mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 04:02:04 +08:00 
			
		
		
		
	 9fb7e14635
			
		
	
	9fb7e14635
	
	
	
		
			
			Save the old output configuration (if it has been used successfully) when trying a new configuration. If the new configuration fails to decode, restore the last successful configuration.
		
			
				
	
	
		
			1717 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1717 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AAC Spectral Band Replication decoding functions
 | |
|  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
 | |
|  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * AAC Spectral Band Replication decoding functions
 | |
|  * @author Robert Swain ( rob opendot cl )
 | |
|  */
 | |
| 
 | |
| #include "aac.h"
 | |
| #include "sbr.h"
 | |
| #include "aacsbr.h"
 | |
| #include "aacsbrdata.h"
 | |
| #include "fft.h"
 | |
| #include "aacps.h"
 | |
| #include "sbrdsp.h"
 | |
| #include "libavutil/libm.h"
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <float.h>
 | |
| 
 | |
| #define ENVELOPE_ADJUSTMENT_OFFSET 2
 | |
| #define NOISE_FLOOR_OFFSET 6.0f
 | |
| 
 | |
| /**
 | |
|  * SBR VLC tables
 | |
|  */
 | |
| enum {
 | |
|     T_HUFFMAN_ENV_1_5DB,
 | |
|     F_HUFFMAN_ENV_1_5DB,
 | |
|     T_HUFFMAN_ENV_BAL_1_5DB,
 | |
|     F_HUFFMAN_ENV_BAL_1_5DB,
 | |
|     T_HUFFMAN_ENV_3_0DB,
 | |
|     F_HUFFMAN_ENV_3_0DB,
 | |
|     T_HUFFMAN_ENV_BAL_3_0DB,
 | |
|     F_HUFFMAN_ENV_BAL_3_0DB,
 | |
|     T_HUFFMAN_NOISE_3_0DB,
 | |
|     T_HUFFMAN_NOISE_BAL_3_0DB,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
 | |
|  */
 | |
| enum {
 | |
|     FIXFIX,
 | |
|     FIXVAR,
 | |
|     VARFIX,
 | |
|     VARVAR,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     EXTENSION_ID_PS = 2,
 | |
| };
 | |
| 
 | |
| static VLC vlc_sbr[10];
 | |
| static const int8_t vlc_sbr_lav[10] =
 | |
|     { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
 | |
| static const DECLARE_ALIGNED(16, float, zero64)[64];
 | |
| 
 | |
| #define SBR_INIT_VLC_STATIC(num, size) \
 | |
|     INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size,     \
 | |
|                     sbr_tmp[num].sbr_bits ,                      1,                      1, \
 | |
|                     sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
 | |
|                     size)
 | |
| 
 | |
| #define SBR_VLC_ROW(name) \
 | |
|     { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
 | |
| 
 | |
| av_cold void ff_aac_sbr_init(void)
 | |
| {
 | |
|     int n;
 | |
|     static const struct {
 | |
|         const void *sbr_codes, *sbr_bits;
 | |
|         const unsigned int table_size, elem_size;
 | |
|     } sbr_tmp[] = {
 | |
|         SBR_VLC_ROW(t_huffman_env_1_5dB),
 | |
|         SBR_VLC_ROW(f_huffman_env_1_5dB),
 | |
|         SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
 | |
|         SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
 | |
|         SBR_VLC_ROW(t_huffman_env_3_0dB),
 | |
|         SBR_VLC_ROW(f_huffman_env_3_0dB),
 | |
|         SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
 | |
|         SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
 | |
|         SBR_VLC_ROW(t_huffman_noise_3_0dB),
 | |
|         SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
 | |
|     };
 | |
| 
 | |
|     // SBR VLC table initialization
 | |
|     SBR_INIT_VLC_STATIC(0, 1098);
 | |
|     SBR_INIT_VLC_STATIC(1, 1092);
 | |
|     SBR_INIT_VLC_STATIC(2, 768);
 | |
|     SBR_INIT_VLC_STATIC(3, 1026);
 | |
|     SBR_INIT_VLC_STATIC(4, 1058);
 | |
|     SBR_INIT_VLC_STATIC(5, 1052);
 | |
|     SBR_INIT_VLC_STATIC(6, 544);
 | |
|     SBR_INIT_VLC_STATIC(7, 544);
 | |
|     SBR_INIT_VLC_STATIC(8, 592);
 | |
|     SBR_INIT_VLC_STATIC(9, 512);
 | |
| 
 | |
|     for (n = 1; n < 320; n++)
 | |
|         sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
 | |
|     sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
 | |
|     sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
 | |
| 
 | |
|     for (n = 0; n < 320; n++)
 | |
|         sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
 | |
| 
 | |
|     ff_ps_init();
 | |
| }
 | |
| 
 | |
| /** Places SBR in pure upsampling mode. */
 | |
| static void sbr_turnoff(SpectralBandReplication *sbr) {
 | |
|     sbr->start = 0;
 | |
|     // Init defults used in pure upsampling mode
 | |
|     sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
 | |
|     sbr->m[1] = 0;
 | |
|     // Reset values for first SBR header
 | |
|     sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
 | |
|     memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
 | |
| }
 | |
| 
 | |
| av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
 | |
| {
 | |
|     float mdct_scale;
 | |
|     sbr->kx[0] = sbr->kx[1];
 | |
|     sbr_turnoff(sbr);
 | |
|     sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
 | |
|     sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
 | |
|     /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
 | |
|      * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
 | |
|      * and scale back down at synthesis. */
 | |
|     mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
 | |
|     ff_mdct_init(&sbr->mdct,     7, 1, 1.0 / (64 * mdct_scale));
 | |
|     ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
 | |
|     ff_ps_ctx_init(&sbr->ps);
 | |
|     ff_sbrdsp_init(&sbr->dsp);
 | |
| }
 | |
| 
 | |
| av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
 | |
| {
 | |
|     ff_mdct_end(&sbr->mdct);
 | |
|     ff_mdct_end(&sbr->mdct_ana);
 | |
| }
 | |
| 
 | |
| static int qsort_comparison_function_int16(const void *a, const void *b)
 | |
| {
 | |
|     return *(const int16_t *)a - *(const int16_t *)b;
 | |
| }
 | |
| 
 | |
| static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i <= last_el; i++)
 | |
|         if (table[i] == needle)
 | |
|             return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// Limiter Frequency Band Table (14496-3 sp04 p198)
 | |
| static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
 | |
| {
 | |
|     int k;
 | |
|     if (sbr->bs_limiter_bands > 0) {
 | |
|         static const float bands_warped[3] = { 1.32715174233856803909f,   //2^(0.49/1.2)
 | |
|                                                1.18509277094158210129f,   //2^(0.49/2)
 | |
|                                                1.11987160404675912501f }; //2^(0.49/3)
 | |
|         const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
 | |
|         int16_t patch_borders[7];
 | |
|         uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
 | |
| 
 | |
|         patch_borders[0] = sbr->kx[1];
 | |
|         for (k = 1; k <= sbr->num_patches; k++)
 | |
|             patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
 | |
| 
 | |
|         memcpy(sbr->f_tablelim, sbr->f_tablelow,
 | |
|                (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
 | |
|         if (sbr->num_patches > 1)
 | |
|             memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
 | |
|                    (sbr->num_patches - 1) * sizeof(patch_borders[0]));
 | |
| 
 | |
|         qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
 | |
|               sizeof(sbr->f_tablelim[0]),
 | |
|               qsort_comparison_function_int16);
 | |
| 
 | |
|         sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
 | |
|         while (out < sbr->f_tablelim + sbr->n_lim) {
 | |
|             if (*in >= *out * lim_bands_per_octave_warped) {
 | |
|                 *++out = *in++;
 | |
|             } else if (*in == *out ||
 | |
|                 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
 | |
|                 in++;
 | |
|                 sbr->n_lim--;
 | |
|             } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
 | |
|                 *out = *in++;
 | |
|                 sbr->n_lim--;
 | |
|             } else {
 | |
|                 *++out = *in++;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         sbr->f_tablelim[0] = sbr->f_tablelow[0];
 | |
|         sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
 | |
|         sbr->n_lim = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
 | |
| {
 | |
|     unsigned int cnt = get_bits_count(gb);
 | |
|     uint8_t bs_header_extra_1;
 | |
|     uint8_t bs_header_extra_2;
 | |
|     int old_bs_limiter_bands = sbr->bs_limiter_bands;
 | |
|     SpectrumParameters old_spectrum_params;
 | |
| 
 | |
|     sbr->start = 1;
 | |
| 
 | |
|     // Save last spectrum parameters variables to compare to new ones
 | |
|     memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
 | |
| 
 | |
|     sbr->bs_amp_res_header              = get_bits1(gb);
 | |
|     sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
 | |
|     sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
 | |
|     sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
 | |
|                                           skip_bits(gb, 2); // bs_reserved
 | |
| 
 | |
|     bs_header_extra_1 = get_bits1(gb);
 | |
|     bs_header_extra_2 = get_bits1(gb);
 | |
| 
 | |
|     if (bs_header_extra_1) {
 | |
|         sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
 | |
|         sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
 | |
|         sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
 | |
|     } else {
 | |
|         sbr->spectrum_params.bs_freq_scale  = 2;
 | |
|         sbr->spectrum_params.bs_alter_scale = 1;
 | |
|         sbr->spectrum_params.bs_noise_bands = 2;
 | |
|     }
 | |
| 
 | |
|     // Check if spectrum parameters changed
 | |
|     if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
 | |
|         sbr->reset = 1;
 | |
| 
 | |
|     if (bs_header_extra_2) {
 | |
|         sbr->bs_limiter_bands  = get_bits(gb, 2);
 | |
|         sbr->bs_limiter_gains  = get_bits(gb, 2);
 | |
|         sbr->bs_interpol_freq  = get_bits1(gb);
 | |
|         sbr->bs_smoothing_mode = get_bits1(gb);
 | |
|     } else {
 | |
|         sbr->bs_limiter_bands  = 2;
 | |
|         sbr->bs_limiter_gains  = 2;
 | |
|         sbr->bs_interpol_freq  = 1;
 | |
|         sbr->bs_smoothing_mode = 1;
 | |
|     }
 | |
| 
 | |
|     if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
 | |
|         sbr_make_f_tablelim(sbr);
 | |
| 
 | |
|     return get_bits_count(gb) - cnt;
 | |
| }
 | |
| 
 | |
| static int array_min_int16(const int16_t *array, int nel)
 | |
| {
 | |
|     int i, min = array[0];
 | |
|     for (i = 1; i < nel; i++)
 | |
|         min = FFMIN(array[i], min);
 | |
|     return min;
 | |
| }
 | |
| 
 | |
| static void make_bands(int16_t* bands, int start, int stop, int num_bands)
 | |
| {
 | |
|     int k, previous, present;
 | |
|     float base, prod;
 | |
| 
 | |
|     base = powf((float)stop / start, 1.0f / num_bands);
 | |
|     prod = start;
 | |
|     previous = start;
 | |
| 
 | |
|     for (k = 0; k < num_bands-1; k++) {
 | |
|         prod *= base;
 | |
|         present  = lrintf(prod);
 | |
|         bands[k] = present - previous;
 | |
|         previous = present;
 | |
|     }
 | |
|     bands[num_bands-1] = stop - previous;
 | |
| }
 | |
| 
 | |
| static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
 | |
| {
 | |
|     // Requirements (14496-3 sp04 p205)
 | |
|     if (n_master <= 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
 | |
|         return -1;
 | |
|     }
 | |
|     if (bs_xover_band >= n_master) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Invalid bitstream, crossover band index beyond array bounds: %d\n",
 | |
|                bs_xover_band);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// Master Frequency Band Table (14496-3 sp04 p194)
 | |
| static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                              SpectrumParameters *spectrum)
 | |
| {
 | |
|     unsigned int temp, max_qmf_subbands;
 | |
|     unsigned int start_min, stop_min;
 | |
|     int k;
 | |
|     const int8_t *sbr_offset_ptr;
 | |
|     int16_t stop_dk[13];
 | |
| 
 | |
|     if (sbr->sample_rate < 32000) {
 | |
|         temp = 3000;
 | |
|     } else if (sbr->sample_rate < 64000) {
 | |
|         temp = 4000;
 | |
|     } else
 | |
|         temp = 5000;
 | |
| 
 | |
|     start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
 | |
|     stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
 | |
| 
 | |
|     switch (sbr->sample_rate) {
 | |
|     case 16000:
 | |
|         sbr_offset_ptr = sbr_offset[0];
 | |
|         break;
 | |
|     case 22050:
 | |
|         sbr_offset_ptr = sbr_offset[1];
 | |
|         break;
 | |
|     case 24000:
 | |
|         sbr_offset_ptr = sbr_offset[2];
 | |
|         break;
 | |
|     case 32000:
 | |
|         sbr_offset_ptr = sbr_offset[3];
 | |
|         break;
 | |
|     case 44100: case 48000: case 64000:
 | |
|         sbr_offset_ptr = sbr_offset[4];
 | |
|         break;
 | |
|     case 88200: case 96000: case 128000: case 176400: case 192000:
 | |
|         sbr_offset_ptr = sbr_offset[5];
 | |
|         break;
 | |
|     default:
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
 | |
| 
 | |
|     if (spectrum->bs_stop_freq < 14) {
 | |
|         sbr->k[2] = stop_min;
 | |
|         make_bands(stop_dk, stop_min, 64, 13);
 | |
|         qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
 | |
|         for (k = 0; k < spectrum->bs_stop_freq; k++)
 | |
|             sbr->k[2] += stop_dk[k];
 | |
|     } else if (spectrum->bs_stop_freq == 14) {
 | |
|         sbr->k[2] = 2*sbr->k[0];
 | |
|     } else if (spectrum->bs_stop_freq == 15) {
 | |
|         sbr->k[2] = 3*sbr->k[0];
 | |
|     } else {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
 | |
|         return -1;
 | |
|     }
 | |
|     sbr->k[2] = FFMIN(64, sbr->k[2]);
 | |
| 
 | |
|     // Requirements (14496-3 sp04 p205)
 | |
|     if (sbr->sample_rate <= 32000) {
 | |
|         max_qmf_subbands = 48;
 | |
|     } else if (sbr->sample_rate == 44100) {
 | |
|         max_qmf_subbands = 35;
 | |
|     } else if (sbr->sample_rate >= 48000)
 | |
|         max_qmf_subbands = 32;
 | |
| 
 | |
|     if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!spectrum->bs_freq_scale) {
 | |
|         int dk, k2diff;
 | |
| 
 | |
|         dk = spectrum->bs_alter_scale + 1;
 | |
|         sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
 | |
|         if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
 | |
|             return -1;
 | |
| 
 | |
|         for (k = 1; k <= sbr->n_master; k++)
 | |
|             sbr->f_master[k] = dk;
 | |
| 
 | |
|         k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
 | |
|         if (k2diff < 0) {
 | |
|             sbr->f_master[1]--;
 | |
|             sbr->f_master[2]-= (k2diff < -1);
 | |
|         } else if (k2diff) {
 | |
|             sbr->f_master[sbr->n_master]++;
 | |
|         }
 | |
| 
 | |
|         sbr->f_master[0] = sbr->k[0];
 | |
|         for (k = 1; k <= sbr->n_master; k++)
 | |
|             sbr->f_master[k] += sbr->f_master[k - 1];
 | |
| 
 | |
|     } else {
 | |
|         int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
 | |
|         int two_regions, num_bands_0;
 | |
|         int vdk0_max, vdk1_min;
 | |
|         int16_t vk0[49];
 | |
| 
 | |
|         if (49 * sbr->k[2] > 110 * sbr->k[0]) {
 | |
|             two_regions = 1;
 | |
|             sbr->k[1] = 2 * sbr->k[0];
 | |
|         } else {
 | |
|             two_regions = 0;
 | |
|             sbr->k[1] = sbr->k[2];
 | |
|         }
 | |
| 
 | |
|         num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
 | |
| 
 | |
|         if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         vk0[0] = 0;
 | |
| 
 | |
|         make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
 | |
| 
 | |
|         qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
 | |
|         vdk0_max = vk0[num_bands_0];
 | |
| 
 | |
|         vk0[0] = sbr->k[0];
 | |
|         for (k = 1; k <= num_bands_0; k++) {
 | |
|             if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
 | |
|                 return -1;
 | |
|             }
 | |
|             vk0[k] += vk0[k-1];
 | |
|         }
 | |
| 
 | |
|         if (two_regions) {
 | |
|             int16_t vk1[49];
 | |
|             float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
 | |
|                                                      : 1.0f; // bs_alter_scale = {0,1}
 | |
|             int num_bands_1 = lrintf(half_bands * invwarp *
 | |
|                                      log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
 | |
| 
 | |
|             make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
 | |
| 
 | |
|             vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
 | |
| 
 | |
|             if (vdk1_min < vdk0_max) {
 | |
|                 int change;
 | |
|                 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
 | |
|                 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
 | |
|                 vk1[1]           += change;
 | |
|                 vk1[num_bands_1] -= change;
 | |
|             }
 | |
| 
 | |
|             qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
 | |
| 
 | |
|             vk1[0] = sbr->k[1];
 | |
|             for (k = 1; k <= num_bands_1; k++) {
 | |
|                 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
 | |
|                     av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 vk1[k] += vk1[k-1];
 | |
|             }
 | |
| 
 | |
|             sbr->n_master = num_bands_0 + num_bands_1;
 | |
|             if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
 | |
|                 return -1;
 | |
|             memcpy(&sbr->f_master[0],               vk0,
 | |
|                    (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
 | |
|             memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
 | |
|                     num_bands_1      * sizeof(sbr->f_master[0]));
 | |
| 
 | |
|         } else {
 | |
|             sbr->n_master = num_bands_0;
 | |
|             if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
 | |
|                 return -1;
 | |
|             memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
 | |
| static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
 | |
| {
 | |
|     int i, k, sb = 0;
 | |
|     int msb = sbr->k[0];
 | |
|     int usb = sbr->kx[1];
 | |
|     int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
 | |
| 
 | |
|     sbr->num_patches = 0;
 | |
| 
 | |
|     if (goal_sb < sbr->kx[1] + sbr->m[1]) {
 | |
|         for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
 | |
|     } else
 | |
|         k = sbr->n_master;
 | |
| 
 | |
|     do {
 | |
|         int odd = 0;
 | |
|         for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
 | |
|             sb = sbr->f_master[i];
 | |
|             odd = (sb + sbr->k[0]) & 1;
 | |
|         }
 | |
| 
 | |
|         // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
 | |
|         // After this check the final number of patches can still be six which is
 | |
|         // illegal however the Coding Technologies decoder check stream has a final
 | |
|         // count of 6 patches
 | |
|         if (sbr->num_patches > 5) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
 | |
|         sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
 | |
| 
 | |
|         if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
 | |
|             usb = sb;
 | |
|             msb = sb;
 | |
|             sbr->num_patches++;
 | |
|         } else
 | |
|             msb = sbr->kx[1];
 | |
| 
 | |
|         if (sbr->f_master[k] - sb < 3)
 | |
|             k = sbr->n_master;
 | |
|     } while (sb != sbr->kx[1] + sbr->m[1]);
 | |
| 
 | |
|     if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
 | |
|         sbr->num_patches--;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// Derived Frequency Band Tables (14496-3 sp04 p197)
 | |
| static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
 | |
| {
 | |
|     int k, temp;
 | |
| 
 | |
|     sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
 | |
|     sbr->n[0] = (sbr->n[1] + 1) >> 1;
 | |
| 
 | |
|     memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
 | |
|            (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
 | |
|     sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
 | |
|     sbr->kx[1] = sbr->f_tablehigh[0];
 | |
| 
 | |
|     // Requirements (14496-3 sp04 p205)
 | |
|     if (sbr->kx[1] + sbr->m[1] > 64) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
 | |
|         return -1;
 | |
|     }
 | |
|     if (sbr->kx[1] > 32) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     sbr->f_tablelow[0] = sbr->f_tablehigh[0];
 | |
|     temp = sbr->n[1] & 1;
 | |
|     for (k = 1; k <= sbr->n[0]; k++)
 | |
|         sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
 | |
| 
 | |
|     sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
 | |
|                                log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
 | |
|     if (sbr->n_q > 5) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     sbr->f_tablenoise[0] = sbr->f_tablelow[0];
 | |
|     temp = 0;
 | |
|     for (k = 1; k <= sbr->n_q; k++) {
 | |
|         temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
 | |
|         sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
 | |
|     }
 | |
| 
 | |
|     if (sbr_hf_calc_npatches(ac, sbr) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     sbr_make_f_tablelim(sbr);
 | |
| 
 | |
|     sbr->data[0].f_indexnoise = 0;
 | |
|     sbr->data[1].f_indexnoise = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
 | |
|                                               int elements)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < elements; i++) {
 | |
|         vec[i] = get_bits1(gb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** ceil(log2(index+1)) */
 | |
| static const int8_t ceil_log2[] = {
 | |
|     0, 1, 2, 2, 3, 3,
 | |
| };
 | |
| 
 | |
| static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                          GetBitContext *gb, SBRData *ch_data)
 | |
| {
 | |
|     int i;
 | |
|     unsigned bs_pointer = 0;
 | |
|     // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
 | |
|     int abs_bord_trail = 16;
 | |
|     int num_rel_lead, num_rel_trail;
 | |
|     unsigned bs_num_env_old = ch_data->bs_num_env;
 | |
| 
 | |
|     ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
 | |
|     ch_data->bs_amp_res = sbr->bs_amp_res_header;
 | |
|     ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
 | |
| 
 | |
|     switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
 | |
|     case FIXFIX:
 | |
|         ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
 | |
|         num_rel_lead                        = ch_data->bs_num_env - 1;
 | |
|         if (ch_data->bs_num_env == 1)
 | |
|             ch_data->bs_amp_res = 0;
 | |
| 
 | |
|         if (ch_data->bs_num_env > 4) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                    "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
 | |
|                    ch_data->bs_num_env);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         ch_data->t_env[0]                   = 0;
 | |
|         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 | |
| 
 | |
|         abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
 | |
|                    ch_data->bs_num_env;
 | |
|         for (i = 0; i < num_rel_lead; i++)
 | |
|             ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
 | |
| 
 | |
|         ch_data->bs_freq_res[1] = get_bits1(gb);
 | |
|         for (i = 1; i < ch_data->bs_num_env; i++)
 | |
|             ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
 | |
|         break;
 | |
|     case FIXVAR:
 | |
|         abs_bord_trail                     += get_bits(gb, 2);
 | |
|         num_rel_trail                       = get_bits(gb, 2);
 | |
|         ch_data->bs_num_env                 = num_rel_trail + 1;
 | |
|         ch_data->t_env[0]                   = 0;
 | |
|         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 | |
| 
 | |
|         for (i = 0; i < num_rel_trail; i++)
 | |
|             ch_data->t_env[ch_data->bs_num_env - 1 - i] =
 | |
|                 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
 | |
| 
 | |
|         bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
 | |
| 
 | |
|         for (i = 0; i < ch_data->bs_num_env; i++)
 | |
|             ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
 | |
|         break;
 | |
|     case VARFIX:
 | |
|         ch_data->t_env[0]                   = get_bits(gb, 2);
 | |
|         num_rel_lead                        = get_bits(gb, 2);
 | |
|         ch_data->bs_num_env                 = num_rel_lead + 1;
 | |
|         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 | |
| 
 | |
|         for (i = 0; i < num_rel_lead; i++)
 | |
|             ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
 | |
| 
 | |
|         bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
 | |
| 
 | |
|         get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
 | |
|         break;
 | |
|     case VARVAR:
 | |
|         ch_data->t_env[0]                   = get_bits(gb, 2);
 | |
|         abs_bord_trail                     += get_bits(gb, 2);
 | |
|         num_rel_lead                        = get_bits(gb, 2);
 | |
|         num_rel_trail                       = get_bits(gb, 2);
 | |
|         ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;
 | |
| 
 | |
|         if (ch_data->bs_num_env > 5) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                    "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
 | |
|                    ch_data->bs_num_env);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 | |
| 
 | |
|         for (i = 0; i < num_rel_lead; i++)
 | |
|             ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
 | |
|         for (i = 0; i < num_rel_trail; i++)
 | |
|             ch_data->t_env[ch_data->bs_num_env - 1 - i] =
 | |
|                 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
 | |
| 
 | |
|         bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
 | |
| 
 | |
|         get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (bs_pointer > ch_data->bs_num_env + 1) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
 | |
|                bs_pointer);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i <= ch_data->bs_num_env; i++) {
 | |
|         if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
 | |
| 
 | |
|     ch_data->t_q[0]                     = ch_data->t_env[0];
 | |
|     ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
 | |
|     if (ch_data->bs_num_noise > 1) {
 | |
|         unsigned int idx;
 | |
|         if (ch_data->bs_frame_class == FIXFIX) {
 | |
|             idx = ch_data->bs_num_env >> 1;
 | |
|         } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
 | |
|             idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
 | |
|         } else { // VARFIX
 | |
|             if (!bs_pointer)
 | |
|                 idx = 1;
 | |
|             else if (bs_pointer == 1)
 | |
|                 idx = ch_data->bs_num_env - 1;
 | |
|             else // bs_pointer > 1
 | |
|                 idx = bs_pointer - 1;
 | |
|         }
 | |
|         ch_data->t_q[1] = ch_data->t_env[idx];
 | |
|     }
 | |
| 
 | |
|     ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
 | |
|     ch_data->e_a[1] = -1;
 | |
|     if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
 | |
|         ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
 | |
|     } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
 | |
|         ch_data->e_a[1] = bs_pointer - 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
 | |
|     //These variables are saved from the previous frame rather than copied
 | |
|     dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
 | |
|     dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
 | |
|     dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
 | |
| 
 | |
|     //These variables are read from the bitstream and therefore copied
 | |
|     memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
 | |
|     memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
 | |
|     memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
 | |
|     dst->bs_num_env        = src->bs_num_env;
 | |
|     dst->bs_amp_res        = src->bs_amp_res;
 | |
|     dst->bs_num_noise      = src->bs_num_noise;
 | |
|     dst->bs_frame_class    = src->bs_frame_class;
 | |
|     dst->e_a[1]            = src->e_a[1];
 | |
| }
 | |
| 
 | |
| /// Read how the envelope and noise floor data is delta coded
 | |
| static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
 | |
|                           SBRData *ch_data)
 | |
| {
 | |
|     get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
 | |
|     get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
 | |
| }
 | |
| 
 | |
| /// Read inverse filtering data
 | |
| static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
 | |
|                           SBRData *ch_data)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
 | |
|     for (i = 0; i < sbr->n_q; i++)
 | |
|         ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
 | |
| }
 | |
| 
 | |
| static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
 | |
|                               SBRData *ch_data, int ch)
 | |
| {
 | |
|     int bits;
 | |
|     int i, j, k;
 | |
|     VLC_TYPE (*t_huff)[2], (*f_huff)[2];
 | |
|     int t_lav, f_lav;
 | |
|     const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
 | |
|     const int odd = sbr->n[1] & 1;
 | |
| 
 | |
|     if (sbr->bs_coupling && ch) {
 | |
|         if (ch_data->bs_amp_res) {
 | |
|             bits   = 5;
 | |
|             t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
 | |
|             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
 | |
|             f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
 | |
|             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
 | |
|         } else {
 | |
|             bits   = 6;
 | |
|             t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
 | |
|             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
 | |
|             f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
 | |
|             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
 | |
|         }
 | |
|     } else {
 | |
|         if (ch_data->bs_amp_res) {
 | |
|             bits   = 6;
 | |
|             t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
 | |
|             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
 | |
|             f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
 | |
|             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
 | |
|         } else {
 | |
|             bits   = 7;
 | |
|             t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
 | |
|             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
 | |
|             f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
 | |
|             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ch_data->bs_num_env; i++) {
 | |
|         if (ch_data->bs_df_env[i]) {
 | |
|             // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
 | |
|             if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
 | |
|                 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
 | |
|                     ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
 | |
|             } else if (ch_data->bs_freq_res[i + 1]) {
 | |
|                 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
 | |
|                     k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
 | |
|                     ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
 | |
|                 }
 | |
|             } else {
 | |
|                 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
 | |
|                     k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
 | |
|                     ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
 | |
|             for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
 | |
|                 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //assign 0th elements of env_facs from last elements
 | |
|     memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
 | |
|            sizeof(ch_data->env_facs[0]));
 | |
| }
 | |
| 
 | |
| static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
 | |
|                            SBRData *ch_data, int ch)
 | |
| {
 | |
|     int i, j;
 | |
|     VLC_TYPE (*t_huff)[2], (*f_huff)[2];
 | |
|     int t_lav, f_lav;
 | |
|     int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
 | |
| 
 | |
|     if (sbr->bs_coupling && ch) {
 | |
|         t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
 | |
|         t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
 | |
|         f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
 | |
|         f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
 | |
|     } else {
 | |
|         t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
 | |
|         t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
 | |
|         f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
 | |
|         f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ch_data->bs_num_noise; i++) {
 | |
|         if (ch_data->bs_df_noise[i]) {
 | |
|             for (j = 0; j < sbr->n_q; j++)
 | |
|                 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
 | |
|         } else {
 | |
|             ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
 | |
|             for (j = 1; j < sbr->n_q; j++)
 | |
|                 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //assign 0th elements of noise_facs from last elements
 | |
|     memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
 | |
|            sizeof(ch_data->noise_facs[0]));
 | |
| }
 | |
| 
 | |
| static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                                GetBitContext *gb,
 | |
|                                int bs_extension_id, int *num_bits_left)
 | |
| {
 | |
|     switch (bs_extension_id) {
 | |
|     case EXTENSION_ID_PS:
 | |
|         if (!ac->oc[1].m4ac.ps) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
 | |
|             skip_bits_long(gb, *num_bits_left); // bs_fill_bits
 | |
|             *num_bits_left = 0;
 | |
|         } else {
 | |
| #if 1
 | |
|             *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
 | |
| #else
 | |
|             av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
 | |
|             skip_bits_long(gb, *num_bits_left); // bs_fill_bits
 | |
|             *num_bits_left = 0;
 | |
| #endif
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
 | |
|         skip_bits_long(gb, *num_bits_left); // bs_fill_bits
 | |
|         *num_bits_left = 0;
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int read_sbr_single_channel_element(AACContext *ac,
 | |
|                                             SpectralBandReplication *sbr,
 | |
|                                             GetBitContext *gb)
 | |
| {
 | |
|     if (get_bits1(gb)) // bs_data_extra
 | |
|         skip_bits(gb, 4); // bs_reserved
 | |
| 
 | |
|     if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
 | |
|         return -1;
 | |
|     read_sbr_dtdf(sbr, gb, &sbr->data[0]);
 | |
|     read_sbr_invf(sbr, gb, &sbr->data[0]);
 | |
|     read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
 | |
|     read_sbr_noise(sbr, gb, &sbr->data[0], 0);
 | |
| 
 | |
|     if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
 | |
|         get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int read_sbr_channel_pair_element(AACContext *ac,
 | |
|                                           SpectralBandReplication *sbr,
 | |
|                                           GetBitContext *gb)
 | |
| {
 | |
|     if (get_bits1(gb))    // bs_data_extra
 | |
|         skip_bits(gb, 8); // bs_reserved
 | |
| 
 | |
|     if ((sbr->bs_coupling = get_bits1(gb))) {
 | |
|         if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
 | |
|             return -1;
 | |
|         copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
 | |
|         read_sbr_dtdf(sbr, gb, &sbr->data[0]);
 | |
|         read_sbr_dtdf(sbr, gb, &sbr->data[1]);
 | |
|         read_sbr_invf(sbr, gb, &sbr->data[0]);
 | |
|         memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
 | |
|         memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
 | |
|         read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
 | |
|         read_sbr_noise(sbr, gb, &sbr->data[0], 0);
 | |
|         read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
 | |
|         read_sbr_noise(sbr, gb, &sbr->data[1], 1);
 | |
|     } else {
 | |
|         if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
 | |
|             read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
 | |
|             return -1;
 | |
|         read_sbr_dtdf(sbr, gb, &sbr->data[0]);
 | |
|         read_sbr_dtdf(sbr, gb, &sbr->data[1]);
 | |
|         read_sbr_invf(sbr, gb, &sbr->data[0]);
 | |
|         read_sbr_invf(sbr, gb, &sbr->data[1]);
 | |
|         read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
 | |
|         read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
 | |
|         read_sbr_noise(sbr, gb, &sbr->data[0], 0);
 | |
|         read_sbr_noise(sbr, gb, &sbr->data[1], 1);
 | |
|     }
 | |
| 
 | |
|     if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
 | |
|         get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
 | |
|     if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
 | |
|         get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                                   GetBitContext *gb, int id_aac)
 | |
| {
 | |
|     unsigned int cnt = get_bits_count(gb);
 | |
| 
 | |
|     if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
 | |
|         if (read_sbr_single_channel_element(ac, sbr, gb)) {
 | |
|             sbr_turnoff(sbr);
 | |
|             return get_bits_count(gb) - cnt;
 | |
|         }
 | |
|     } else if (id_aac == TYPE_CPE) {
 | |
|         if (read_sbr_channel_pair_element(ac, sbr, gb)) {
 | |
|             sbr_turnoff(sbr);
 | |
|             return get_bits_count(gb) - cnt;
 | |
|         }
 | |
|     } else {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|             "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
 | |
|         sbr_turnoff(sbr);
 | |
|         return get_bits_count(gb) - cnt;
 | |
|     }
 | |
|     if (get_bits1(gb)) { // bs_extended_data
 | |
|         int num_bits_left = get_bits(gb, 4); // bs_extension_size
 | |
|         if (num_bits_left == 15)
 | |
|             num_bits_left += get_bits(gb, 8); // bs_esc_count
 | |
| 
 | |
|         num_bits_left <<= 3;
 | |
|         while (num_bits_left > 7) {
 | |
|             num_bits_left -= 2;
 | |
|             read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
 | |
|         }
 | |
|         if (num_bits_left < 0) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
 | |
|         }
 | |
|         if (num_bits_left > 0)
 | |
|             skip_bits(gb, num_bits_left);
 | |
|     }
 | |
| 
 | |
|     return get_bits_count(gb) - cnt;
 | |
| }
 | |
| 
 | |
| static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
 | |
| {
 | |
|     int err;
 | |
|     err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
 | |
|     if (err >= 0)
 | |
|         err = sbr_make_f_derived(ac, sbr);
 | |
|     if (err < 0) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "SBR reset failed. Switching SBR to pure upsampling mode.\n");
 | |
|         sbr_turnoff(sbr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode Spectral Band Replication extension data; reference: table 4.55.
 | |
|  *
 | |
|  * @param   crc flag indicating the presence of CRC checksum
 | |
|  * @param   cnt length of TYPE_FIL syntactic element in bytes
 | |
|  *
 | |
|  * @return  Returns number of bytes consumed from the TYPE_FIL element.
 | |
|  */
 | |
| int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                             GetBitContext *gb_host, int crc, int cnt, int id_aac)
 | |
| {
 | |
|     unsigned int num_sbr_bits = 0, num_align_bits;
 | |
|     unsigned bytes_read;
 | |
|     GetBitContext gbc = *gb_host, *gb = &gbc;
 | |
|     skip_bits_long(gb_host, cnt*8 - 4);
 | |
| 
 | |
|     sbr->reset = 0;
 | |
| 
 | |
|     if (!sbr->sample_rate)
 | |
|         sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
 | |
|     if (!ac->oc[1].m4ac.ext_sample_rate)
 | |
|         ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
 | |
| 
 | |
|     if (crc) {
 | |
|         skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
 | |
|         num_sbr_bits += 10;
 | |
|     }
 | |
| 
 | |
|     //Save some state from the previous frame.
 | |
|     sbr->kx[0] = sbr->kx[1];
 | |
|     sbr->m[0] = sbr->m[1];
 | |
|     sbr->kx_and_m_pushed = 1;
 | |
| 
 | |
|     num_sbr_bits++;
 | |
|     if (get_bits1(gb)) // bs_header_flag
 | |
|         num_sbr_bits += read_sbr_header(sbr, gb);
 | |
| 
 | |
|     if (sbr->reset)
 | |
|         sbr_reset(ac, sbr);
 | |
| 
 | |
|     if (sbr->start)
 | |
|         num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
 | |
| 
 | |
|     num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
 | |
|     bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
 | |
| 
 | |
|     if (bytes_read > cnt) {
 | |
|         av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
 | |
|     }
 | |
|     return cnt;
 | |
| }
 | |
| 
 | |
| /// Dequantization and stereo decoding (14496-3 sp04 p203)
 | |
| static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
 | |
| {
 | |
|     int k, e;
 | |
|     int ch;
 | |
| 
 | |
|     if (id_aac == TYPE_CPE && sbr->bs_coupling) {
 | |
|         float alpha      = sbr->data[0].bs_amp_res ?  1.0f :  0.5f;
 | |
|         float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
 | |
|         for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
 | |
|             for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
 | |
|                 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
 | |
|                 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
 | |
|                 float fac   = temp1 / (1.0f + temp2);
 | |
|                 sbr->data[0].env_facs[e][k] = fac;
 | |
|                 sbr->data[1].env_facs[e][k] = fac * temp2;
 | |
|             }
 | |
|         }
 | |
|         for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
 | |
|             for (k = 0; k < sbr->n_q; k++) {
 | |
|                 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
 | |
|                 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
 | |
|                 float fac   = temp1 / (1.0f + temp2);
 | |
|                 sbr->data[0].noise_facs[e][k] = fac;
 | |
|                 sbr->data[1].noise_facs[e][k] = fac * temp2;
 | |
|             }
 | |
|         }
 | |
|     } else { // SCE or one non-coupled CPE
 | |
|         for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
 | |
|             float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
 | |
|             for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
 | |
|                 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
 | |
|                     sbr->data[ch].env_facs[e][k] =
 | |
|                         exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
 | |
|             for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
 | |
|                 for (k = 0; k < sbr->n_q; k++)
 | |
|                     sbr->data[ch].noise_facs[e][k] =
 | |
|                         exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Analysis QMF Bank (14496-3 sp04 p206)
 | |
|  *
 | |
|  * @param   x       pointer to the beginning of the first sample window
 | |
|  * @param   W       array of complex-valued samples split into subbands
 | |
|  */
 | |
| static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct,
 | |
|                              SBRDSPContext *sbrdsp, const float *in, float *x,
 | |
|                              float z[320], float W[2][32][32][2])
 | |
| {
 | |
|     int i;
 | |
|     memcpy(W[0], W[1], sizeof(W[0]));
 | |
|     memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
 | |
|     memcpy(x+288, in,         1024*sizeof(x[0]));
 | |
|     for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
 | |
|                                // are not supported
 | |
|         dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
 | |
|         sbrdsp->sum64x5(z);
 | |
|         sbrdsp->qmf_pre_shuffle(z);
 | |
|         mdct->imdct_half(mdct, z, z+64);
 | |
|         sbrdsp->qmf_post_shuffle(W[1][i], z);
 | |
|         x += 32;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
 | |
|  * (14496-3 sp04 p206)
 | |
|  */
 | |
| static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
 | |
|                               SBRDSPContext *sbrdsp,
 | |
|                               float *out, float X[2][38][64],
 | |
|                               float mdct_buf[2][64],
 | |
|                               float *v0, int *v_off, const unsigned int div)
 | |
| {
 | |
|     int i, n;
 | |
|     const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
 | |
|     const int step = 128 >> div;
 | |
|     float *v;
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         if (*v_off < step) {
 | |
|             int saved_samples = (1280 - 128) >> div;
 | |
|             memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
 | |
|             *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
 | |
|         } else {
 | |
|             *v_off -= step;
 | |
|         }
 | |
|         v = v0 + *v_off;
 | |
|         if (div) {
 | |
|             for (n = 0; n < 32; n++) {
 | |
|                 X[0][i][   n] = -X[0][i][n];
 | |
|                 X[0][i][32+n] =  X[1][i][31-n];
 | |
|             }
 | |
|             mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
 | |
|             sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
 | |
|         } else {
 | |
|             sbrdsp->neg_odd_64(X[1][i]);
 | |
|             mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
 | |
|             mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
 | |
|             sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
 | |
|         }
 | |
|         dsp->vector_fmul_add(out, v                , sbr_qmf_window               , zero64, 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
 | |
|         dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
 | |
|         out += 64 >> div;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
 | |
|  * (14496-3 sp04 p214)
 | |
|  * Warning: This routine does not seem numerically stable.
 | |
|  */
 | |
| static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
 | |
|                                   float (*alpha0)[2], float (*alpha1)[2],
 | |
|                                   const float X_low[32][40][2], int k0)
 | |
| {
 | |
|     int k;
 | |
|     for (k = 0; k < k0; k++) {
 | |
|         LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
 | |
|         float dk;
 | |
| 
 | |
|         dsp->autocorrelate(X_low[k], phi);
 | |
| 
 | |
|         dk =  phi[2][1][0] * phi[1][0][0] -
 | |
|              (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
 | |
| 
 | |
|         if (!dk) {
 | |
|             alpha1[k][0] = 0;
 | |
|             alpha1[k][1] = 0;
 | |
|         } else {
 | |
|             float temp_real, temp_im;
 | |
|             temp_real = phi[0][0][0] * phi[1][1][0] -
 | |
|                         phi[0][0][1] * phi[1][1][1] -
 | |
|                         phi[0][1][0] * phi[1][0][0];
 | |
|             temp_im   = phi[0][0][0] * phi[1][1][1] +
 | |
|                         phi[0][0][1] * phi[1][1][0] -
 | |
|                         phi[0][1][1] * phi[1][0][0];
 | |
| 
 | |
|             alpha1[k][0] = temp_real / dk;
 | |
|             alpha1[k][1] = temp_im   / dk;
 | |
|         }
 | |
| 
 | |
|         if (!phi[1][0][0]) {
 | |
|             alpha0[k][0] = 0;
 | |
|             alpha0[k][1] = 0;
 | |
|         } else {
 | |
|             float temp_real, temp_im;
 | |
|             temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
 | |
|                                        alpha1[k][1] * phi[1][1][1];
 | |
|             temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
 | |
|                                        alpha1[k][0] * phi[1][1][1];
 | |
| 
 | |
|             alpha0[k][0] = -temp_real / phi[1][0][0];
 | |
|             alpha0[k][1] = -temp_im   / phi[1][0][0];
 | |
|         }
 | |
| 
 | |
|         if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
 | |
|            alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
 | |
|             alpha1[k][0] = 0;
 | |
|             alpha1[k][1] = 0;
 | |
|             alpha0[k][0] = 0;
 | |
|             alpha0[k][1] = 0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Chirp Factors (14496-3 sp04 p214)
 | |
| static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
 | |
| {
 | |
|     int i;
 | |
|     float new_bw;
 | |
|     static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
 | |
| 
 | |
|     for (i = 0; i < sbr->n_q; i++) {
 | |
|         if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
 | |
|             new_bw = 0.6f;
 | |
|         } else
 | |
|             new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
 | |
| 
 | |
|         if (new_bw < ch_data->bw_array[i]) {
 | |
|             new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
 | |
|         } else
 | |
|             new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
 | |
|         ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Generate the subband filtered lowband
 | |
| static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                       float X_low[32][40][2], const float W[2][32][32][2])
 | |
| {
 | |
|     int i, k;
 | |
|     const int t_HFGen = 8;
 | |
|     const int i_f = 32;
 | |
|     memset(X_low, 0, 32*sizeof(*X_low));
 | |
|     for (k = 0; k < sbr->kx[1]; k++) {
 | |
|         for (i = t_HFGen; i < i_f + t_HFGen; i++) {
 | |
|             X_low[k][i][0] = W[1][i - t_HFGen][k][0];
 | |
|             X_low[k][i][1] = W[1][i - t_HFGen][k][1];
 | |
|         }
 | |
|     }
 | |
|     for (k = 0; k < sbr->kx[0]; k++) {
 | |
|         for (i = 0; i < t_HFGen; i++) {
 | |
|             X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
 | |
|             X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// High Frequency Generator (14496-3 sp04 p215)
 | |
| static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                       float X_high[64][40][2], const float X_low[32][40][2],
 | |
|                       const float (*alpha0)[2], const float (*alpha1)[2],
 | |
|                       const float bw_array[5], const uint8_t *t_env,
 | |
|                       int bs_num_env)
 | |
| {
 | |
|     int j, x;
 | |
|     int g = 0;
 | |
|     int k = sbr->kx[1];
 | |
|     for (j = 0; j < sbr->num_patches; j++) {
 | |
|         for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
 | |
|             const int p = sbr->patch_start_subband[j] + x;
 | |
|             while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
 | |
|                 g++;
 | |
|             g--;
 | |
| 
 | |
|             if (g < 0) {
 | |
|                 av_log(ac->avctx, AV_LOG_ERROR,
 | |
|                        "ERROR : no subband found for frequency %d\n", k);
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
 | |
|                             X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
 | |
|                             alpha0[p], alpha1[p], bw_array[g],
 | |
|                             2 * t_env[0], 2 * t_env[bs_num_env]);
 | |
|         }
 | |
|     }
 | |
|     if (k < sbr->m[1] + sbr->kx[1])
 | |
|         memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// Generate the subband filtered lowband
 | |
| static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
 | |
|                      const float Y0[38][64][2], const float Y1[38][64][2],
 | |
|                      const float X_low[32][40][2], int ch)
 | |
| {
 | |
|     int k, i;
 | |
|     const int i_f = 32;
 | |
|     const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
 | |
|     memset(X, 0, 2*sizeof(*X));
 | |
|     for (k = 0; k < sbr->kx[0]; k++) {
 | |
|         for (i = 0; i < i_Temp; i++) {
 | |
|             X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
 | |
|             X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
 | |
|         }
 | |
|     }
 | |
|     for (; k < sbr->kx[0] + sbr->m[0]; k++) {
 | |
|         for (i = 0; i < i_Temp; i++) {
 | |
|             X[0][i][k] = Y0[i + i_f][k][0];
 | |
|             X[1][i][k] = Y0[i + i_f][k][1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (k = 0; k < sbr->kx[1]; k++) {
 | |
|         for (i = i_Temp; i < 38; i++) {
 | |
|             X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
 | |
|             X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
 | |
|         }
 | |
|     }
 | |
|     for (; k < sbr->kx[1] + sbr->m[1]; k++) {
 | |
|         for (i = i_Temp; i < i_f; i++) {
 | |
|             X[0][i][k] = Y1[i][k][0];
 | |
|             X[1][i][k] = Y1[i][k][1];
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
 | |
|  * (14496-3 sp04 p217)
 | |
|  */
 | |
| static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                         SBRData *ch_data, int e_a[2])
 | |
| {
 | |
|     int e, i, m;
 | |
| 
 | |
|     memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
 | |
|         uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
 | |
|         int k;
 | |
| 
 | |
|         if (sbr->kx[1] != table[0]) {
 | |
|             av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
 | |
|                    "Derived frequency tables were not regenerated.\n");
 | |
|             sbr_turnoff(sbr);
 | |
|             return AVERROR_BUG;
 | |
|         }
 | |
|         for (i = 0; i < ilim; i++)
 | |
|             for (m = table[i]; m < table[i + 1]; m++)
 | |
|                 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
 | |
| 
 | |
|         // ch_data->bs_num_noise > 1 => 2 noise floors
 | |
|         k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
 | |
|         for (i = 0; i < sbr->n_q; i++)
 | |
|             for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
 | |
|                 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
 | |
| 
 | |
|         for (i = 0; i < sbr->n[1]; i++) {
 | |
|             if (ch_data->bs_add_harmonic_flag) {
 | |
|                 const unsigned int m_midpoint =
 | |
|                     (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
 | |
| 
 | |
|                 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
 | |
|                     (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < ilim; i++) {
 | |
|             int additional_sinusoid_present = 0;
 | |
|             for (m = table[i]; m < table[i + 1]; m++) {
 | |
|                 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
 | |
|                     additional_sinusoid_present = 1;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
 | |
|                    (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// Estimation of current envelope (14496-3 sp04 p218)
 | |
| static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
 | |
|                              SpectralBandReplication *sbr, SBRData *ch_data)
 | |
| {
 | |
|     int e, m;
 | |
|     int kx1 = sbr->kx[1];
 | |
| 
 | |
|     if (sbr->bs_interpol_freq) {
 | |
|         for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|             const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
 | |
|             int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 | |
|             int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 | |
| 
 | |
|             for (m = 0; m < sbr->m[1]; m++) {
 | |
|                 float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
 | |
|                 e_curr[e][m] = sum * recip_env_size;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         int k, p;
 | |
| 
 | |
|         for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|             const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
 | |
|             int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 | |
|             int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 | |
|             const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
 | |
| 
 | |
|             for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
 | |
|                 float sum = 0.0f;
 | |
|                 const int den = env_size * (table[p + 1] - table[p]);
 | |
| 
 | |
|                 for (k = table[p]; k < table[p + 1]; k++) {
 | |
|                     sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
 | |
|                 }
 | |
|                 sum /= den;
 | |
|                 for (k = table[p]; k < table[p + 1]; k++) {
 | |
|                     e_curr[e][k - kx1] = sum;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
 | |
|  * and Calculation of gain (14496-3 sp04 p219)
 | |
|  */
 | |
| static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
 | |
|                           SBRData *ch_data, const int e_a[2])
 | |
| {
 | |
|     int e, k, m;
 | |
|     // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
 | |
|     static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
 | |
| 
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         int delta = !((e == e_a[1]) || (e == e_a[0]));
 | |
|         for (k = 0; k < sbr->n_lim; k++) {
 | |
|             float gain_boost, gain_max;
 | |
|             float sum[2] = { 0.0f, 0.0f };
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
 | |
|                 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
 | |
|                 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
 | |
|                 if (!sbr->s_mapped[e][m]) {
 | |
|                     sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
 | |
|                                             ((1.0f + sbr->e_curr[e][m]) *
 | |
|                                              (1.0f + sbr->q_mapped[e][m] * delta)));
 | |
|                 } else {
 | |
|                     sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
 | |
|                                             ((1.0f + sbr->e_curr[e][m]) *
 | |
|                                              (1.0f + sbr->q_mapped[e][m])));
 | |
|                 }
 | |
|             }
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 sum[0] += sbr->e_origmapped[e][m];
 | |
|                 sum[1] += sbr->e_curr[e][m];
 | |
|             }
 | |
|             gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
 | |
|             gain_max = FFMIN(100000.f, gain_max);
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
 | |
|                 sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
 | |
|                 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
 | |
|             }
 | |
|             sum[0] = sum[1] = 0.0f;
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 sum[0] += sbr->e_origmapped[e][m];
 | |
|                 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
 | |
|                           + sbr->s_m[e][m] * sbr->s_m[e][m]
 | |
|                           + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
 | |
|             }
 | |
|             gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
 | |
|             gain_boost = FFMIN(1.584893192f, gain_boost);
 | |
|             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
 | |
|                 sbr->gain[e][m] *= gain_boost;
 | |
|                 sbr->q_m[e][m]  *= gain_boost;
 | |
|                 sbr->s_m[e][m]  *= gain_boost;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Assembling HF Signals (14496-3 sp04 p220)
 | |
| static void sbr_hf_assemble(float Y1[38][64][2],
 | |
|                             const float X_high[64][40][2],
 | |
|                             SpectralBandReplication *sbr, SBRData *ch_data,
 | |
|                             const int e_a[2])
 | |
| {
 | |
|     int e, i, j, m;
 | |
|     const int h_SL = 4 * !sbr->bs_smoothing_mode;
 | |
|     const int kx = sbr->kx[1];
 | |
|     const int m_max = sbr->m[1];
 | |
|     static const float h_smooth[5] = {
 | |
|         0.33333333333333,
 | |
|         0.30150283239582,
 | |
|         0.21816949906249,
 | |
|         0.11516383427084,
 | |
|         0.03183050093751,
 | |
|     };
 | |
|     static const int8_t phi[2][4] = {
 | |
|         {  1,  0, -1,  0}, // real
 | |
|         {  0,  1,  0, -1}, // imaginary
 | |
|     };
 | |
|     float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
 | |
|     int indexnoise = ch_data->f_indexnoise;
 | |
|     int indexsine  = ch_data->f_indexsine;
 | |
| 
 | |
|     if (sbr->reset) {
 | |
|         for (i = 0; i < h_SL; i++) {
 | |
|             memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
 | |
|             memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
 | |
|         }
 | |
|     } else if (h_SL) {
 | |
|         memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
 | |
|         memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
 | |
|     }
 | |
| 
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
 | |
|             memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
 | |
|             memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (e = 0; e < ch_data->bs_num_env; e++) {
 | |
|         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
 | |
|             int phi_sign = (1 - 2*(kx & 1));
 | |
|             LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
 | |
|             LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
 | |
|             float *g_filt, *q_filt;
 | |
| 
 | |
|             if (h_SL && e != e_a[0] && e != e_a[1]) {
 | |
|                 g_filt = g_filt_tab;
 | |
|                 q_filt = q_filt_tab;
 | |
|                 for (m = 0; m < m_max; m++) {
 | |
|                     const int idx1 = i + h_SL;
 | |
|                     g_filt[m] = 0.0f;
 | |
|                     q_filt[m] = 0.0f;
 | |
|                     for (j = 0; j <= h_SL; j++) {
 | |
|                         g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
 | |
|                         q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 g_filt = g_temp[i + h_SL];
 | |
|                 q_filt = q_temp[i];
 | |
|             }
 | |
| 
 | |
|             sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
 | |
|                                i + ENVELOPE_ADJUSTMENT_OFFSET);
 | |
| 
 | |
|             if (e != e_a[0] && e != e_a[1]) {
 | |
|                 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
 | |
|                                                    q_filt, indexnoise,
 | |
|                                                    kx, m_max);
 | |
|             } else {
 | |
|                 for (m = 0; m < m_max; m++) {
 | |
|                     Y1[i][m + kx][0] +=
 | |
|                         sbr->s_m[e][m] * phi[0][indexsine];
 | |
|                     Y1[i][m + kx][1] +=
 | |
|                         sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
 | |
|                     phi_sign = -phi_sign;
 | |
|                 }
 | |
|             }
 | |
|             indexnoise = (indexnoise + m_max) & 0x1ff;
 | |
|             indexsine = (indexsine + 1) & 3;
 | |
|         }
 | |
|     }
 | |
|     ch_data->f_indexnoise = indexnoise;
 | |
|     ch_data->f_indexsine  = indexsine;
 | |
| }
 | |
| 
 | |
| void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
 | |
|                   float* L, float* R)
 | |
| {
 | |
|     int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
 | |
|     int ch;
 | |
|     int nch = (id_aac == TYPE_CPE) ? 2 : 1;
 | |
|     int err;
 | |
| 
 | |
|     if (!sbr->kx_and_m_pushed) {
 | |
|         sbr->kx[0] = sbr->kx[1];
 | |
|         sbr->m[0] = sbr->m[1];
 | |
|     } else {
 | |
|         sbr->kx_and_m_pushed = 0;
 | |
|     }
 | |
| 
 | |
|     if (sbr->start) {
 | |
|         sbr_dequant(sbr, id_aac);
 | |
|     }
 | |
|     for (ch = 0; ch < nch; ch++) {
 | |
|         /* decode channel */
 | |
|         sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
 | |
|                          (float*)sbr->qmf_filter_scratch,
 | |
|                          sbr->data[ch].W);
 | |
|         sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
 | |
|         sbr->data[ch].Ypos ^= 1;
 | |
|         if (sbr->start) {
 | |
|             sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
 | |
|             sbr_chirp(sbr, &sbr->data[ch]);
 | |
|             sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
 | |
|                        sbr->data[ch].bw_array, sbr->data[ch].t_env,
 | |
|                        sbr->data[ch].bs_num_env);
 | |
| 
 | |
|             // hf_adj
 | |
|             err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
 | |
|             if (!err) {
 | |
|                 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
 | |
|                 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
 | |
|                 sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
 | |
|                                 sbr->X_high, sbr, &sbr->data[ch],
 | |
|                                 sbr->data[ch].e_a);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* synthesis */
 | |
|         sbr_x_gen(sbr, sbr->X[ch],
 | |
|                   sbr->data[ch].Y[1-sbr->data[ch].Ypos],
 | |
|                   sbr->data[ch].Y[  sbr->data[ch].Ypos],
 | |
|                   sbr->X_low, ch);
 | |
|     }
 | |
| 
 | |
|     if (ac->oc[1].m4ac.ps == 1) {
 | |
|         if (sbr->ps.start) {
 | |
|             ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
 | |
|         } else {
 | |
|             memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
 | |
|         }
 | |
|         nch = 2;
 | |
|     }
 | |
| 
 | |
|     sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, L, sbr->X[0], sbr->qmf_filter_scratch,
 | |
|                       sbr->data[0].synthesis_filterbank_samples,
 | |
|                       &sbr->data[0].synthesis_filterbank_samples_offset,
 | |
|                       downsampled);
 | |
|     if (nch == 2)
 | |
|         sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, R, sbr->X[1], sbr->qmf_filter_scratch,
 | |
|                           sbr->data[1].synthesis_filterbank_samples,
 | |
|                           &sbr->data[1].synthesis_filterbank_samples_offset,
 | |
|                           downsampled);
 | |
| }
 |