;
 | |
|     }
 | |
| 
 | |
|     if (h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT &&
 | |
|         !h->sps.bitstream_restriction_flag) {
 | |
|         h->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1;
 | |
|         h->low_delay           = 0;
 | |
|     }
 | |
| 
 | |
|     pics = 0;
 | |
|     while (h->delayed_pic[pics])
 | |
|         pics++;
 | |
| 
 | |
|     assert(pics <= MAX_DELAYED_PIC_COUNT);
 | |
| 
 | |
|     h->delayed_pic[pics++] = cur;
 | |
|     if (cur->reference == 0)
 | |
|         cur->reference = DELAYED_PIC_REF;
 | |
| 
 | |
|     /* Frame reordering. This code takes pictures from coding order and sorts
 | |
|      * them by their incremental POC value into display order. It supports POC
 | |
|      * gaps, MMCO reset codes and random resets.
 | |
|      * A "display group" can start either with a IDR frame (f.key_frame = 1),
 | |
|      * and/or can be closed down with a MMCO reset code. In sequences where
 | |
|      * there is no delay, we can't detect that (since the frame was already
 | |
|      * output to the user), so we also set h->mmco_reset to detect the MMCO
 | |
|      * reset code.
 | |
|      * FIXME: if we detect insufficient delays (as per h->avctx->has_b_frames),
 | |
|      * we increase the delay between input and output. All frames affected by
 | |
|      * the lag (e.g. those that should have been output before another frame
 | |
|      * that we already returned to the user) will be dropped. This is a bug
 | |
|      * that we will fix later. */
 | |
|     for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) {
 | |
|         cnt     += out->poc < h->last_pocs[i];
 | |
|         invalid += out->poc == INT_MIN;
 | |
|     }
 | |
|     if (!h->mmco_reset && !cur->f->key_frame &&
 | |
|         cnt + invalid == MAX_DELAYED_PIC_COUNT && cnt > 0) {
 | |
|         h->mmco_reset = 2;
 | |
|         if (pics > 1)
 | |
|             h->delayed_pic[pics - 2]->mmco_reset = 2;
 | |
|     }
 | |
|     if (h->mmco_reset || cur->f->key_frame) {
 | |
|         for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
 | |
|             h->last_pocs[i] = INT_MIN;
 | |
|         cnt     = 0;
 | |
|         invalid = MAX_DELAYED_PIC_COUNT;
 | |
|     }
 | |
|     out     = h->delayed_pic[0];
 | |
|     out_idx = 0;
 | |
|     for (i = 1; i < MAX_DELAYED_PIC_COUNT &&
 | |
|                 h->delayed_pic[i] &&
 | |
|                 !h->delayed_pic[i - 1]->mmco_reset &&
 | |
|                 !h->delayed_pic[i]->f->key_frame;
 | |
|          i++)
 | |
|         if (h->delayed_pic[i]->poc < out->poc) {
 | |
|             out     = h->delayed_pic[i];
 | |
|             out_idx = i;
 | |
|         }
 | |
|     if (h->avctx->has_b_frames == 0 &&
 | |
|         (h->delayed_pic[0]->f->key_frame || h->mmco_reset))
 | |
|         h->next_outputed_poc = INT_MIN;
 | |
|     out_of_order = !out->f->key_frame && !h->mmco_reset &&
 | |
|                    (out->poc < h->next_outputed_poc);
 | |
| 
 | |
|     if (h->sps.bitstream_restriction_flag &&
 | |
|         h->avctx->has_b_frames >= h->sps.num_reorder_frames) {
 | |
|     } else if (out_of_order && pics - 1 == h->avctx->has_b_frames &&
 | |
|                h->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) {
 | |
|         if (invalid + cnt < MAX_DELAYED_PIC_COUNT) {
 | |
|             h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, cnt);
 | |
|         }
 | |
|         h->low_delay = 0;
 | |
|     } else if (h->low_delay &&
 | |
|                ((h->next_outputed_poc != INT_MIN &&
 | |
|                  out->poc > h->next_outputed_poc + 2) ||
 | |
|                 cur->f->pict_type == AV_PICTURE_TYPE_B)) {
 | |
|         h->low_delay = 0;
 | |
|         h->avctx->has_b_frames++;
 | |
|     }
 | |
| 
 | |
|     if (pics > h->avctx->has_b_frames) {
 | |
|         out->reference &= ~DELAYED_PIC_REF;
 | |
|         // for frame threading, the owner must be the second field's thread or
 | |
|         // else the first thread can release the picture and reuse it unsafely
 | |
|         for (i = out_idx; h->delayed_pic[i]; i++)
 | |
|             h->delayed_pic[i] = h->delayed_pic[i + 1];
 | |
|     }
 | |
|     memmove(h->last_pocs, &h->last_pocs[1],
 | |
|             sizeof(*h->last_pocs) * (MAX_DELAYED_PIC_COUNT - 1));
 | |
|     h->last_pocs[MAX_DELAYED_PIC_COUNT - 1] = cur->poc;
 | |
|     if (!out_of_order && pics > h->avctx->has_b_frames) {
 | |
|         h->next_output_pic = out;
 | |
|         if (out->mmco_reset) {
 | |
|             if (out_idx > 0) {
 | |
|                 h->next_outputed_poc                    = out->poc;
 | |
|                 h->delayed_pic[out_idx - 1]->mmco_reset = out->mmco_reset;
 | |
|             } else {
 | |
|                 h->next_outputed_poc = INT_MIN;
 | |
|             }
 | |
|         } else {
 | |
|             if (out_idx == 0 && pics > 1 && h->delayed_pic[0]->f->key_frame) {
 | |
|                 h->next_outputed_poc = INT_MIN;
 | |
|             } else {
 | |
|                 h->next_outputed_poc = out->poc;
 | |
|             }
 | |
|         }
 | |
|         h->mmco_reset = 0;
 | |
|     } else {
 | |
|         av_log(h->avctx, AV_LOG_DEBUG, "no picture\n");
 | |
|     }
 | |
| 
 | |
|     if (h->next_output_pic) {
 | |
|         if (h->next_output_pic->recovered) {
 | |
|             // We have reached an recovery point and all frames after it in
 | |
|             // display order are "recovered".
 | |
|             h->frame_recovered |= FRAME_RECOVERED_SEI;
 | |
|         }
 | |
|         h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI);
 | |
|     }
 | |
| 
 | |
|     if (setup_finished && !h->avctx->hwaccel)
 | |
|         ff_thread_finish_setup(h->avctx);
 | |
| }
 | |
| 
 | |
| int ff_pred_weight_table(H264Context *h, H264SliceContext *sl)
 | |
| {
 | |
|     int list, i;
 | |
|     int luma_def, chroma_def;
 | |
| 
 | |
|     sl->use_weight             = 0;
 | |
|     sl->use_weight_chroma      = 0;
 | |
|     sl->luma_log2_weight_denom = get_ue_golomb(&sl->gb);
 | |
|     if (h->sps.chroma_format_idc)
 | |
|         sl->chroma_log2_weight_denom = get_ue_golomb(&sl->gb);
 | |
|     luma_def   = 1 << sl->luma_log2_weight_denom;
 | |
|     chroma_def = 1 << sl->chroma_log2_weight_denom;
 | |
| 
 | |
|     for (list = 0; list < 2; list++) {
 | |
|         sl->luma_weight_flag[list]   = 0;
 | |
|         sl->chroma_weight_flag[list] = 0;
 | |
|         for (i = 0; i < sl->ref_count[list]; i++) {
 | |
|             int luma_weight_flag, chroma_weight_flag;
 | |
| 
 | |
|             luma_weight_flag = get_bits1(&sl->gb);
 | |
|             if (luma_weight_flag) {
 | |
|                 sl->luma_weight[i][list][0] = get_se_golomb(&sl->gb);
 | |
|                 sl->luma_weight[i][list][1] = get_se_golomb(&sl->gb);
 | |
|                 if (sl->luma_weight[i][list][0] != luma_def ||
 | |
|                     sl->luma_weight[i][list][1] != 0) {
 | |
|                     sl->use_weight             = 1;
 | |
|                     sl->luma_weight_flag[list] = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 sl->luma_weight[i][list][0] = luma_def;
 | |
|                 sl->luma_weight[i][list][1] = 0;
 | |
|             }
 | |
| 
 | |
|             if (h->sps.chroma_format_idc) {
 | |
|                 chroma_weight_flag = get_bits1(&sl->gb);
 | |
|                 if (chroma_weight_flag) {
 | |
|                     int j;
 | |
|                     for (j = 0; j < 2; j++) {
 | |
|                         sl->chroma_weight[i][list][j][0] = get_se_golomb(&sl->gb);
 | |
|                         sl->chroma_weight[i][list][j][1] = get_se_golomb(&sl->gb);
 | |
|                         if (sl->chroma_weight[i][list][j][0] != chroma_def ||
 | |
|                             sl->chroma_weight[i][list][j][1] != 0) {
 | |
|                             sl->use_weight_chroma        = 1;
 | |
|                             sl->chroma_weight_flag[list] = 1;
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     int j;
 | |
|                     for (j = 0; j < 2; j++) {
 | |
|                         sl->chroma_weight[i][list][j][0] = chroma_def;
 | |
|                         sl->chroma_weight[i][list][j][1] = 0;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (sl->slice_type_nos != AV_PICTURE_TYPE_B)
 | |
|             break;
 | |
|     }
 | |
|     sl->use_weight = sl->use_weight || sl->use_weight_chroma;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * instantaneous decoder refresh.
 | |
|  */
 | |
| static void idr(H264Context *h)
 | |
| {
 | |
|     ff_h264_remove_all_refs(h);
 | |
|     h->prev_frame_num        =
 | |
|     h->prev_frame_num_offset =
 | |
|     h->prev_poc_msb          =
 | |
|     h->prev_poc_lsb          = 0;
 | |
| }
 | |
| 
 | |
| /* forget old pics after a seek */
 | |
| void ff_h264_flush_change(H264Context *h)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
 | |
|         h->last_pocs[i] = INT_MIN;
 | |
|     h->next_outputed_poc = INT_MIN;
 | |
|     h->prev_interlaced_frame = 1;
 | |
|     idr(h);
 | |
|     if (h->cur_pic_ptr)
 | |
|         h->cur_pic_ptr->reference = 0;
 | |
|     h->first_field = 0;
 | |
|     ff_h264_reset_sei(h);
 | |
|     h->recovery_frame = -1;
 | |
|     h->frame_recovered = 0;
 | |
| }
 | |
| 
 | |
| /* forget old pics after a seek */
 | |
| static void flush_dpb(AVCodecContext *avctx)
 | |
| {
 | |
|     H264Context *h = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     memset(h->delayed_pic, 0, sizeof(h->delayed_pic));
 | |
| 
 | |
|     ff_h264_flush_change(h);
 | |
| 
 | |
|     for (i = 0; i < H264_MAX_PICTURE_COUNT; i++)
 | |
|         ff_h264_unref_picture(h, &h->DPB[i]);
 | |
|     h->cur_pic_ptr = NULL;
 | |
|     ff_h264_unref_picture(h, &h->cur_pic);
 | |
| 
 | |
|     h->mb_y = 0;
 | |
| 
 | |
|     ff_h264_free_tables(h);
 | |
|     h->context_initialized = 0;
 | |
| }
 | |
| 
 | |
| int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
 | |
| {
 | |
|     const int max_frame_num = 1 << h->sps.log2_max_frame_num;
 | |
|     int field_poc[2];
 | |
| 
 | |
|     h->frame_num_offset = h->prev_frame_num_offset;
 | |
|     if (h->frame_num < h->prev_frame_num)
 | |
|         h->frame_num_offset += max_frame_num;
 | |
| 
 | |
|     if (h->sps.poc_type == 0) {
 | |
|         const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb;
 | |
| 
 | |
|         if (h->poc_lsb < h->prev_poc_lsb &&
 | |
|             h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2)
 | |
|             h->poc_msb = h->prev_poc_msb + max_poc_lsb;
 | |
|         else if (h->poc_lsb > h->prev_poc_lsb &&
 | |
|                  h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2)
 | |
|             h->poc_msb = h->prev_poc_msb - max_poc_lsb;
 | |
|         else
 | |
|             h->poc_msb = h->prev_poc_msb;
 | |
|         field_poc[0] =
 | |
|         field_poc[1] = h->poc_msb + h->poc_lsb;
 | |
|         if (h->picture_structure == PICT_FRAME)
 | |
|             field_poc[1] += h->delta_poc_bottom;
 | |
|     } else if (h->sps.poc_type == 1) {
 | |
|         int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
 | |
|         int i;
 | |
| 
 | |
|         if (h->sps.poc_cycle_length != 0)
 | |
|             abs_frame_num = h->frame_num_offset + h->frame_num;
 | |
|         else
 | |
|             abs_frame_num = 0;
 | |
| 
 | |
|         if (h->nal_ref_idc == 0 && abs_frame_num > 0)
 | |
|             abs_frame_num--;
 | |
| 
 | |
|         expected_delta_per_poc_cycle = 0;
 | |
|         for (i = 0; i < h->sps.poc_cycle_length; i++)
 | |
|             // FIXME integrate during sps parse
 | |
|             expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i];
 | |
| 
 | |
|         if (abs_frame_num > 0) {
 | |
|             int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
 | |
|             int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
 | |
| 
 | |
|             expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
 | |
|             for (i = 0; i <= frame_num_in_poc_cycle; i++)
 | |
|                 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i];
 | |
|         } else
 | |
|             expectedpoc = 0;
 | |
| 
 | |
|         if (h->nal_ref_idc == 0)
 | |
|             expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
 | |
| 
 | |
|         field_poc[0] = expectedpoc + h->delta_poc[0];
 | |
|         field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
 | |
| 
 | |
|         if (h->picture_structure == PICT_FRAME)
 | |
|             field_poc[1] += h->delta_poc[1];
 | |
|     } else {
 | |
|         int poc = 2 * (h->frame_num_offset + h->frame_num);
 | |
| 
 | |
|         if (!h->nal_ref_idc)
 | |
|             poc--;
 | |
| 
 | |
|         field_poc[0] = poc;
 | |
|         field_poc[1] = poc;
 | |
|     }
 | |
| 
 | |
|     if (h->picture_structure != PICT_BOTTOM_FIELD)
 | |
|         pic_field_poc[0] = field_poc[0];
 | |
|     if (h->picture_structure != PICT_TOP_FIELD)
 | |
|         pic_field_poc[1] = field_poc[1];
 | |
|     *pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute profile from profile_idc and constraint_set?_flags.
 | |
|  *
 | |
|  * @param sps SPS
 | |
|  *
 | |
|  * @return profile as defined by FF_PROFILE_H264_*
 | |
|  */
 | |
| int ff_h264_get_profile(SPS *sps)
 | |
| {
 | |
|     int profile = sps->profile_idc;
 | |
| 
 | |
|     switch (sps->profile_idc) {
 | |
|     case FF_PROFILE_H264_BASELINE:
 | |
|         // constraint_set1_flag set to 1
 | |
|         profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0;
 | |
|         break;
 | |
|     case FF_PROFILE_H264_HIGH_10:
 | |
|     case FF_PROFILE_H264_HIGH_422:
 | |
|     case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
 | |
|         // constraint_set3_flag set to 1
 | |
|         profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return profile;
 | |
| }
 | |
| 
 | |
| int ff_set_ref_count(H264Context *h, H264SliceContext *sl)
 | |
| {
 | |
|     int ref_count[2], list_count;
 | |
|     int num_ref_idx_active_override_flag, max_refs;
 | |
| 
 | |
|     // set defaults, might be overridden a few lines later
 | |
|     ref_count[0] = h->pps.ref_count[0];
 | |
|     ref_count[1] = h->pps.ref_count[1];
 | |
| 
 | |
|     if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
 | |
|         if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
 | |
|             sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
 | |
|         num_ref_idx_active_override_flag = get_bits1(&sl->gb);
 | |
| 
 | |
|         if (num_ref_idx_active_override_flag) {
 | |
|             ref_count[0] = get_ue_golomb(&sl->gb) + 1;
 | |
|             if (ref_count[0] < 1)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
 | |
|                 ref_count[1] = get_ue_golomb(&sl->gb) + 1;
 | |
|                 if (ref_count[1] < 1)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
 | |
|             list_count = 2;
 | |
|         else
 | |
|             list_count = 1;
 | |
|     } else {
 | |
|         list_count   = 0;
 | |
|         ref_count[0] = ref_count[1] = 0;
 | |
|     }
 | |
| 
 | |
|     max_refs = h->picture_structure == PICT_FRAME ? 16 : 32;
 | |
| 
 | |
|     if (ref_count[0] > max_refs || ref_count[1] > max_refs) {
 | |
|         av_log(h->avctx, AV_LOG_ERROR, "reference overflow\n");
 | |
|         sl->ref_count[0] = sl->ref_count[1] = 0;
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (list_count   != sl->list_count   ||
 | |
|         ref_count[0] != sl->ref_count[0] ||
 | |
|         ref_count[1] != sl->ref_count[1]) {
 | |
|         sl->ref_count[0] = ref_count[0];
 | |
|         sl->ref_count[1] = ref_count[1];
 | |
|         sl->list_count   = list_count;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int find_start_code(const uint8_t *buf, int buf_size,
 | |
|                            int buf_index, int next_avc)
 | |
| {
 | |
|     // start code prefix search
 | |
|     for (; buf_index + 3 < next_avc; buf_index++)
 | |
|         // This should always succeed in the first iteration.
 | |
|         if (buf[buf_index]     == 0 &&
 | |
|             buf[buf_index + 1] == 0 &&
 | |
|             buf[buf_index + 2] == 1)
 | |
|             break;
 | |
| 
 | |
|     if (buf_index + 3 >= buf_size)
 | |
|         return buf_size;
 | |
| 
 | |
|     return buf_index + 3;
 | |
| }
 | |
| 
 | |
| static int get_avc_nalsize(H264Context *h, const uint8_t *buf,
 | |
|                            int buf_size, int *buf_index)
 | |
| {
 | |
|     int i, nalsize = 0;
 | |
| 
 | |
|     if (*buf_index >= buf_size - h->nal_length_size)
 | |
|         return -1;
 | |
| 
 | |
|     for (i = 0; i < h->nal_length_size; i++)
 | |
|         nalsize = (nalsize << 8) | buf[(*buf_index)++];
 | |
|     if (nalsize <= 0 || nalsize > buf_size - *buf_index) {
 | |
|         av_log(h->avctx, AV_LOG_ERROR,
 | |
|                "AVC: nal size %d\n", nalsize);
 | |
|         return -1;
 | |
|     }
 | |
|     return nalsize;
 | |
| }
 | |
| 
 | |
| static int get_bit_length(H264Context *h, const uint8_t *buf,
 | |
|                           const uint8_t *ptr, int dst_length,
 | |
|                           int i, int next_avc)
 | |
| {
 | |
|     if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc &&
 | |
|         buf[i]     == 0x00 && buf[i + 1] == 0x00 &&
 | |
|         buf[i + 2] == 0x01 && buf[i + 3] == 0xE0)
 | |
|         h->workaround_bugs |= FF_BUG_TRUNCATED;
 | |
| 
 | |
|     if (!(h->workaround_bugs & FF_BUG_TRUNCATED))
 | |
|         while (dst_length > 0 && ptr[dst_length - 1] == 0)
 | |
|             dst_length--;
 | |
| 
 | |
|     if (!dst_length)
 | |
|         return 0;
 | |
| 
 | |
|     return 8 * dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1);
 | |
| }
 | |
| 
 | |
| static int get_last_needed_nal(H264Context *h, const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     int next_avc    = h->is_avc ? 0 : buf_size;
 | |
|     int nal_index   = 0;
 | |
|     int buf_index   = 0;
 | |
|     int nals_needed = 0;
 | |
| 
 | |
|     while(1) {
 | |
|         GetBitContext gb;
 | |
|         int nalsize = 0;
 | |
|         int dst_length, bit_length, consumed;
 | |
|         const uint8_t *ptr;
 | |
| 
 | |
|         if (buf_index >= next_avc) {
 | |
|             nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
 | |
|             if (nalsize < 0)
 | |
|                 break;
 | |
|             next_avc = buf_index + nalsize;
 | |
|         } else {
 | |
|             buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
 | |
|             if (buf_index >= buf_size)
 | |
|                 break;
 | |
|         }
 | |
| 
 | |
|         ptr = ff_h264_decode_nal(h, &h->slice_ctx[0], buf + buf_index, &dst_length, &consumed,
 | |
|                                  next_avc - buf_index);
 | |
| 
 | |
|         if (!ptr || dst_length < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         buf_index += consumed;
 | |
| 
 | |
|         bit_length = get_bit_length(h, buf, ptr, dst_length,
 | |
|                                     buf_index, next_avc);
 | |
|         nal_index++;
 | |
| 
 | |
|         /* packets can sometimes contain multiple PPS/SPS,
 | |
|          * e.g. two PAFF field pictures in one packet, or a demuxer
 | |
|          * which splits NALs strangely if so, when frame threading we
 | |
|          * can't start the next thread until we've read all of them */
 | |
|         switch (h->nal_unit_type) {
 | |
|         case NAL_SPS:
 | |
|         case NAL_PPS:
 | |
|             nals_needed = nal_index;
 | |
|             break;
 | |
|         case NAL_DPA:
 | |
|         case NAL_IDR_SLICE:
 | |
|         case NAL_SLICE:
 | |
|             init_get_bits(&gb, ptr, bit_length);
 | |
|             if (!get_ue_golomb(&gb))
 | |
|                 nals_needed = nal_index;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return nals_needed;
 | |
| }
 | |
| 
 | |
| static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size,
 | |
|                             int parse_extradata)
 | |
| {
 | |
|     AVCodecContext *const avctx = h->avctx;
 | |
|     H264SliceContext *sl;
 | |
|     int buf_index;
 | |
|     unsigned context_count;
 | |
|     int next_avc;
 | |
|     int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts
 | |
|     int nal_index;
 | |
|     int ret = 0;
 | |
| 
 | |
|     h->max_contexts = h->slice_context_count;
 | |
|     if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) {
 | |
|         h->current_slice = 0;
 | |
|         if (!h->first_field)
 | |
|             h->cur_pic_ptr = NULL;
 | |
|         ff_h264_reset_sei(h);
 | |
|     }
 | |
| 
 | |
|     if (avctx->active_thread_type & FF_THREAD_FRAME)
 | |
|         nals_needed = get_last_needed_nal(h, buf, buf_size);
 | |
| 
 | |
|     {
 | |
|         buf_index     = 0;
 | |
|         context_count = 0;
 | |
|         next_avc      = h->is_avc ? 0 : buf_size;
 | |
|         nal_index     = 0;
 | |
|         for (;;) {
 | |
|             int consumed;
 | |
|             int dst_length;
 | |
|             int bit_length;
 | |
|             const uint8_t *ptr;
 | |
|             int nalsize = 0;
 | |
|             int err;
 | |
| 
 | |
|             if (buf_index >= next_avc) {
 | |
|                 nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
 | |
|                 if (nalsize < 0)
 | |
|                     break;
 | |
|                 next_avc = buf_index + nalsize;
 | |
|             } else {
 | |
|                 buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
 | |
|                 if (buf_index >= buf_size)
 | |
|                     break;
 | |
|                 if (buf_index >= next_avc)
 | |
|                     continue;
 | |
|             }
 | |
| 
 | |
|             sl = &h->slice_ctx[context_count];
 | |
| 
 | |
|             ptr = ff_h264_decode_nal(h, sl, buf + buf_index, &dst_length,
 | |
|                                      &consumed, next_avc - buf_index);
 | |
|             if (!ptr || dst_length < 0) {
 | |
|                 ret = -1;
 | |
|                 goto end;
 | |
|             }
 | |
| 
 | |
|             bit_length = get_bit_length(h, buf, ptr, dst_length,
 | |
|                                         buf_index + consumed, next_avc);
 | |
| 
 | |
|             if (h->avctx->debug & FF_DEBUG_STARTCODE)
 | |
|                 av_log(h->avctx, AV_LOG_DEBUG,
 | |
|                        "NAL %d at %d/%d length %d\n",
 | |
|                        h->nal_unit_type, buf_index, buf_size, dst_length);
 | |
| 
 | |
|             if (h->is_avc && (nalsize != consumed) && nalsize)
 | |
|                 av_log(h->avctx, AV_LOG_DEBUG,
 | |
|                        "AVC: Consumed only %d bytes instead of %d\n",
 | |
|                        consumed, nalsize);
 | |
| 
 | |
|             buf_index += consumed;
 | |
|             nal_index++;
 | |
| 
 | |
|             if (avctx->skip_frame >= AVDISCARD_NONREF &&
 | |
|                 h->nal_ref_idc == 0 &&
 | |
|                 h->nal_unit_type != NAL_SEI)
 | |
|                 continue;
 | |
| 
 | |
| again:
 | |
|             /* Ignore every NAL unit type except PPS and SPS during extradata
 | |
|              * parsing. Decoding slices is not possible in codec init
 | |
|              * with frame-mt */
 | |
|             if (parse_extradata && HAVE_THREADS &&
 | |
|                 (h->avctx->active_thread_type & FF_THREAD_FRAME) &&
 | |
|                 (h->nal_unit_type != NAL_PPS &&
 | |
|                  h->nal_unit_type != NAL_SPS)) {
 | |
|                 if (h->nal_unit_type < NAL_AUD ||
 | |
|                     h->nal_unit_type > NAL_AUXILIARY_SLICE)
 | |
|                     av_log(avctx, AV_LOG_INFO,
 | |
|                            "Ignoring NAL unit %d during extradata parsing\n",
 | |
|                            h->nal_unit_type);
 | |
|                 h->nal_unit_type = NAL_FF_IGNORE;
 | |
|             }
 | |
|             err = 0;
 | |
|             switch (h->nal_unit_type) {
 | |
|             case NAL_IDR_SLICE:
 | |
|                 if (h->nal_unit_type != NAL_IDR_SLICE) {
 | |
|                     av_log(h->avctx, AV_LOG_ERROR,
 | |
|                            "Invalid mix of idr and non-idr slices\n");
 | |
|                     ret = -1;
 | |
|                     goto end;
 | |
|                 }
 | |
|                 idr(h); // FIXME ensure we don't lose some frames if there is reordering
 | |
|             case NAL_SLICE:
 | |
|                 init_get_bits(&sl->gb, ptr, bit_length);
 | |
| 
 | |
|                 if ((err = ff_h264_decode_slice_header(h, sl)))
 | |
|                     break;
 | |
| 
 | |
|                 if (h->sei_recovery_frame_cnt >= 0 && h->recovery_frame < 0) {
 | |
|                     h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) &
 | |
|                                         ((1 << h->sps.log2_max_frame_num) - 1);
 | |
|                 }
 | |
| 
 | |
|                 h->cur_pic_ptr->f->key_frame |=
 | |
|                     (h->nal_unit_type == NAL_IDR_SLICE) ||
 | |
|                     (h->sei_recovery_frame_cnt >= 0);
 | |
| 
 | |
|                 if (h->nal_unit_type == NAL_IDR_SLICE ||
 | |
|                     h->recovery_frame == h->frame_num) {
 | |
|                     h->recovery_frame         = -1;
 | |
|                     h->cur_pic_ptr->recovered = 1;
 | |
|                 }
 | |
|                 // If we have an IDR, all frames after it in decoded order are
 | |
|                 // "recovered".
 | |
|                 if (h->nal_unit_type == NAL_IDR_SLICE)
 | |
|                     h->frame_recovered |= FRAME_RECOVERED_IDR;
 | |
|                 h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR);
 | |
| 
 | |
|                 if (h->current_slice == 1) {
 | |
|                     if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS))
 | |
|                         decode_postinit(h, nal_index >= nals_needed);
 | |
| 
 | |
|                     if (h->avctx->hwaccel &&
 | |
|                         (ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0)
 | |
|                         return ret;
 | |
|                 }
 | |
| 
 | |
|                 if (sl->redundant_pic_count == 0 &&
 | |
|                     (avctx->skip_frame < AVDISCARD_NONREF ||
 | |
|                      h->nal_ref_idc) &&
 | |
|                     (avctx->skip_frame < AVDISCARD_BIDIR  ||
 | |
|                      sl->slice_type_nos != AV_PICTURE_TYPE_B) &&
 | |
|                     (avctx->skip_frame < AVDISCARD_NONKEY ||
 | |
|                      sl->slice_type_nos == AV_PICTURE_TYPE_I) &&
 | |
|                     avctx->skip_frame < AVDISCARD_ALL) {
 | |
|                     if (avctx->hwaccel) {
 | |
|                         ret = avctx->hwaccel->decode_slice(avctx,
 | |
|                                                            &buf[buf_index - consumed],
 | |
|                                                            consumed);
 | |
|                         if (ret < 0)
 | |
|                             return ret;
 | |
|                     } else
 | |
|                         context_count++;
 | |
|                 }
 | |
|                 break;
 | |
|             case NAL_DPA:
 | |
|             case NAL_DPB:
 | |
|             case NAL_DPC:
 | |
|                 avpriv_request_sample(avctx, "data partitioning");
 | |
|                 ret = AVERROR(ENOSYS);
 | |
|                 goto end;
 | |
|                 break;
 | |
|             case NAL_SEI:
 | |
|                 init_get_bits(&h->gb, ptr, bit_length);
 | |
|                 ret = ff_h264_decode_sei(h);
 | |
|                 if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
 | |
|                     goto end;
 | |
|                 break;
 | |
|             case NAL_SPS:
 | |
|                 init_get_bits(&h->gb, ptr, bit_length);
 | |
|                 ret = ff_h264_decode_seq_parameter_set(h);
 | |
|                 if (ret < 0 && h->is_avc && (nalsize != consumed) && nalsize) {
 | |
|                     av_log(h->avctx, AV_LOG_DEBUG,
 | |
|                            "SPS decoding failure, trying again with the complete NAL\n");
 | |
|                     init_get_bits(&h->gb, buf + buf_index + 1 - consumed,
 | |
|                                   8 * (nalsize - 1));
 | |
|                     ff_h264_decode_seq_parameter_set(h);
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             case NAL_PPS:
 | |
|                 init_get_bits(&h->gb, ptr, bit_length);
 | |
|                 ret = ff_h264_decode_picture_parameter_set(h, bit_length);
 | |
|                 if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
 | |
|                     goto end;
 | |
|                 break;
 | |
|             case NAL_AUD:
 | |
|             case NAL_END_SEQUENCE:
 | |
|             case NAL_END_STREAM:
 | |
|             case NAL_FILLER_DATA:
 | |
|             case NAL_SPS_EXT:
 | |
|             case NAL_AUXILIARY_SLICE:
 | |
|                 break;
 | |
|             case NAL_FF_IGNORE:
 | |
|                 break;
 | |
|             default:
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n",
 | |
|                        h->nal_unit_type, bit_length);
 | |
|             }
 | |
| 
 | |
|             if (context_count == h->max_contexts) {
 | |
|                 ret = ff_h264_execute_decode_slices(h, context_count);
 | |
|                 if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
 | |
|                     goto end;
 | |
|                 context_count = 0;
 | |
|             }
 | |
| 
 | |
|             if (err < 0) {
 | |
|                 av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n");
 | |
|                 sl->ref_count[0] = sl->ref_count[1] = sl->list_count = 0;
 | |
|             } else if (err == 1) {
 | |
|                 /* Slice could not be decoded in parallel mode, restart. Note
 | |
|                  * that rbsp_buffer is not transferred, but since we no longer
 | |
|                  * run in parallel mode this should not be an issue. */
 | |
|                 sl               = &h->slice_ctx[0];
 | |
|                 goto again;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (context_count) {
 | |
|         ret = ff_h264_execute_decode_slices(h, context_count);
 | |
|         if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
 | |
|             goto end;
 | |
|     }
 | |
| 
 | |
|     ret = 0;
 | |
| end:
 | |
|     /* clean up */
 | |
|     if (h->cur_pic_ptr && !h->droppable) {
 | |
|         ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
 | |
|                                   h->picture_structure == PICT_BOTTOM_FIELD);
 | |
|     }
 | |
| 
 | |
|     return (ret < 0) ? ret : buf_index;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Return the number of bytes consumed for building the current frame.
 | |
|  */
 | |
| static int get_consumed_bytes(int pos, int buf_size)
 | |
| {
 | |
|     if (pos == 0)
 | |
|         pos = 1;        // avoid infinite loops (I doubt that is needed but...)
 | |
|     if (pos + 10 > buf_size)
 | |
|         pos = buf_size; // oops ;)
 | |
| 
 | |
|     return pos;
 | |
| }
 | |
| 
 | |
| static int output_frame(H264Context *h, AVFrame *dst, AVFrame *src)
 | |
| {
 | |
|     int i;
 | |
|     int ret = av_frame_ref(dst, src);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (!h->sps.crop)
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int hshift = (i > 0) ? h->chroma_x_shift : 0;
 | |
|         int vshift = (i > 0) ? h->chroma_y_shift : 0;
 | |
|         int off    = ((h->sps.crop_left >> hshift) << h->pixel_shift) +
 | |
|                      (h->sps.crop_top >> vshift) * dst->linesize[i];
 | |
|         dst->data[i] += off;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int h264_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                              int *got_frame, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     H264Context *h     = avctx->priv_data;
 | |
|     AVFrame *pict      = data;
 | |
|     int buf_index      = 0;
 | |
|     int ret;
 | |
| 
 | |
|     h->flags = avctx->flags;
 | |
| 
 | |
|     /* end of stream, output what is still in the buffers */
 | |
| out:
 | |
|     if (buf_size == 0) {
 | |
|         H264Picture *out;
 | |
|         int i, out_idx;
 | |
| 
 | |
|         h->cur_pic_ptr = NULL;
 | |
| 
 | |
|         // FIXME factorize this with the output code below
 | |
|         out     = h->delayed_pic[0];
 | |
|         out_idx = 0;
 | |
|         for (i = 1;
 | |
|              h->delayed_pic[i] &&
 | |
|              !h->delayed_pic[i]->f->key_frame &&
 | |
|              !h->delayed_pic[i]->mmco_reset;
 | |
|              i++)
 | |
|             if (h->delayed_pic[i]->poc < out->poc) {
 | |
|                 out     = h->delayed_pic[i];
 | |
|                 out_idx = i;
 | |
|             }
 | |
| 
 | |
|         for (i = out_idx; h->delayed_pic[i]; i++)
 | |
|             h->delayed_pic[i] = h->delayed_pic[i + 1];
 | |
| 
 | |
|         if (out) {
 | |
|             ret = output_frame(h, pict, out->f);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|             *got_frame = 1;
 | |
|         }
 | |
| 
 | |
|         return buf_index;
 | |
|     }
 | |
| 
 | |
|     buf_index = decode_nal_units(h, buf, buf_size, 0);
 | |
|     if (buf_index < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
 | |
|         buf_size = 0;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) {
 | |
|         if (avctx->skip_frame >= AVDISCARD_NONREF)
 | |
|             return 0;
 | |
|         av_log(avctx, AV_LOG_ERROR, "no frame!\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) ||
 | |
|         (h->mb_y >= h->mb_height && h->mb_height)) {
 | |
|         if (avctx->flags2 & CODEC_FLAG2_CHUNKS)
 | |
|             decode_postinit(h, 1);
 | |
| 
 | |
|         ff_h264_field_end(h, &h->slice_ctx[0], 0);
 | |
| 
 | |
|         *got_frame = 0;
 | |
|         if (h->next_output_pic && ((avctx->flags & CODEC_FLAG_OUTPUT_CORRUPT) ||
 | |
|                                    h->next_output_pic->recovered)) {
 | |
|             if (!h->next_output_pic->recovered)
 | |
|                 h->next_output_pic->f->flags |= AV_FRAME_FLAG_CORRUPT;
 | |
| 
 | |
|             ret = output_frame(h, pict, h->next_output_pic->f);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|             *got_frame = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(pict->buf[0] || !*got_frame);
 | |
| 
 | |
|     return get_consumed_bytes(buf_index, buf_size);
 | |
| }
 | |
| 
 | |
| av_cold void ff_h264_free_context(H264Context *h)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     ff_h264_free_tables(h);
 | |
| 
 | |
|     for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
 | |
|         ff_h264_unref_picture(h, &h->DPB[i]);
 | |
|         av_frame_free(&h->DPB[i].f);
 | |
|     }
 | |
| 
 | |
|     h->cur_pic_ptr = NULL;
 | |
| 
 | |
|     for (i = 0; i < h->nb_slice_ctx; i++)
 | |
|         av_freep(&h->slice_ctx[i].rbsp_buffer);
 | |
|     av_freep(&h->slice_ctx);
 | |
|     h->nb_slice_ctx = 0;
 | |
| 
 | |
|     for (i = 0; i < MAX_SPS_COUNT; i++)
 | |
|         av_freep(h->sps_buffers + i);
 | |
| 
 | |
|     for (i = 0; i < MAX_PPS_COUNT; i++)
 | |
|         av_freep(h->pps_buffers + i);
 | |
| }
 | |
| 
 | |
| static av_cold int h264_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     H264Context *h = avctx->priv_data;
 | |
| 
 | |
|     ff_h264_free_context(h);
 | |
| 
 | |
|     ff_h264_unref_picture(h, &h->cur_pic);
 | |
|     av_frame_free(&h->cur_pic.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(H264Context, x)
 | |
| #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
 | |
| static const AVOption h264_options[] = {
 | |
|     { "enable_er", "Enable error resilience on damaged frames (unsafe)", OFFSET(enable_er), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VD },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass h264_class = {
 | |
|     .class_name = "h264",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = h264_options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| static const AVProfile profiles[] = {
 | |
|     { FF_PROFILE_H264_BASELINE,             "Baseline"              },
 | |
|     { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline"  },
 | |
|     { FF_PROFILE_H264_MAIN,                 "Main"                  },
 | |
|     { FF_PROFILE_H264_EXTENDED,             "Extended"              },
 | |
|     { FF_PROFILE_H264_HIGH,                 "High"                  },
 | |
|     { FF_PROFILE_H264_HIGH_10,              "High 10"               },
 | |
|     { FF_PROFILE_H264_HIGH_10_INTRA,        "High 10 Intra"         },
 | |
|     { FF_PROFILE_H264_HIGH_422,             "High 4:2:2"            },
 | |
|     { FF_PROFILE_H264_HIGH_422_INTRA,       "High 4:2:2 Intra"      },
 | |
|     { FF_PROFILE_H264_HIGH_444,             "High 4:4:4"            },
 | |
|     { FF_PROFILE_H264_HIGH_444_PREDICTIVE,  "High 4:4:4 Predictive" },
 | |
|     { FF_PROFILE_H264_HIGH_444_INTRA,       "High 4:4:4 Intra"      },
 | |
|     { FF_PROFILE_H264_CAVLC_444,            "CAVLC 4:4:4"           },
 | |
|     { FF_PROFILE_UNKNOWN },
 | |
| };
 | |
| 
 | |
| AVCodec ff_h264_decoder = {
 | |
|     .name                  = "h264",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_H264,
 | |
|     .priv_data_size        = sizeof(H264Context),
 | |
|     .init                  = ff_h264_decode_init,
 | |
|     .close                 = h264_decode_end,
 | |
|     .decode                = h264_decode_frame,
 | |
|     .capabilities          = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 |
 | |
|                              CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS |
 | |
|                              CODEC_CAP_FRAME_THREADS,
 | |
|     .flush                 = flush_dpb,
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context),
 | |
|     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
 | |
|     .priv_class            = &h264_class,
 | |
| };
 | 
