mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 04:02:04 +08:00 
			
		
		
		
	 f471caaf90
			
		
	
	f471caaf90
	
	
	
		
			
			When the packet size is known in advance like here, one can avoid an intermediate buffer for the packet data by using ff_get_encode_buffer() and also set AV_CODEC_CAP_DR1 at the same time. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
		
			
				
	
	
		
			1262 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1262 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * G.723.1 compatible encoder
 | |
|  * Copyright (c) Mohamed Naufal <naufal22@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * G.723.1 compatible encoder
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/mem.h"
 | |
| #include "libavutil/opt.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "celp_math.h"
 | |
| #include "encode.h"
 | |
| #include "g723_1.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| #define BITSTREAM_WRITER_LE
 | |
| #include "put_bits.h"
 | |
| 
 | |
| /**
 | |
|  * Hamming window coefficients scaled by 2^15
 | |
|  */
 | |
| static const int16_t hamming_window[LPC_FRAME] = {
 | |
|      2621,  2631,  2659,  2705,  2770,  2853,  2955,  3074,  3212,  3367,
 | |
|      3541,  3731,  3939,  4164,  4405,  4663,  4937,  5226,  5531,  5851,
 | |
|      6186,  6534,  6897,  7273,  7661,  8062,  8475,  8899,  9334,  9780,
 | |
|     10235, 10699, 11172, 11653, 12141, 12636, 13138, 13645, 14157, 14673,
 | |
|     15193, 15716, 16242, 16769, 17298, 17827, 18356, 18884, 19411, 19935,
 | |
|     20457, 20975, 21489, 21999, 22503, 23002, 23494, 23978, 24455, 24924,
 | |
|     25384, 25834, 26274, 26704, 27122, 27529, 27924, 28306, 28675, 29031,
 | |
|     29373, 29700, 30012, 30310, 30592, 30857, 31107, 31340, 31557, 31756,
 | |
|     31938, 32102, 32249, 32377, 32488, 32580, 32654, 32710, 32747, 32766,
 | |
|     32766, 32747, 32710, 32654, 32580, 32488, 32377, 32249, 32102, 31938,
 | |
|     31756, 31557, 31340, 31107, 30857, 30592, 30310, 30012, 29700, 29373,
 | |
|     29031, 28675, 28306, 27924, 27529, 27122, 26704, 26274, 25834, 25384,
 | |
|     24924, 24455, 23978, 23494, 23002, 22503, 21999, 21489, 20975, 20457,
 | |
|     19935, 19411, 18884, 18356, 17827, 17298, 16769, 16242, 15716, 15193,
 | |
|     14673, 14157, 13645, 13138, 12636, 12141, 11653, 11172, 10699, 10235,
 | |
|      9780, 9334,   8899,  8475,  8062,  7661,  7273,  6897,  6534,  6186,
 | |
|      5851, 5531,   5226,  4937,  4663,  4405,  4164,  3939,  3731,  3541,
 | |
|      3367, 3212,   3074,  2955,  2853,  2770,  2705,  2659,  2631,  2621
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Binomial window coefficients scaled by 2^15
 | |
|  */
 | |
| static const int16_t binomial_window[LPC_ORDER] = {
 | |
|     32749, 32695, 32604, 32477, 32315, 32118, 31887, 31622, 31324, 30995
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * 0.994^i scaled by 2^15
 | |
|  */
 | |
| static const int16_t bandwidth_expand[LPC_ORDER] = {
 | |
|     32571, 32376, 32182, 31989, 31797, 31606, 31416, 31228, 31040, 30854
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * 0.5^i scaled by 2^15
 | |
|  */
 | |
| static const int16_t percept_flt_tbl[2][LPC_ORDER] = {
 | |
|     /* Zero part */
 | |
|     {29491, 26542, 23888, 21499, 19349, 17414, 15673, 14106, 12695, 11425},
 | |
|     /* Pole part */
 | |
|     {16384,  8192,  4096,  2048,  1024,   512,   256,   128,    64,    32}
 | |
| };
 | |
| 
 | |
| static av_cold int g723_1_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     G723_1_Context *s = avctx->priv_data;
 | |
|     G723_1_ChannelContext *p = &s->ch[0];
 | |
| 
 | |
|     if (avctx->sample_rate != 8000) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Only 8000Hz sample rate supported\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (avctx->channels != 1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Only mono supported\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (avctx->bit_rate == 6300) {
 | |
|         p->cur_rate = RATE_6300;
 | |
|     } else if (avctx->bit_rate == 5300) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Use bitrate 6300 instead of 5300.\n");
 | |
|         avpriv_report_missing_feature(avctx, "Bitrate 5300");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     } else {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Bitrate not supported, use 6300\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     avctx->frame_size = 240;
 | |
|     memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(int16_t));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Remove DC component from the input signal.
 | |
|  *
 | |
|  * @param buf input signal
 | |
|  * @param fir zero memory
 | |
|  * @param iir pole memory
 | |
|  */
 | |
| static void highpass_filter(int16_t *buf, int16_t *fir, int *iir)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < FRAME_LEN; i++) {
 | |
|         *iir   = (buf[i] << 15) + ((-*fir) << 15) + MULL2(*iir, 0x7f00);
 | |
|         *fir   = buf[i];
 | |
|         buf[i] = av_clipl_int32((int64_t)*iir + (1 << 15)) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Estimate autocorrelation of the input vector.
 | |
|  *
 | |
|  * @param buf      input buffer
 | |
|  * @param autocorr autocorrelation coefficients vector
 | |
|  */
 | |
| static void comp_autocorr(int16_t *buf, int16_t *autocorr)
 | |
| {
 | |
|     int i, scale, temp;
 | |
|     int16_t vector[LPC_FRAME];
 | |
| 
 | |
|     ff_g723_1_scale_vector(vector, buf, LPC_FRAME);
 | |
| 
 | |
|     /* Apply the Hamming window */
 | |
|     for (i = 0; i < LPC_FRAME; i++)
 | |
|         vector[i] = (vector[i] * hamming_window[i] + (1 << 14)) >> 15;
 | |
| 
 | |
|     /* Compute the first autocorrelation coefficient */
 | |
|     temp = ff_dot_product(vector, vector, LPC_FRAME);
 | |
| 
 | |
|     /* Apply a white noise correlation factor of (1025/1024) */
 | |
|     temp += temp >> 10;
 | |
| 
 | |
|     /* Normalize */
 | |
|     scale       = ff_g723_1_normalize_bits(temp, 31);
 | |
|     autocorr[0] = av_clipl_int32((int64_t) (temp << scale) +
 | |
|                                  (1 << 15)) >> 16;
 | |
| 
 | |
|     /* Compute the remaining coefficients */
 | |
|     if (!autocorr[0]) {
 | |
|         memset(autocorr + 1, 0, LPC_ORDER * sizeof(int16_t));
 | |
|     } else {
 | |
|         for (i = 1; i <= LPC_ORDER; i++) {
 | |
|             temp        = ff_dot_product(vector, vector + i, LPC_FRAME - i);
 | |
|             temp        = MULL2((temp << scale), binomial_window[i - 1]);
 | |
|             autocorr[i] = av_clipl_int32((int64_t) temp + (1 << 15)) >> 16;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Use Levinson-Durbin recursion to compute LPC coefficients from
 | |
|  * autocorrelation values.
 | |
|  *
 | |
|  * @param lpc      LPC coefficients vector
 | |
|  * @param autocorr autocorrelation coefficients vector
 | |
|  * @param error    prediction error
 | |
|  */
 | |
| static void levinson_durbin(int16_t *lpc, int16_t *autocorr, int16_t error)
 | |
| {
 | |
|     int16_t vector[LPC_ORDER];
 | |
|     int16_t partial_corr;
 | |
|     int i, j, temp;
 | |
| 
 | |
|     memset(lpc, 0, LPC_ORDER * sizeof(int16_t));
 | |
| 
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         /* Compute the partial correlation coefficient */
 | |
|         temp = 0;
 | |
|         for (j = 0; j < i; j++)
 | |
|             temp -= lpc[j] * autocorr[i - j - 1];
 | |
|         temp = ((autocorr[i] << 13) + temp) << 3;
 | |
| 
 | |
|         if (FFABS(temp) >= (error << 16))
 | |
|             break;
 | |
| 
 | |
|         partial_corr = temp / (error << 1);
 | |
| 
 | |
|         lpc[i] = av_clipl_int32((int64_t) (partial_corr << 14) +
 | |
|                                 (1 << 15)) >> 16;
 | |
| 
 | |
|         /* Update the prediction error */
 | |
|         temp  = MULL2(temp, partial_corr);
 | |
|         error = av_clipl_int32((int64_t) (error << 16) - temp +
 | |
|                                (1 << 15)) >> 16;
 | |
| 
 | |
|         memcpy(vector, lpc, i * sizeof(int16_t));
 | |
|         for (j = 0; j < i; j++) {
 | |
|             temp   = partial_corr * vector[i - j - 1] << 1;
 | |
|             lpc[j] = av_clipl_int32((int64_t) (lpc[j] << 16) - temp +
 | |
|                                     (1 << 15)) >> 16;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate LPC coefficients for the current frame.
 | |
|  *
 | |
|  * @param buf       current frame
 | |
|  * @param prev_data 2 trailing subframes of the previous frame
 | |
|  * @param lpc       LPC coefficients vector
 | |
|  */
 | |
| static void comp_lpc_coeff(int16_t *buf, int16_t *lpc)
 | |
| {
 | |
|     int16_t autocorr[(LPC_ORDER + 1) * SUBFRAMES];
 | |
|     int16_t *autocorr_ptr = autocorr;
 | |
|     int16_t *lpc_ptr      = lpc;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
 | |
|         comp_autocorr(buf + i, autocorr_ptr);
 | |
|         levinson_durbin(lpc_ptr, autocorr_ptr + 1, autocorr_ptr[0]);
 | |
| 
 | |
|         lpc_ptr      += LPC_ORDER;
 | |
|         autocorr_ptr += LPC_ORDER + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lpc2lsp(int16_t *lpc, int16_t *prev_lsp, int16_t *lsp)
 | |
| {
 | |
|     int f[LPC_ORDER + 2]; ///< coefficients of the sum and difference
 | |
|                           ///< polynomials (F1, F2) ordered as
 | |
|                           ///< f1[0], f2[0], ...., f1[5], f2[5]
 | |
| 
 | |
|     int max, shift, cur_val, prev_val, count, p;
 | |
|     int i, j;
 | |
|     int64_t temp;
 | |
| 
 | |
|     /* Initialize f1[0] and f2[0] to 1 in Q25 */
 | |
|     for (i = 0; i < LPC_ORDER; i++)
 | |
|         lsp[i] = (lpc[i] * bandwidth_expand[i] + (1 << 14)) >> 15;
 | |
| 
 | |
|     /* Apply bandwidth expansion on the LPC coefficients */
 | |
|     f[0] = f[1] = 1 << 25;
 | |
| 
 | |
|     /* Compute the remaining coefficients */
 | |
|     for (i = 0; i < LPC_ORDER / 2; i++) {
 | |
|         /* f1 */
 | |
|         f[2 * i + 2] = -f[2 * i] - ((lsp[i] + lsp[LPC_ORDER - 1 - i]) << 12);
 | |
|         /* f2 */
 | |
|         f[2 * i + 3] = f[2 * i + 1] - ((lsp[i] - lsp[LPC_ORDER - 1 - i]) << 12);
 | |
|     }
 | |
| 
 | |
|     /* Divide f1[5] and f2[5] by 2 for use in polynomial evaluation */
 | |
|     f[LPC_ORDER]     >>= 1;
 | |
|     f[LPC_ORDER + 1] >>= 1;
 | |
| 
 | |
|     /* Normalize and shorten */
 | |
|     max = FFABS(f[0]);
 | |
|     for (i = 1; i < LPC_ORDER + 2; i++)
 | |
|         max = FFMAX(max, FFABS(f[i]));
 | |
| 
 | |
|     shift = ff_g723_1_normalize_bits(max, 31);
 | |
| 
 | |
|     for (i = 0; i < LPC_ORDER + 2; i++)
 | |
|         f[i] = av_clipl_int32((int64_t) (f[i] << shift) + (1 << 15)) >> 16;
 | |
| 
 | |
|     /**
 | |
|      * Evaluate F1 and F2 at uniform intervals of pi/256 along the
 | |
|      * unit circle and check for zero crossings.
 | |
|      */
 | |
|     p    = 0;
 | |
|     temp = 0;
 | |
|     for (i = 0; i <= LPC_ORDER / 2; i++)
 | |
|         temp += f[2 * i] * G723_1_COS_TAB_FIRST_ELEMENT;
 | |
|     prev_val = av_clipl_int32(temp << 1);
 | |
|     count    = 0;
 | |
|     for (i = 1; i < COS_TBL_SIZE / 2; i++) {
 | |
|         /* Evaluate */
 | |
|         temp = 0;
 | |
|         for (j = 0; j <= LPC_ORDER / 2; j++)
 | |
|             temp += f[LPC_ORDER - 2 * j + p] * ff_g723_1_cos_tab[i * j % COS_TBL_SIZE];
 | |
|         cur_val = av_clipl_int32(temp << 1);
 | |
| 
 | |
|         /* Check for sign change, indicating a zero crossing */
 | |
|         if ((cur_val ^ prev_val) < 0) {
 | |
|             int abs_cur  = FFABS(cur_val);
 | |
|             int abs_prev = FFABS(prev_val);
 | |
|             int sum      = abs_cur + abs_prev;
 | |
| 
 | |
|             shift        = ff_g723_1_normalize_bits(sum, 31);
 | |
|             sum        <<= shift;
 | |
|             abs_prev     = abs_prev << shift >> 8;
 | |
|             lsp[count++] = ((i - 1) << 7) + (abs_prev >> 1) / (sum >> 16);
 | |
| 
 | |
|             if (count == LPC_ORDER)
 | |
|                 break;
 | |
| 
 | |
|             /* Switch between sum and difference polynomials */
 | |
|             p ^= 1;
 | |
| 
 | |
|             /* Evaluate */
 | |
|             temp = 0;
 | |
|             for (j = 0; j <= LPC_ORDER / 2; j++)
 | |
|                 temp += f[LPC_ORDER - 2 * j + p] *
 | |
|                         ff_g723_1_cos_tab[i * j % COS_TBL_SIZE];
 | |
|             cur_val = av_clipl_int32(temp << 1);
 | |
|         }
 | |
|         prev_val = cur_val;
 | |
|     }
 | |
| 
 | |
|     if (count != LPC_ORDER)
 | |
|         memcpy(lsp, prev_lsp, LPC_ORDER * sizeof(int16_t));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Quantize the current LSP subvector.
 | |
|  *
 | |
|  * @param num    band number
 | |
|  * @param offset offset of the current subvector in an LPC_ORDER vector
 | |
|  * @param size   size of the current subvector
 | |
|  */
 | |
| #define get_index(num, offset, size)                                          \
 | |
| {                                                                             \
 | |
|     int error, max = -1;                                                      \
 | |
|     int16_t temp[4];                                                          \
 | |
|     int i, j;                                                                 \
 | |
|                                                                               \
 | |
|     for (i = 0; i < LSP_CB_SIZE; i++) {                                       \
 | |
|         for (j = 0; j < size; j++){                                           \
 | |
|             temp[j] = (weight[j + (offset)] * ff_g723_1_lsp_band##num[i][j] + \
 | |
|                       (1 << 14)) >> 15;                                       \
 | |
|         }                                                                     \
 | |
|         error  = ff_g723_1_dot_product(lsp + (offset), temp, size) << 1;      \
 | |
|         error -= ff_g723_1_dot_product(ff_g723_1_lsp_band##num[i], temp, size); \
 | |
|         if (error > max) {                                                    \
 | |
|             max = error;                                                      \
 | |
|             lsp_index[num] = i;                                               \
 | |
|         }                                                                     \
 | |
|     }                                                                         \
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Vector quantize the LSP frequencies.
 | |
|  *
 | |
|  * @param lsp      the current lsp vector
 | |
|  * @param prev_lsp the previous lsp vector
 | |
|  */
 | |
| static void lsp_quantize(uint8_t *lsp_index, int16_t *lsp, int16_t *prev_lsp)
 | |
| {
 | |
|     int16_t weight[LPC_ORDER];
 | |
|     int16_t min, max;
 | |
|     int shift, i;
 | |
| 
 | |
|     /* Calculate the VQ weighting vector */
 | |
|     weight[0]             = (1 << 20) / (lsp[1] - lsp[0]);
 | |
|     weight[LPC_ORDER - 1] = (1 << 20) /
 | |
|                             (lsp[LPC_ORDER - 1] - lsp[LPC_ORDER - 2]);
 | |
| 
 | |
|     for (i = 1; i < LPC_ORDER - 1; i++) {
 | |
|         min = FFMIN(lsp[i] - lsp[i - 1], lsp[i + 1] - lsp[i]);
 | |
|         if (min > 0x20)
 | |
|             weight[i] = (1 << 20) / min;
 | |
|         else
 | |
|             weight[i] = INT16_MAX;
 | |
|     }
 | |
| 
 | |
|     /* Normalize */
 | |
|     max = 0;
 | |
|     for (i = 0; i < LPC_ORDER; i++)
 | |
|         max = FFMAX(weight[i], max);
 | |
| 
 | |
|     shift = ff_g723_1_normalize_bits(max, 15);
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         weight[i] <<= shift;
 | |
|     }
 | |
| 
 | |
|     /* Compute the VQ target vector */
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         lsp[i] -= dc_lsp[i] +
 | |
|                   (((prev_lsp[i] - dc_lsp[i]) * 12288 + (1 << 14)) >> 15);
 | |
|     }
 | |
| 
 | |
|     get_index(0, 0, 3);
 | |
|     get_index(1, 3, 3);
 | |
|     get_index(2, 6, 4);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform IIR filtering.
 | |
|  *
 | |
|  * @param fir_coef FIR coefficients
 | |
|  * @param iir_coef IIR coefficients
 | |
|  * @param src      source vector
 | |
|  * @param dest     destination vector
 | |
|  */
 | |
| static void iir_filter(int16_t *fir_coef, int16_t *iir_coef,
 | |
|                        int16_t *src, int16_t *dest)
 | |
| {
 | |
|     int m, n;
 | |
| 
 | |
|     for (m = 0; m < SUBFRAME_LEN; m++) {
 | |
|         int64_t filter = 0;
 | |
|         for (n = 1; n <= LPC_ORDER; n++) {
 | |
|             filter -= fir_coef[n - 1] * src[m - n] -
 | |
|                       iir_coef[n - 1] * dest[m - n];
 | |
|         }
 | |
| 
 | |
|         dest[m] = av_clipl_int32((src[m] << 16) + (filter << 3) +
 | |
|                                  (1 << 15)) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply the formant perceptual weighting filter.
 | |
|  *
 | |
|  * @param flt_coef filter coefficients
 | |
|  * @param unq_lpc  unquantized lpc vector
 | |
|  */
 | |
| static void perceptual_filter(G723_1_ChannelContext *p, int16_t *flt_coef,
 | |
|                               int16_t *unq_lpc, int16_t *buf)
 | |
| {
 | |
|     int16_t vector[FRAME_LEN + LPC_ORDER];
 | |
|     int i, j, k, l = 0;
 | |
| 
 | |
|     memcpy(buf, p->iir_mem, sizeof(int16_t) * LPC_ORDER);
 | |
|     memcpy(vector, p->fir_mem, sizeof(int16_t) * LPC_ORDER);
 | |
|     memcpy(vector + LPC_ORDER, buf + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
 | |
| 
 | |
|     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
 | |
|         for (k = 0; k < LPC_ORDER; k++) {
 | |
|             flt_coef[k + 2 * l] = (unq_lpc[k + l] * percept_flt_tbl[0][k] +
 | |
|                                    (1 << 14)) >> 15;
 | |
|             flt_coef[k + 2 * l + LPC_ORDER] = (unq_lpc[k + l] *
 | |
|                                                percept_flt_tbl[1][k] +
 | |
|                                                (1 << 14)) >> 15;
 | |
|         }
 | |
|         iir_filter(flt_coef + 2 * l, flt_coef + 2 * l + LPC_ORDER,
 | |
|                    vector + i, buf + i);
 | |
|         l += LPC_ORDER;
 | |
|     }
 | |
|     memcpy(p->iir_mem, buf + FRAME_LEN, sizeof(int16_t) * LPC_ORDER);
 | |
|     memcpy(p->fir_mem, vector + FRAME_LEN, sizeof(int16_t) * LPC_ORDER);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Estimate the open loop pitch period.
 | |
|  *
 | |
|  * @param buf   perceptually weighted speech
 | |
|  * @param start estimation is carried out from this position
 | |
|  */
 | |
| static int estimate_pitch(int16_t *buf, int start)
 | |
| {
 | |
|     int max_exp = 32;
 | |
|     int max_ccr = 0x4000;
 | |
|     int max_eng = 0x7fff;
 | |
|     int index   = PITCH_MIN;
 | |
|     int offset  = start - PITCH_MIN + 1;
 | |
| 
 | |
|     int ccr, eng, orig_eng, ccr_eng, exp;
 | |
|     int diff, temp;
 | |
| 
 | |
|     int i;
 | |
| 
 | |
|     orig_eng = ff_dot_product(buf + offset, buf + offset, HALF_FRAME_LEN);
 | |
| 
 | |
|     for (i = PITCH_MIN; i <= PITCH_MAX - 3; i++) {
 | |
|         offset--;
 | |
| 
 | |
|         /* Update energy and compute correlation */
 | |
|         orig_eng += buf[offset] * buf[offset] -
 | |
|                     buf[offset + HALF_FRAME_LEN] * buf[offset + HALF_FRAME_LEN];
 | |
|         ccr = ff_dot_product(buf + start, buf + offset, HALF_FRAME_LEN);
 | |
|         if (ccr <= 0)
 | |
|             continue;
 | |
| 
 | |
|         /* Split into mantissa and exponent to maintain precision */
 | |
|         exp   = ff_g723_1_normalize_bits(ccr, 31);
 | |
|         ccr   = av_clipl_int32((int64_t) (ccr << exp) + (1 << 15)) >> 16;
 | |
|         exp <<= 1;
 | |
|         ccr  *= ccr;
 | |
|         temp  = ff_g723_1_normalize_bits(ccr, 31);
 | |
|         ccr   = ccr << temp >> 16;
 | |
|         exp  += temp;
 | |
| 
 | |
|         temp = ff_g723_1_normalize_bits(orig_eng, 31);
 | |
|         eng  = av_clipl_int32((int64_t) (orig_eng << temp) + (1 << 15)) >> 16;
 | |
|         exp -= temp;
 | |
| 
 | |
|         if (ccr >= eng) {
 | |
|             exp--;
 | |
|             ccr >>= 1;
 | |
|         }
 | |
|         if (exp > max_exp)
 | |
|             continue;
 | |
| 
 | |
|         if (exp + 1 < max_exp)
 | |
|             goto update;
 | |
| 
 | |
|         /* Equalize exponents before comparison */
 | |
|         if (exp + 1 == max_exp)
 | |
|             temp = max_ccr >> 1;
 | |
|         else
 | |
|             temp = max_ccr;
 | |
|         ccr_eng = ccr * max_eng;
 | |
|         diff    = ccr_eng - eng * temp;
 | |
|         if (diff > 0 && (i - index < PITCH_MIN || diff > ccr_eng >> 2)) {
 | |
| update:
 | |
|             index   = i;
 | |
|             max_exp = exp;
 | |
|             max_ccr = ccr;
 | |
|             max_eng = eng;
 | |
|         }
 | |
|     }
 | |
|     return index;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute harmonic noise filter parameters.
 | |
|  *
 | |
|  * @param buf       perceptually weighted speech
 | |
|  * @param pitch_lag open loop pitch period
 | |
|  * @param hf        harmonic filter parameters
 | |
|  */
 | |
| static void comp_harmonic_coeff(int16_t *buf, int16_t pitch_lag, HFParam *hf)
 | |
| {
 | |
|     int ccr, eng, max_ccr, max_eng;
 | |
|     int exp, max, diff;
 | |
|     int energy[15];
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0, j = pitch_lag - 3; j <= pitch_lag + 3; i++, j++) {
 | |
|         /* Compute residual energy */
 | |
|         energy[i << 1] = ff_dot_product(buf - j, buf - j, SUBFRAME_LEN);
 | |
|         /* Compute correlation */
 | |
|         energy[(i << 1) + 1] = ff_dot_product(buf, buf - j, SUBFRAME_LEN);
 | |
|     }
 | |
| 
 | |
|     /* Compute target energy */
 | |
|     energy[14] = ff_dot_product(buf, buf, SUBFRAME_LEN);
 | |
| 
 | |
|     /* Normalize */
 | |
|     max = 0;
 | |
|     for (i = 0; i < 15; i++)
 | |
|         max = FFMAX(max, FFABS(energy[i]));
 | |
| 
 | |
|     exp = ff_g723_1_normalize_bits(max, 31);
 | |
|     for (i = 0; i < 15; i++) {
 | |
|         energy[i] = av_clipl_int32((int64_t)(energy[i] << exp) +
 | |
|                                    (1 << 15)) >> 16;
 | |
|     }
 | |
| 
 | |
|     hf->index = -1;
 | |
|     hf->gain  =  0;
 | |
|     max_ccr   =  1;
 | |
|     max_eng   =  0x7fff;
 | |
| 
 | |
|     for (i = 0; i <= 6; i++) {
 | |
|         eng = energy[i << 1];
 | |
|         ccr = energy[(i << 1) + 1];
 | |
| 
 | |
|         if (ccr <= 0)
 | |
|             continue;
 | |
| 
 | |
|         ccr  = (ccr * ccr + (1 << 14)) >> 15;
 | |
|         diff = ccr * max_eng - eng * max_ccr;
 | |
|         if (diff > 0) {
 | |
|             max_ccr   = ccr;
 | |
|             max_eng   = eng;
 | |
|             hf->index = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (hf->index == -1) {
 | |
|         hf->index = pitch_lag;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     eng = energy[14] * max_eng;
 | |
|     eng = (eng >> 2) + (eng >> 3);
 | |
|     ccr = energy[(hf->index << 1) + 1] * energy[(hf->index << 1) + 1];
 | |
|     if (eng < ccr) {
 | |
|         eng = energy[(hf->index << 1) + 1];
 | |
| 
 | |
|         if (eng >= max_eng)
 | |
|             hf->gain = 0x2800;
 | |
|         else
 | |
|             hf->gain = ((eng << 15) / max_eng * 0x2800 + (1 << 14)) >> 15;
 | |
|     }
 | |
|     hf->index += pitch_lag - 3;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply the harmonic noise shaping filter.
 | |
|  *
 | |
|  * @param hf filter parameters
 | |
|  */
 | |
| static void harmonic_filter(HFParam *hf, const int16_t *src, int16_t *dest)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         int64_t temp = hf->gain * src[i - hf->index] << 1;
 | |
|         dest[i] = av_clipl_int32((src[i] << 16) - temp + (1 << 15)) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void harmonic_noise_sub(HFParam *hf, const int16_t *src, int16_t *dest)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         int64_t temp = hf->gain * src[i - hf->index] << 1;
 | |
|         dest[i] = av_clipl_int32(((dest[i] - src[i]) << 16) + temp +
 | |
|                                  (1 << 15)) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Combined synthesis and formant perceptual weighting filer.
 | |
|  *
 | |
|  * @param qnt_lpc  quantized lpc coefficients
 | |
|  * @param perf_lpc perceptual filter coefficients
 | |
|  * @param perf_fir perceptual filter fir memory
 | |
|  * @param perf_iir perceptual filter iir memory
 | |
|  * @param scale    the filter output will be scaled by 2^scale
 | |
|  */
 | |
| static void synth_percept_filter(int16_t *qnt_lpc, int16_t *perf_lpc,
 | |
|                                  int16_t *perf_fir, int16_t *perf_iir,
 | |
|                                  const int16_t *src, int16_t *dest, int scale)
 | |
| {
 | |
|     int i, j;
 | |
|     int16_t buf_16[SUBFRAME_LEN + LPC_ORDER];
 | |
|     int64_t buf[SUBFRAME_LEN];
 | |
| 
 | |
|     int16_t *bptr_16 = buf_16 + LPC_ORDER;
 | |
| 
 | |
|     memcpy(buf_16, perf_fir, sizeof(int16_t) * LPC_ORDER);
 | |
|     memcpy(dest - LPC_ORDER, perf_iir, sizeof(int16_t) * LPC_ORDER);
 | |
| 
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         int64_t temp = 0;
 | |
|         for (j = 1; j <= LPC_ORDER; j++)
 | |
|             temp -= qnt_lpc[j - 1] * bptr_16[i - j];
 | |
| 
 | |
|         buf[i]     = (src[i] << 15) + (temp << 3);
 | |
|         bptr_16[i] = av_clipl_int32(buf[i] + (1 << 15)) >> 16;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         int64_t fir = 0, iir = 0;
 | |
|         for (j = 1; j <= LPC_ORDER; j++) {
 | |
|             fir -= perf_lpc[j - 1] * bptr_16[i - j];
 | |
|             iir += perf_lpc[j + LPC_ORDER - 1] * dest[i - j];
 | |
|         }
 | |
|         dest[i] = av_clipl_int32(((buf[i] + (fir << 3)) << scale) + (iir << 3) +
 | |
|                                  (1 << 15)) >> 16;
 | |
|     }
 | |
|     memcpy(perf_fir, buf_16 + SUBFRAME_LEN, sizeof(int16_t) * LPC_ORDER);
 | |
|     memcpy(perf_iir, dest + SUBFRAME_LEN - LPC_ORDER,
 | |
|            sizeof(int16_t) * LPC_ORDER);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute the adaptive codebook contribution.
 | |
|  *
 | |
|  * @param buf   input signal
 | |
|  * @param index the current subframe index
 | |
|  */
 | |
| static void acb_search(G723_1_ChannelContext *p, int16_t *residual,
 | |
|                        int16_t *impulse_resp, const int16_t *buf,
 | |
|                        int index)
 | |
| {
 | |
|     int16_t flt_buf[PITCH_ORDER][SUBFRAME_LEN];
 | |
| 
 | |
|     const int16_t *cb_tbl = ff_g723_1_adaptive_cb_gain85;
 | |
| 
 | |
|     int ccr_buf[PITCH_ORDER * SUBFRAMES << 2];
 | |
| 
 | |
|     int pitch_lag = p->pitch_lag[index >> 1];
 | |
|     int acb_lag   = 1;
 | |
|     int acb_gain  = 0;
 | |
|     int odd_frame = index & 1;
 | |
|     int iter      = 3 + odd_frame;
 | |
|     int count     = 0;
 | |
|     int tbl_size  = 85;
 | |
| 
 | |
|     int i, j, k, l, max;
 | |
|     int64_t temp;
 | |
| 
 | |
|     if (!odd_frame) {
 | |
|         if (pitch_lag == PITCH_MIN)
 | |
|             pitch_lag++;
 | |
|         else
 | |
|             pitch_lag = FFMIN(pitch_lag, PITCH_MAX - 5);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < iter; i++) {
 | |
|         ff_g723_1_get_residual(residual, p->prev_excitation, pitch_lag + i - 1);
 | |
| 
 | |
|         for (j = 0; j < SUBFRAME_LEN; j++) {
 | |
|             temp = 0;
 | |
|             for (k = 0; k <= j; k++)
 | |
|                 temp += residual[PITCH_ORDER - 1 + k] * impulse_resp[j - k];
 | |
|             flt_buf[PITCH_ORDER - 1][j] = av_clipl_int32((temp << 1) +
 | |
|                                                          (1 << 15)) >> 16;
 | |
|         }
 | |
| 
 | |
|         for (j = PITCH_ORDER - 2; j >= 0; j--) {
 | |
|             flt_buf[j][0] = ((residual[j] << 13) + (1 << 14)) >> 15;
 | |
|             for (k = 1; k < SUBFRAME_LEN; k++) {
 | |
|                 temp = (flt_buf[j + 1][k - 1] << 15) +
 | |
|                        residual[j] * impulse_resp[k];
 | |
|                 flt_buf[j][k] = av_clipl_int32((temp << 1) + (1 << 15)) >> 16;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Compute crosscorrelation with the signal */
 | |
|         for (j = 0; j < PITCH_ORDER; j++) {
 | |
|             temp             = ff_dot_product(buf, flt_buf[j], SUBFRAME_LEN);
 | |
|             ccr_buf[count++] = av_clipl_int32(temp << 1);
 | |
|         }
 | |
| 
 | |
|         /* Compute energies */
 | |
|         for (j = 0; j < PITCH_ORDER; j++) {
 | |
|             ccr_buf[count++] = ff_g723_1_dot_product(flt_buf[j], flt_buf[j],
 | |
|                                                      SUBFRAME_LEN);
 | |
|         }
 | |
| 
 | |
|         for (j = 1; j < PITCH_ORDER; j++) {
 | |
|             for (k = 0; k < j; k++) {
 | |
|                 temp             = ff_dot_product(flt_buf[j], flt_buf[k], SUBFRAME_LEN);
 | |
|                 ccr_buf[count++] = av_clipl_int32(temp << 2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Normalize and shorten */
 | |
|     max = 0;
 | |
|     for (i = 0; i < 20 * iter; i++)
 | |
|         max = FFMAX(max, FFABS(ccr_buf[i]));
 | |
| 
 | |
|     temp = ff_g723_1_normalize_bits(max, 31);
 | |
| 
 | |
|     for (i = 0; i < 20 * iter; i++)
 | |
|         ccr_buf[i] = av_clipl_int32((int64_t) (ccr_buf[i] << temp) +
 | |
|                                     (1 << 15)) >> 16;
 | |
| 
 | |
|     max = 0;
 | |
|     for (i = 0; i < iter; i++) {
 | |
|         /* Select quantization table */
 | |
|         if (!odd_frame && pitch_lag + i - 1 >= SUBFRAME_LEN - 2 ||
 | |
|             odd_frame && pitch_lag >= SUBFRAME_LEN - 2) {
 | |
|             cb_tbl   = ff_g723_1_adaptive_cb_gain170;
 | |
|             tbl_size = 170;
 | |
|         }
 | |
| 
 | |
|         for (j = 0, k = 0; j < tbl_size; j++, k += 20) {
 | |
|             temp = 0;
 | |
|             for (l = 0; l < 20; l++)
 | |
|                 temp += ccr_buf[20 * i + l] * cb_tbl[k + l];
 | |
|             temp = av_clipl_int32(temp);
 | |
| 
 | |
|             if (temp > max) {
 | |
|                 max      = temp;
 | |
|                 acb_gain = j;
 | |
|                 acb_lag  = i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!odd_frame) {
 | |
|         pitch_lag += acb_lag - 1;
 | |
|         acb_lag    = 1;
 | |
|     }
 | |
| 
 | |
|     p->pitch_lag[index >> 1]      = pitch_lag;
 | |
|     p->subframe[index].ad_cb_lag  = acb_lag;
 | |
|     p->subframe[index].ad_cb_gain = acb_gain;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Subtract the adaptive codebook contribution from the input
 | |
|  * to obtain the residual.
 | |
|  *
 | |
|  * @param buf target vector
 | |
|  */
 | |
| static void sub_acb_contrib(const int16_t *residual, const int16_t *impulse_resp,
 | |
|                             int16_t *buf)
 | |
| {
 | |
|     int i, j;
 | |
|     /* Subtract adaptive CB contribution to obtain the residual */
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         int64_t temp = buf[i] << 14;
 | |
|         for (j = 0; j <= i; j++)
 | |
|             temp -= residual[j] * impulse_resp[i - j];
 | |
| 
 | |
|         buf[i] = av_clipl_int32((temp << 2) + (1 << 15)) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Quantize the residual signal using the fixed codebook (MP-MLQ).
 | |
|  *
 | |
|  * @param optim optimized fixed codebook parameters
 | |
|  * @param buf   excitation vector
 | |
|  */
 | |
| static void get_fcb_param(FCBParam *optim, int16_t *impulse_resp,
 | |
|                           int16_t *buf, int pulse_cnt, int pitch_lag)
 | |
| {
 | |
|     FCBParam param;
 | |
|     int16_t impulse_r[SUBFRAME_LEN];
 | |
|     int16_t temp_corr[SUBFRAME_LEN];
 | |
|     int16_t impulse_corr[SUBFRAME_LEN];
 | |
| 
 | |
|     int ccr1[SUBFRAME_LEN];
 | |
|     int ccr2[SUBFRAME_LEN];
 | |
|     int amp, err, max, max_amp_index, min, scale, i, j, k, l;
 | |
| 
 | |
|     int64_t temp;
 | |
| 
 | |
|     /* Update impulse response */
 | |
|     memcpy(impulse_r, impulse_resp, sizeof(int16_t) * SUBFRAME_LEN);
 | |
|     param.dirac_train = 0;
 | |
|     if (pitch_lag < SUBFRAME_LEN - 2) {
 | |
|         param.dirac_train = 1;
 | |
|         ff_g723_1_gen_dirac_train(impulse_r, pitch_lag);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++)
 | |
|         temp_corr[i] = impulse_r[i] >> 1;
 | |
| 
 | |
|     /* Compute impulse response autocorrelation */
 | |
|     temp = ff_g723_1_dot_product(temp_corr, temp_corr, SUBFRAME_LEN);
 | |
| 
 | |
|     scale           = ff_g723_1_normalize_bits(temp, 31);
 | |
|     impulse_corr[0] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16;
 | |
| 
 | |
|     for (i = 1; i < SUBFRAME_LEN; i++) {
 | |
|         temp = ff_g723_1_dot_product(temp_corr + i, temp_corr,
 | |
|                                      SUBFRAME_LEN - i);
 | |
|         impulse_corr[i] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16;
 | |
|     }
 | |
| 
 | |
|     /* Compute crosscorrelation of impulse response with residual signal */
 | |
|     scale -= 4;
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         temp = ff_g723_1_dot_product(buf + i, impulse_r, SUBFRAME_LEN - i);
 | |
|         if (scale < 0)
 | |
|             ccr1[i] = temp >> -scale;
 | |
|         else
 | |
|             ccr1[i] = av_clipl_int32(temp << scale);
 | |
|     }
 | |
| 
 | |
|     /* Search loop */
 | |
|     for (i = 0; i < GRID_SIZE; i++) {
 | |
|         /* Maximize the crosscorrelation */
 | |
|         max = 0;
 | |
|         for (j = i; j < SUBFRAME_LEN; j += GRID_SIZE) {
 | |
|             temp = FFABS(ccr1[j]);
 | |
|             if (temp >= max) {
 | |
|                 max                = temp;
 | |
|                 param.pulse_pos[0] = j;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Quantize the gain (max crosscorrelation/impulse_corr[0]) */
 | |
|         amp           = max;
 | |
|         min           = 1 << 30;
 | |
|         max_amp_index = GAIN_LEVELS - 2;
 | |
|         for (j = max_amp_index; j >= 2; j--) {
 | |
|             temp = av_clipl_int32((int64_t) ff_g723_1_fixed_cb_gain[j] *
 | |
|                                   impulse_corr[0] << 1);
 | |
|             temp = FFABS(temp - amp);
 | |
|             if (temp < min) {
 | |
|                 min           = temp;
 | |
|                 max_amp_index = j;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         max_amp_index--;
 | |
|         /* Select additional gain values */
 | |
|         for (j = 1; j < 5; j++) {
 | |
|             for (k = i; k < SUBFRAME_LEN; k += GRID_SIZE) {
 | |
|                 temp_corr[k] = 0;
 | |
|                 ccr2[k]      = ccr1[k];
 | |
|             }
 | |
|             param.amp_index = max_amp_index + j - 2;
 | |
|             amp             = ff_g723_1_fixed_cb_gain[param.amp_index];
 | |
| 
 | |
|             param.pulse_sign[0] = (ccr2[param.pulse_pos[0]] < 0) ? -amp : amp;
 | |
|             temp_corr[param.pulse_pos[0]] = 1;
 | |
| 
 | |
|             for (k = 1; k < pulse_cnt; k++) {
 | |
|                 max = INT_MIN;
 | |
|                 for (l = i; l < SUBFRAME_LEN; l += GRID_SIZE) {
 | |
|                     if (temp_corr[l])
 | |
|                         continue;
 | |
|                     temp = impulse_corr[FFABS(l - param.pulse_pos[k - 1])];
 | |
|                     temp = av_clipl_int32((int64_t) temp *
 | |
|                                           param.pulse_sign[k - 1] << 1);
 | |
|                     ccr2[l] -= temp;
 | |
|                     temp     = FFABS(ccr2[l]);
 | |
|                     if (temp > max) {
 | |
|                         max                = temp;
 | |
|                         param.pulse_pos[k] = l;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 param.pulse_sign[k] = (ccr2[param.pulse_pos[k]] < 0) ?
 | |
|                                       -amp : amp;
 | |
|                 temp_corr[param.pulse_pos[k]] = 1;
 | |
|             }
 | |
| 
 | |
|             /* Create the error vector */
 | |
|             memset(temp_corr, 0, sizeof(int16_t) * SUBFRAME_LEN);
 | |
| 
 | |
|             for (k = 0; k < pulse_cnt; k++)
 | |
|                 temp_corr[param.pulse_pos[k]] = param.pulse_sign[k];
 | |
| 
 | |
|             for (k = SUBFRAME_LEN - 1; k >= 0; k--) {
 | |
|                 temp = 0;
 | |
|                 for (l = 0; l <= k; l++) {
 | |
|                     int prod = av_clipl_int32((int64_t) temp_corr[l] *
 | |
|                                               impulse_r[k - l] << 1);
 | |
|                     temp = av_clipl_int32(temp + prod);
 | |
|                 }
 | |
|                 temp_corr[k] = temp << 2 >> 16;
 | |
|             }
 | |
| 
 | |
|             /* Compute square of error */
 | |
|             err = 0;
 | |
|             for (k = 0; k < SUBFRAME_LEN; k++) {
 | |
|                 int64_t prod;
 | |
|                 prod = av_clipl_int32((int64_t) buf[k] * temp_corr[k] << 1);
 | |
|                 err  = av_clipl_int32(err - prod);
 | |
|                 prod = av_clipl_int32((int64_t) temp_corr[k] * temp_corr[k]);
 | |
|                 err  = av_clipl_int32(err + prod);
 | |
|             }
 | |
| 
 | |
|             /* Minimize */
 | |
|             if (err < optim->min_err) {
 | |
|                 optim->min_err     = err;
 | |
|                 optim->grid_index  = i;
 | |
|                 optim->amp_index   = param.amp_index;
 | |
|                 optim->dirac_train = param.dirac_train;
 | |
| 
 | |
|                 for (k = 0; k < pulse_cnt; k++) {
 | |
|                     optim->pulse_sign[k] = param.pulse_sign[k];
 | |
|                     optim->pulse_pos[k]  = param.pulse_pos[k];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Encode the pulse position and gain of the current subframe.
 | |
|  *
 | |
|  * @param optim optimized fixed CB parameters
 | |
|  * @param buf   excitation vector
 | |
|  */
 | |
| static void pack_fcb_param(G723_1_Subframe *subfrm, FCBParam *optim,
 | |
|                            int16_t *buf, int pulse_cnt)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     j = PULSE_MAX - pulse_cnt;
 | |
| 
 | |
|     subfrm->pulse_sign = 0;
 | |
|     subfrm->pulse_pos  = 0;
 | |
| 
 | |
|     for (i = 0; i < SUBFRAME_LEN >> 1; i++) {
 | |
|         int val = buf[optim->grid_index + (i << 1)];
 | |
|         if (!val) {
 | |
|             subfrm->pulse_pos += ff_g723_1_combinatorial_table[j][i];
 | |
|         } else {
 | |
|             subfrm->pulse_sign <<= 1;
 | |
|             if (val < 0)
 | |
|                 subfrm->pulse_sign++;
 | |
|             j++;
 | |
| 
 | |
|             if (j == PULSE_MAX)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     subfrm->amp_index   = optim->amp_index;
 | |
|     subfrm->grid_index  = optim->grid_index;
 | |
|     subfrm->dirac_train = optim->dirac_train;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute the fixed codebook excitation.
 | |
|  *
 | |
|  * @param buf          target vector
 | |
|  * @param impulse_resp impulse response of the combined filter
 | |
|  */
 | |
| static void fcb_search(G723_1_ChannelContext *p, int16_t *impulse_resp,
 | |
|                        int16_t *buf, int index)
 | |
| {
 | |
|     FCBParam optim;
 | |
|     int pulse_cnt = pulses[index];
 | |
|     int i;
 | |
| 
 | |
|     optim.min_err = 1 << 30;
 | |
|     get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, SUBFRAME_LEN);
 | |
| 
 | |
|     if (p->pitch_lag[index >> 1] < SUBFRAME_LEN - 2) {
 | |
|         get_fcb_param(&optim, impulse_resp, buf, pulse_cnt,
 | |
|                       p->pitch_lag[index >> 1]);
 | |
|     }
 | |
| 
 | |
|     /* Reconstruct the excitation */
 | |
|     memset(buf, 0, sizeof(int16_t) * SUBFRAME_LEN);
 | |
|     for (i = 0; i < pulse_cnt; i++)
 | |
|         buf[optim.pulse_pos[i]] = optim.pulse_sign[i];
 | |
| 
 | |
|     pack_fcb_param(&p->subframe[index], &optim, buf, pulse_cnt);
 | |
| 
 | |
|     if (optim.dirac_train)
 | |
|         ff_g723_1_gen_dirac_train(buf, p->pitch_lag[index >> 1]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Pack the frame parameters into output bitstream.
 | |
|  *
 | |
|  * @param frame output buffer
 | |
|  * @param size  size of the buffer
 | |
|  */
 | |
| static void pack_bitstream(G723_1_ChannelContext *p, AVPacket *avpkt, int info_bits)
 | |
| {
 | |
|     PutBitContext pb;
 | |
|     int i, temp;
 | |
| 
 | |
|     init_put_bits(&pb, avpkt->data, avpkt->size);
 | |
| 
 | |
|     put_bits(&pb, 2, info_bits);
 | |
| 
 | |
|     put_bits(&pb, 8, p->lsp_index[2]);
 | |
|     put_bits(&pb, 8, p->lsp_index[1]);
 | |
|     put_bits(&pb, 8, p->lsp_index[0]);
 | |
| 
 | |
|     put_bits(&pb, 7, p->pitch_lag[0] - PITCH_MIN);
 | |
|     put_bits(&pb, 2, p->subframe[1].ad_cb_lag);
 | |
|     put_bits(&pb, 7, p->pitch_lag[1] - PITCH_MIN);
 | |
|     put_bits(&pb, 2, p->subframe[3].ad_cb_lag);
 | |
| 
 | |
|     /* Write 12 bit combined gain */
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         temp = p->subframe[i].ad_cb_gain * GAIN_LEVELS +
 | |
|                p->subframe[i].amp_index;
 | |
|         if (p->cur_rate == RATE_6300)
 | |
|             temp += p->subframe[i].dirac_train << 11;
 | |
|         put_bits(&pb, 12, temp);
 | |
|     }
 | |
| 
 | |
|     put_bits(&pb, 1, p->subframe[0].grid_index);
 | |
|     put_bits(&pb, 1, p->subframe[1].grid_index);
 | |
|     put_bits(&pb, 1, p->subframe[2].grid_index);
 | |
|     put_bits(&pb, 1, p->subframe[3].grid_index);
 | |
| 
 | |
|     if (p->cur_rate == RATE_6300) {
 | |
|         put_bits(&pb, 1, 0); /* reserved bit */
 | |
| 
 | |
|         /* Write 13 bit combined position index */
 | |
|         temp = (p->subframe[0].pulse_pos >> 16) * 810 +
 | |
|                (p->subframe[1].pulse_pos >> 14) *  90 +
 | |
|                (p->subframe[2].pulse_pos >> 16) *   9 +
 | |
|                (p->subframe[3].pulse_pos >> 14);
 | |
|         put_bits(&pb, 13, temp);
 | |
| 
 | |
|         put_bits(&pb, 16, p->subframe[0].pulse_pos & 0xffff);
 | |
|         put_bits(&pb, 14, p->subframe[1].pulse_pos & 0x3fff);
 | |
|         put_bits(&pb, 16, p->subframe[2].pulse_pos & 0xffff);
 | |
|         put_bits(&pb, 14, p->subframe[3].pulse_pos & 0x3fff);
 | |
| 
 | |
|         put_bits(&pb, 6, p->subframe[0].pulse_sign);
 | |
|         put_bits(&pb, 5, p->subframe[1].pulse_sign);
 | |
|         put_bits(&pb, 6, p->subframe[2].pulse_sign);
 | |
|         put_bits(&pb, 5, p->subframe[3].pulse_sign);
 | |
|     }
 | |
| 
 | |
|     flush_put_bits(&pb);
 | |
| }
 | |
| 
 | |
| static int g723_1_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                                const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     G723_1_Context *s = avctx->priv_data;
 | |
|     G723_1_ChannelContext *p = &s->ch[0];
 | |
|     int16_t unq_lpc[LPC_ORDER * SUBFRAMES];
 | |
|     int16_t qnt_lpc[LPC_ORDER * SUBFRAMES];
 | |
|     int16_t cur_lsp[LPC_ORDER];
 | |
|     int16_t weighted_lpc[LPC_ORDER * SUBFRAMES << 1];
 | |
|     int16_t vector[FRAME_LEN + PITCH_MAX];
 | |
|     int offset, ret, i, j, info_bits = 0;
 | |
|     int16_t *in, *start;
 | |
|     HFParam hf[4];
 | |
| 
 | |
|     /* duplicate input */
 | |
|     start = in = av_malloc(frame->nb_samples * sizeof(int16_t));
 | |
|     if (!in)
 | |
|         return AVERROR(ENOMEM);
 | |
|     memcpy(in, frame->data[0], frame->nb_samples * sizeof(int16_t));
 | |
| 
 | |
|     highpass_filter(in, &p->hpf_fir_mem, &p->hpf_iir_mem);
 | |
| 
 | |
|     memcpy(vector, p->prev_data, HALF_FRAME_LEN * sizeof(int16_t));
 | |
|     memcpy(vector + HALF_FRAME_LEN, in, FRAME_LEN * sizeof(int16_t));
 | |
| 
 | |
|     comp_lpc_coeff(vector, unq_lpc);
 | |
|     lpc2lsp(&unq_lpc[LPC_ORDER * 3], p->prev_lsp, cur_lsp);
 | |
|     lsp_quantize(p->lsp_index, cur_lsp, p->prev_lsp);
 | |
| 
 | |
|     /* Update memory */
 | |
|     memcpy(vector + LPC_ORDER, p->prev_data + SUBFRAME_LEN,
 | |
|            sizeof(int16_t) * SUBFRAME_LEN);
 | |
|     memcpy(vector + LPC_ORDER + SUBFRAME_LEN, in,
 | |
|            sizeof(int16_t) * (HALF_FRAME_LEN + SUBFRAME_LEN));
 | |
|     memcpy(p->prev_data, in + HALF_FRAME_LEN,
 | |
|            sizeof(int16_t) * HALF_FRAME_LEN);
 | |
|     memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
 | |
| 
 | |
|     perceptual_filter(p, weighted_lpc, unq_lpc, vector);
 | |
| 
 | |
|     memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
 | |
|     memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX);
 | |
|     memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN);
 | |
| 
 | |
|     ff_g723_1_scale_vector(vector, vector, FRAME_LEN + PITCH_MAX);
 | |
| 
 | |
|     p->pitch_lag[0] = estimate_pitch(vector, PITCH_MAX);
 | |
|     p->pitch_lag[1] = estimate_pitch(vector, PITCH_MAX + HALF_FRAME_LEN);
 | |
| 
 | |
|     for (i = PITCH_MAX, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
 | |
|         comp_harmonic_coeff(vector + i, p->pitch_lag[j >> 1], hf + j);
 | |
| 
 | |
|     memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX);
 | |
|     memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN);
 | |
|     memcpy(p->prev_weight_sig, vector + FRAME_LEN, sizeof(int16_t) * PITCH_MAX);
 | |
| 
 | |
|     for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
 | |
|         harmonic_filter(hf + j, vector + PITCH_MAX + i, in + i);
 | |
| 
 | |
|     ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, 0);
 | |
|     ff_g723_1_lsp_interpolate(qnt_lpc, cur_lsp, p->prev_lsp);
 | |
| 
 | |
|     memcpy(p->prev_lsp, cur_lsp, sizeof(int16_t) * LPC_ORDER);
 | |
| 
 | |
|     offset = 0;
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         int16_t impulse_resp[SUBFRAME_LEN];
 | |
|         int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
 | |
|         int16_t flt_in[SUBFRAME_LEN];
 | |
|         int16_t zero[LPC_ORDER], fir[LPC_ORDER], iir[LPC_ORDER];
 | |
| 
 | |
|         /**
 | |
|          * Compute the combined impulse response of the synthesis filter,
 | |
|          * formant perceptual weighting filter and harmonic noise shaping filter
 | |
|          */
 | |
|         memset(zero, 0, sizeof(int16_t) * LPC_ORDER);
 | |
|         memset(vector, 0, sizeof(int16_t) * PITCH_MAX);
 | |
|         memset(flt_in, 0, sizeof(int16_t) * SUBFRAME_LEN);
 | |
| 
 | |
|         flt_in[0] = 1 << 13; /* Unit impulse */
 | |
|         synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
 | |
|                              zero, zero, flt_in, vector + PITCH_MAX, 1);
 | |
|         harmonic_filter(hf + i, vector + PITCH_MAX, impulse_resp);
 | |
| 
 | |
|         /* Compute the combined zero input response */
 | |
|         flt_in[0] = 0;
 | |
|         memcpy(fir, p->perf_fir_mem, sizeof(int16_t) * LPC_ORDER);
 | |
|         memcpy(iir, p->perf_iir_mem, sizeof(int16_t) * LPC_ORDER);
 | |
| 
 | |
|         synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
 | |
|                              fir, iir, flt_in, vector + PITCH_MAX, 0);
 | |
|         memcpy(vector, p->harmonic_mem, sizeof(int16_t) * PITCH_MAX);
 | |
|         harmonic_noise_sub(hf + i, vector + PITCH_MAX, in);
 | |
| 
 | |
|         acb_search(p, residual, impulse_resp, in, i);
 | |
|         ff_g723_1_gen_acb_excitation(residual, p->prev_excitation,
 | |
|                                      p->pitch_lag[i >> 1], &p->subframe[i],
 | |
|                                      p->cur_rate);
 | |
|         sub_acb_contrib(residual, impulse_resp, in);
 | |
| 
 | |
|         fcb_search(p, impulse_resp, in, i);
 | |
| 
 | |
|         /* Reconstruct the excitation */
 | |
|         ff_g723_1_gen_acb_excitation(impulse_resp, p->prev_excitation,
 | |
|                                      p->pitch_lag[i >> 1], &p->subframe[i],
 | |
|                                      RATE_6300);
 | |
| 
 | |
|         memmove(p->prev_excitation, p->prev_excitation + SUBFRAME_LEN,
 | |
|                 sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN));
 | |
|         for (j = 0; j < SUBFRAME_LEN; j++)
 | |
|             in[j] = av_clip_int16((in[j] << 1) + impulse_resp[j]);
 | |
|         memcpy(p->prev_excitation + PITCH_MAX - SUBFRAME_LEN, in,
 | |
|                sizeof(int16_t) * SUBFRAME_LEN);
 | |
| 
 | |
|         /* Update filter memories */
 | |
|         synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
 | |
|                              p->perf_fir_mem, p->perf_iir_mem,
 | |
|                              in, vector + PITCH_MAX, 0);
 | |
|         memmove(p->harmonic_mem, p->harmonic_mem + SUBFRAME_LEN,
 | |
|                 sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN));
 | |
|         memcpy(p->harmonic_mem + PITCH_MAX - SUBFRAME_LEN, vector + PITCH_MAX,
 | |
|                sizeof(int16_t) * SUBFRAME_LEN);
 | |
| 
 | |
|         in     += SUBFRAME_LEN;
 | |
|         offset += LPC_ORDER;
 | |
|     }
 | |
| 
 | |
|     av_free(start);
 | |
| 
 | |
|     ret = ff_get_encode_buffer(avctx, avpkt, frame_size[info_bits], 0);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     *got_packet_ptr = 1;
 | |
|     pack_bitstream(p, avpkt, info_bits);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const AVCodecDefault defaults[] = {
 | |
|     { "b", "6300" },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| const AVCodec ff_g723_1_encoder = {
 | |
|     .name           = "g723_1",
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_G723_1,
 | |
|     .capabilities   = AV_CODEC_CAP_DR1,
 | |
|     .priv_data_size = sizeof(G723_1_Context),
 | |
|     .init           = g723_1_encode_init,
 | |
|     .encode2        = g723_1_encode_frame,
 | |
|     .defaults       = defaults,
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) {
 | |
|         AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
 | |
|     },
 | |
|     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
 | |
| };
 |