mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-28 03:13:08 +08:00 
			
		
		
		
	 d1c28e3530
			
		
	
	d1c28e3530
	
	
	
		
			
			* qatar/master: build: fix standalone compilation of OMA muxer build: fix standalone compilation of Microsoft XMV demuxer build: fix standalone compilation of Core Audio Format demuxer kvmc: fix invalid reads 4xm: Add a check in decode_i_frame to prevent buffer overreads adpcm: fix IMA SMJPEG decoding options: set minimum for "threads" to zero bsd: use number of logical CPUs as automatic thread count windows: use number of CPUs as automatic thread count linux: use number of CPUs as automatic thread count pthreads: reset active_thread_type when slice thread_init returrns early v410dec: include correct headers Drop ALT_ prefix from BITSTREAM_READER_LE name. lavfi: always build vsrc_buffer. ra144enc: zero the reflection coeffs if the filter is unstable sws: readd PAL8 to isPacked() mov: Don't stick the QuickTime field ordering atom in extradata. truespeech: fix invalid reads in truespeech_apply_twopoint_filter() Conflicts: configure libavcodec/4xm.c libavcodec/avcodec.h libavfilter/Makefile libavfilter/allfilters.c libavformat/Makefile libswscale/swscale_internal.h Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			941 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			941 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Monkey's Audio lossless audio decoder
 | |
|  * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
 | |
|  *  based upon libdemac from Dave Chapman.
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #define BITSTREAM_READER_LE
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| #include "get_bits.h"
 | |
| #include "bytestream.h"
 | |
| #include "libavutil/audioconvert.h"
 | |
| #include "libavutil/avassert.h"
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Monkey's Audio lossless audio decoder
 | |
|  */
 | |
| 
 | |
| #define BLOCKS_PER_LOOP     4608
 | |
| #define MAX_CHANNELS        2
 | |
| #define MAX_BYTESPERSAMPLE  3
 | |
| 
 | |
| #define APE_FRAMECODE_MONO_SILENCE    1
 | |
| #define APE_FRAMECODE_STEREO_SILENCE  3
 | |
| #define APE_FRAMECODE_PSEUDO_STEREO   4
 | |
| 
 | |
| #define HISTORY_SIZE 512
 | |
| #define PREDICTOR_ORDER 8
 | |
| /** Total size of all predictor histories */
 | |
| #define PREDICTOR_SIZE 50
 | |
| 
 | |
| #define YDELAYA (18 + PREDICTOR_ORDER*4)
 | |
| #define YDELAYB (18 + PREDICTOR_ORDER*3)
 | |
| #define XDELAYA (18 + PREDICTOR_ORDER*2)
 | |
| #define XDELAYB (18 + PREDICTOR_ORDER)
 | |
| 
 | |
| #define YADAPTCOEFFSA 18
 | |
| #define XADAPTCOEFFSA 14
 | |
| #define YADAPTCOEFFSB 10
 | |
| #define XADAPTCOEFFSB 5
 | |
| 
 | |
| /**
 | |
|  * Possible compression levels
 | |
|  * @{
 | |
|  */
 | |
| enum APECompressionLevel {
 | |
|     COMPRESSION_LEVEL_FAST       = 1000,
 | |
|     COMPRESSION_LEVEL_NORMAL     = 2000,
 | |
|     COMPRESSION_LEVEL_HIGH       = 3000,
 | |
|     COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
 | |
|     COMPRESSION_LEVEL_INSANE     = 5000
 | |
| };
 | |
| /** @} */
 | |
| 
 | |
| #define APE_FILTER_LEVELS 3
 | |
| 
 | |
| /** Filter orders depending on compression level */
 | |
| static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
 | |
|     {  0,   0,    0 },
 | |
|     { 16,   0,    0 },
 | |
|     { 64,   0,    0 },
 | |
|     { 32, 256,    0 },
 | |
|     { 16, 256, 1280 }
 | |
| };
 | |
| 
 | |
| /** Filter fraction bits depending on compression level */
 | |
| static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
 | |
|     {  0,  0,  0 },
 | |
|     { 11,  0,  0 },
 | |
|     { 11,  0,  0 },
 | |
|     { 10, 13,  0 },
 | |
|     { 11, 13, 15 }
 | |
| };
 | |
| 
 | |
| 
 | |
| /** Filters applied to the decoded data */
 | |
| typedef struct APEFilter {
 | |
|     int16_t *coeffs;        ///< actual coefficients used in filtering
 | |
|     int16_t *adaptcoeffs;   ///< adaptive filter coefficients used for correcting of actual filter coefficients
 | |
|     int16_t *historybuffer; ///< filter memory
 | |
|     int16_t *delay;         ///< filtered values
 | |
| 
 | |
|     int avg;
 | |
| } APEFilter;
 | |
| 
 | |
| typedef struct APERice {
 | |
|     uint32_t k;
 | |
|     uint32_t ksum;
 | |
| } APERice;
 | |
| 
 | |
| typedef struct APERangecoder {
 | |
|     uint32_t low;           ///< low end of interval
 | |
|     uint32_t range;         ///< length of interval
 | |
|     uint32_t help;          ///< bytes_to_follow resp. intermediate value
 | |
|     unsigned int buffer;    ///< buffer for input/output
 | |
| } APERangecoder;
 | |
| 
 | |
| /** Filter histories */
 | |
| typedef struct APEPredictor {
 | |
|     int32_t *buf;
 | |
| 
 | |
|     int32_t lastA[2];
 | |
| 
 | |
|     int32_t filterA[2];
 | |
|     int32_t filterB[2];
 | |
| 
 | |
|     int32_t coeffsA[2][4];  ///< adaption coefficients
 | |
|     int32_t coeffsB[2][5];  ///< adaption coefficients
 | |
|     int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
 | |
| } APEPredictor;
 | |
| 
 | |
| /** Decoder context */
 | |
| typedef struct APEContext {
 | |
|     AVCodecContext *avctx;
 | |
|     AVFrame frame;
 | |
|     DSPContext dsp;
 | |
|     int channels;
 | |
|     int samples;                             ///< samples left to decode in current frame
 | |
| 
 | |
|     int fileversion;                         ///< codec version, very important in decoding process
 | |
|     int compression_level;                   ///< compression levels
 | |
|     int fset;                                ///< which filter set to use (calculated from compression level)
 | |
|     int flags;                               ///< global decoder flags
 | |
| 
 | |
|     uint32_t CRC;                            ///< frame CRC
 | |
|     int frameflags;                          ///< frame flags
 | |
|     APEPredictor predictor;                  ///< predictor used for final reconstruction
 | |
| 
 | |
|     int32_t decoded0[BLOCKS_PER_LOOP];       ///< decoded data for the first channel
 | |
|     int32_t decoded1[BLOCKS_PER_LOOP];       ///< decoded data for the second channel
 | |
| 
 | |
|     int16_t* filterbuf[APE_FILTER_LEVELS];   ///< filter memory
 | |
| 
 | |
|     APERangecoder rc;                        ///< rangecoder used to decode actual values
 | |
|     APERice riceX;                           ///< rice code parameters for the second channel
 | |
|     APERice riceY;                           ///< rice code parameters for the first channel
 | |
|     APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
 | |
| 
 | |
|     uint8_t *data;                           ///< current frame data
 | |
|     uint8_t *data_end;                       ///< frame data end
 | |
|     const uint8_t *ptr;                      ///< current position in frame data
 | |
| 
 | |
|     int error;
 | |
| } APEContext;
 | |
| 
 | |
| // TODO: dsputilize
 | |
| 
 | |
| static av_cold int ape_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     APEContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < APE_FILTER_LEVELS; i++)
 | |
|         av_freep(&s->filterbuf[i]);
 | |
| 
 | |
|     av_freep(&s->data);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int ape_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     APEContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     if (avctx->extradata_size != 6) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     if (avctx->bits_per_coded_sample != 16) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     if (avctx->channels > 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     s->avctx             = avctx;
 | |
|     s->channels          = avctx->channels;
 | |
|     s->fileversion       = AV_RL16(avctx->extradata);
 | |
|     s->compression_level = AV_RL16(avctx->extradata + 2);
 | |
|     s->flags             = AV_RL16(avctx->extradata + 4);
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
 | |
|            s->compression_level, s->flags);
 | |
|     if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
 | |
|                s->compression_level);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->fset = s->compression_level / 1000 - 1;
 | |
|     for (i = 0; i < APE_FILTER_LEVELS; i++) {
 | |
|         if (!ape_filter_orders[s->fset][i])
 | |
|             break;
 | |
|         FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
 | |
|                          (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
 | |
|                          filter_alloc_fail);
 | |
|     }
 | |
| 
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | |
|     avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
 | |
| 
 | |
|     avcodec_get_frame_defaults(&s->frame);
 | |
|     avctx->coded_frame = &s->frame;
 | |
| 
 | |
|     return 0;
 | |
| filter_alloc_fail:
 | |
|     ape_decode_close(avctx);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @name APE range decoding functions
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| #define CODE_BITS    32
 | |
| #define TOP_VALUE    ((unsigned int)1 << (CODE_BITS-1))
 | |
| #define SHIFT_BITS   (CODE_BITS - 9)
 | |
| #define EXTRA_BITS   ((CODE_BITS-2) % 8 + 1)
 | |
| #define BOTTOM_VALUE (TOP_VALUE >> 8)
 | |
| 
 | |
| /** Start the decoder */
 | |
| static inline void range_start_decoding(APEContext *ctx)
 | |
| {
 | |
|     ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
 | |
|     ctx->rc.low    = ctx->rc.buffer >> (8 - EXTRA_BITS);
 | |
|     ctx->rc.range  = (uint32_t) 1 << EXTRA_BITS;
 | |
| }
 | |
| 
 | |
| /** Perform normalization */
 | |
| static inline void range_dec_normalize(APEContext *ctx)
 | |
| {
 | |
|     while (ctx->rc.range <= BOTTOM_VALUE) {
 | |
|         ctx->rc.buffer <<= 8;
 | |
|         if(ctx->ptr < ctx->data_end) {
 | |
|             ctx->rc.buffer += *ctx->ptr;
 | |
|             ctx->ptr++;
 | |
|         } else {
 | |
|             ctx->error = 1;
 | |
|         }
 | |
|         ctx->rc.low    = (ctx->rc.low << 8)    | ((ctx->rc.buffer >> 1) & 0xFF);
 | |
|         ctx->rc.range  <<= 8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate culmulative frequency for next symbol. Does NO update!
 | |
|  * @param ctx decoder context
 | |
|  * @param tot_f is the total frequency or (code_value)1<<shift
 | |
|  * @return the culmulative frequency
 | |
|  */
 | |
| static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
 | |
| {
 | |
|     range_dec_normalize(ctx);
 | |
|     ctx->rc.help = ctx->rc.range / tot_f;
 | |
|     return ctx->rc.low / ctx->rc.help;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode value with given size in bits
 | |
|  * @param ctx decoder context
 | |
|  * @param shift number of bits to decode
 | |
|  */
 | |
| static inline int range_decode_culshift(APEContext *ctx, int shift)
 | |
| {
 | |
|     range_dec_normalize(ctx);
 | |
|     ctx->rc.help = ctx->rc.range >> shift;
 | |
|     return ctx->rc.low / ctx->rc.help;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Update decoding state
 | |
|  * @param ctx decoder context
 | |
|  * @param sy_f the interval length (frequency of the symbol)
 | |
|  * @param lt_f the lower end (frequency sum of < symbols)
 | |
|  */
 | |
| static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
 | |
| {
 | |
|     ctx->rc.low  -= ctx->rc.help * lt_f;
 | |
|     ctx->rc.range = ctx->rc.help * sy_f;
 | |
| }
 | |
| 
 | |
| /** Decode n bits (n <= 16) without modelling */
 | |
| static inline int range_decode_bits(APEContext *ctx, int n)
 | |
| {
 | |
|     int sym = range_decode_culshift(ctx, n);
 | |
|     range_decode_update(ctx, 1, sym);
 | |
|     return sym;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define MODEL_ELEMENTS 64
 | |
| 
 | |
| /**
 | |
|  * Fixed probabilities for symbols in Monkey Audio version 3.97
 | |
|  */
 | |
| static const uint16_t counts_3970[22] = {
 | |
|         0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
 | |
|     62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
 | |
|     65450, 65469, 65480, 65487, 65491, 65493,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Probability ranges for symbols in Monkey Audio version 3.97
 | |
|  */
 | |
| static const uint16_t counts_diff_3970[21] = {
 | |
|     14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
 | |
|     1104, 677, 415, 248, 150, 89, 54, 31,
 | |
|     19, 11, 7, 4, 2,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Fixed probabilities for symbols in Monkey Audio version 3.98
 | |
|  */
 | |
| static const uint16_t counts_3980[22] = {
 | |
|         0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
 | |
|     64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
 | |
|     65485, 65488, 65490, 65491, 65492, 65493,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Probability ranges for symbols in Monkey Audio version 3.98
 | |
|  */
 | |
| static const uint16_t counts_diff_3980[21] = {
 | |
|     19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
 | |
|     261, 119, 65, 31, 19, 10, 6, 3,
 | |
|     3, 2, 1, 1, 1,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Decode symbol
 | |
|  * @param ctx decoder context
 | |
|  * @param counts probability range start position
 | |
|  * @param counts_diff probability range widths
 | |
|  */
 | |
| static inline int range_get_symbol(APEContext *ctx,
 | |
|                                    const uint16_t counts[],
 | |
|                                    const uint16_t counts_diff[])
 | |
| {
 | |
|     int symbol, cf;
 | |
| 
 | |
|     cf = range_decode_culshift(ctx, 16);
 | |
| 
 | |
|     if(cf > 65492){
 | |
|         symbol= cf - 65535 + 63;
 | |
|         range_decode_update(ctx, 1, cf);
 | |
|         if(cf > 65535)
 | |
|             ctx->error=1;
 | |
|         return symbol;
 | |
|     }
 | |
|     /* figure out the symbol inefficiently; a binary search would be much better */
 | |
|     for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
 | |
| 
 | |
|     range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
 | |
| 
 | |
|     return symbol;
 | |
| }
 | |
| /** @} */ // group rangecoder
 | |
| 
 | |
| static inline void update_rice(APERice *rice, int x)
 | |
| {
 | |
|     int lim = rice->k ? (1 << (rice->k + 4)) : 0;
 | |
|     rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
 | |
| 
 | |
|     if (rice->ksum < lim)
 | |
|         rice->k--;
 | |
|     else if (rice->ksum >= (1 << (rice->k + 5)))
 | |
|         rice->k++;
 | |
| }
 | |
| 
 | |
| static inline int ape_decode_value(APEContext *ctx, APERice *rice)
 | |
| {
 | |
|     int x, overflow;
 | |
| 
 | |
|     if (ctx->fileversion < 3990) {
 | |
|         int tmpk;
 | |
| 
 | |
|         overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
 | |
| 
 | |
|         if (overflow == (MODEL_ELEMENTS - 1)) {
 | |
|             tmpk = range_decode_bits(ctx, 5);
 | |
|             overflow = 0;
 | |
|         } else
 | |
|             tmpk = (rice->k < 1) ? 0 : rice->k - 1;
 | |
| 
 | |
|         if (tmpk <= 16)
 | |
|             x = range_decode_bits(ctx, tmpk);
 | |
|         else {
 | |
|             x = range_decode_bits(ctx, 16);
 | |
|             x |= (range_decode_bits(ctx, tmpk - 16) << 16);
 | |
|         }
 | |
|         x += overflow << tmpk;
 | |
|     } else {
 | |
|         int base, pivot;
 | |
| 
 | |
|         pivot = rice->ksum >> 5;
 | |
|         if (pivot == 0)
 | |
|             pivot = 1;
 | |
| 
 | |
|         overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
 | |
| 
 | |
|         if (overflow == (MODEL_ELEMENTS - 1)) {
 | |
|             overflow  = range_decode_bits(ctx, 16) << 16;
 | |
|             overflow |= range_decode_bits(ctx, 16);
 | |
|         }
 | |
| 
 | |
|         if (pivot < 0x10000) {
 | |
|             base = range_decode_culfreq(ctx, pivot);
 | |
|             range_decode_update(ctx, 1, base);
 | |
|         } else {
 | |
|             int base_hi = pivot, base_lo;
 | |
|             int bbits = 0;
 | |
| 
 | |
|             while (base_hi & ~0xFFFF) {
 | |
|                 base_hi >>= 1;
 | |
|                 bbits++;
 | |
|             }
 | |
|             base_hi = range_decode_culfreq(ctx, base_hi + 1);
 | |
|             range_decode_update(ctx, 1, base_hi);
 | |
|             base_lo = range_decode_culfreq(ctx, 1 << bbits);
 | |
|             range_decode_update(ctx, 1, base_lo);
 | |
| 
 | |
|             base = (base_hi << bbits) + base_lo;
 | |
|         }
 | |
| 
 | |
|         x = base + overflow * pivot;
 | |
|     }
 | |
| 
 | |
|     update_rice(rice, x);
 | |
| 
 | |
|     /* Convert to signed */
 | |
|     if (x & 1)
 | |
|         return (x >> 1) + 1;
 | |
|     else
 | |
|         return -(x >> 1);
 | |
| }
 | |
| 
 | |
| static void entropy_decode(APEContext *ctx, int blockstodecode, int stereo)
 | |
| {
 | |
|     int32_t *decoded0 = ctx->decoded0;
 | |
|     int32_t *decoded1 = ctx->decoded1;
 | |
| 
 | |
|     if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
 | |
|         /* We are pure silence, just memset the output buffer. */
 | |
|         memset(decoded0, 0, blockstodecode * sizeof(int32_t));
 | |
|         memset(decoded1, 0, blockstodecode * sizeof(int32_t));
 | |
|     } else {
 | |
|         while (blockstodecode--) {
 | |
|             *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
 | |
|             if (stereo)
 | |
|                 *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int init_entropy_decoder(APEContext *ctx)
 | |
| {
 | |
|     /* Read the CRC */
 | |
|     if (ctx->data_end - ctx->ptr < 6)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     ctx->CRC = bytestream_get_be32(&ctx->ptr);
 | |
| 
 | |
|     /* Read the frame flags if they exist */
 | |
|     ctx->frameflags = 0;
 | |
|     if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
 | |
|         ctx->CRC &= ~0x80000000;
 | |
| 
 | |
|         if (ctx->data_end - ctx->ptr < 6)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         ctx->frameflags = bytestream_get_be32(&ctx->ptr);
 | |
|     }
 | |
| 
 | |
|     /* Initialize the rice structs */
 | |
|     ctx->riceX.k = 10;
 | |
|     ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
 | |
|     ctx->riceY.k = 10;
 | |
|     ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
 | |
| 
 | |
|     /* The first 8 bits of input are ignored. */
 | |
|     ctx->ptr++;
 | |
| 
 | |
|     range_start_decoding(ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const int32_t initial_coeffs[4] = {
 | |
|     360, 317, -109, 98
 | |
| };
 | |
| 
 | |
| static void init_predictor_decoder(APEContext *ctx)
 | |
| {
 | |
|     APEPredictor *p = &ctx->predictor;
 | |
| 
 | |
|     /* Zero the history buffers */
 | |
|     memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
 | |
|     p->buf = p->historybuffer;
 | |
| 
 | |
|     /* Initialize and zero the coefficients */
 | |
|     memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
 | |
|     memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
 | |
|     memset(p->coeffsB, 0, sizeof(p->coeffsB));
 | |
| 
 | |
|     p->filterA[0] = p->filterA[1] = 0;
 | |
|     p->filterB[0] = p->filterB[1] = 0;
 | |
|     p->lastA[0]   = p->lastA[1]   = 0;
 | |
| }
 | |
| 
 | |
| /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
 | |
| static inline int APESIGN(int32_t x) {
 | |
|     return (x < 0) - (x > 0);
 | |
| }
 | |
| 
 | |
| static av_always_inline int predictor_update_filter(APEPredictor *p,
 | |
|                                                     const int decoded, const int filter,
 | |
|                                                     const int delayA,  const int delayB,
 | |
|                                                     const int adaptA,  const int adaptB)
 | |
| {
 | |
|     int32_t predictionA, predictionB, sign;
 | |
| 
 | |
|     p->buf[delayA]     = p->lastA[filter];
 | |
|     p->buf[adaptA]     = APESIGN(p->buf[delayA]);
 | |
|     p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
 | |
|     p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
 | |
| 
 | |
|     predictionA = p->buf[delayA    ] * p->coeffsA[filter][0] +
 | |
|                   p->buf[delayA - 1] * p->coeffsA[filter][1] +
 | |
|                   p->buf[delayA - 2] * p->coeffsA[filter][2] +
 | |
|                   p->buf[delayA - 3] * p->coeffsA[filter][3];
 | |
| 
 | |
|     /*  Apply a scaled first-order filter compression */
 | |
|     p->buf[delayB]     = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
 | |
|     p->buf[adaptB]     = APESIGN(p->buf[delayB]);
 | |
|     p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
 | |
|     p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
 | |
|     p->filterB[filter] = p->filterA[filter ^ 1];
 | |
| 
 | |
|     predictionB = p->buf[delayB    ] * p->coeffsB[filter][0] +
 | |
|                   p->buf[delayB - 1] * p->coeffsB[filter][1] +
 | |
|                   p->buf[delayB - 2] * p->coeffsB[filter][2] +
 | |
|                   p->buf[delayB - 3] * p->coeffsB[filter][3] +
 | |
|                   p->buf[delayB - 4] * p->coeffsB[filter][4];
 | |
| 
 | |
|     p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
 | |
|     p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
 | |
| 
 | |
|     sign = APESIGN(decoded);
 | |
|     p->coeffsA[filter][0] += p->buf[adaptA    ] * sign;
 | |
|     p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
 | |
|     p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
 | |
|     p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
 | |
|     p->coeffsB[filter][0] += p->buf[adaptB    ] * sign;
 | |
|     p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
 | |
|     p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
 | |
|     p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
 | |
|     p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
 | |
| 
 | |
|     return p->filterA[filter];
 | |
| }
 | |
| 
 | |
| static void predictor_decode_stereo(APEContext *ctx, int count)
 | |
| {
 | |
|     APEPredictor *p = &ctx->predictor;
 | |
|     int32_t *decoded0 = ctx->decoded0;
 | |
|     int32_t *decoded1 = ctx->decoded1;
 | |
| 
 | |
|     while (count--) {
 | |
|         /* Predictor Y */
 | |
|         *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
 | |
|                                             YADAPTCOEFFSA, YADAPTCOEFFSB);
 | |
|         decoded0++;
 | |
|         *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
 | |
|                                             XADAPTCOEFFSA, XADAPTCOEFFSB);
 | |
|         decoded1++;
 | |
| 
 | |
|         /* Combined */
 | |
|         p->buf++;
 | |
| 
 | |
|         /* Have we filled the history buffer? */
 | |
|         if (p->buf == p->historybuffer + HISTORY_SIZE) {
 | |
|             memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
 | |
|             p->buf = p->historybuffer;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void predictor_decode_mono(APEContext *ctx, int count)
 | |
| {
 | |
|     APEPredictor *p = &ctx->predictor;
 | |
|     int32_t *decoded0 = ctx->decoded0;
 | |
|     int32_t predictionA, currentA, A, sign;
 | |
| 
 | |
|     currentA = p->lastA[0];
 | |
| 
 | |
|     while (count--) {
 | |
|         A = *decoded0;
 | |
| 
 | |
|         p->buf[YDELAYA] = currentA;
 | |
|         p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
 | |
| 
 | |
|         predictionA = p->buf[YDELAYA    ] * p->coeffsA[0][0] +
 | |
|                       p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
 | |
|                       p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
 | |
|                       p->buf[YDELAYA - 3] * p->coeffsA[0][3];
 | |
| 
 | |
|         currentA = A + (predictionA >> 10);
 | |
| 
 | |
|         p->buf[YADAPTCOEFFSA]     = APESIGN(p->buf[YDELAYA    ]);
 | |
|         p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
 | |
| 
 | |
|         sign = APESIGN(A);
 | |
|         p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA    ] * sign;
 | |
|         p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
 | |
|         p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
 | |
|         p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
 | |
| 
 | |
|         p->buf++;
 | |
| 
 | |
|         /* Have we filled the history buffer? */
 | |
|         if (p->buf == p->historybuffer + HISTORY_SIZE) {
 | |
|             memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
 | |
|             p->buf = p->historybuffer;
 | |
|         }
 | |
| 
 | |
|         p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
 | |
|         *(decoded0++) = p->filterA[0];
 | |
|     }
 | |
| 
 | |
|     p->lastA[0] = currentA;
 | |
| }
 | |
| 
 | |
| static void do_init_filter(APEFilter *f, int16_t *buf, int order)
 | |
| {
 | |
|     f->coeffs = buf;
 | |
|     f->historybuffer = buf + order;
 | |
|     f->delay       = f->historybuffer + order * 2;
 | |
|     f->adaptcoeffs = f->historybuffer + order;
 | |
| 
 | |
|     memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
 | |
|     memset(f->coeffs, 0, order * sizeof(int16_t));
 | |
|     f->avg = 0;
 | |
| }
 | |
| 
 | |
| static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
 | |
| {
 | |
|     do_init_filter(&f[0], buf, order);
 | |
|     do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
 | |
| }
 | |
| 
 | |
| static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
 | |
|                             int32_t *data, int count, int order, int fracbits)
 | |
| {
 | |
|     int res;
 | |
|     int absres;
 | |
| 
 | |
|     while (count--) {
 | |
|         /* round fixedpoint scalar product */
 | |
|         res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order,
 | |
|                                                     f->adaptcoeffs - order,
 | |
|                                                     order, APESIGN(*data));
 | |
|         res = (res + (1 << (fracbits - 1))) >> fracbits;
 | |
|         res += *data;
 | |
|         *data++ = res;
 | |
| 
 | |
|         /* Update the output history */
 | |
|         *f->delay++ = av_clip_int16(res);
 | |
| 
 | |
|         if (version < 3980) {
 | |
|             /* Version ??? to < 3.98 files (untested) */
 | |
|             f->adaptcoeffs[0]  = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
 | |
|             f->adaptcoeffs[-4] >>= 1;
 | |
|             f->adaptcoeffs[-8] >>= 1;
 | |
|         } else {
 | |
|             /* Version 3.98 and later files */
 | |
| 
 | |
|             /* Update the adaption coefficients */
 | |
|             absres = FFABS(res);
 | |
|             if (absres)
 | |
|                 *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
 | |
|                                   (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
 | |
|             else
 | |
|                 *f->adaptcoeffs = 0;
 | |
| 
 | |
|             f->avg += (absres - f->avg) / 16;
 | |
| 
 | |
|             f->adaptcoeffs[-1] >>= 1;
 | |
|             f->adaptcoeffs[-2] >>= 1;
 | |
|             f->adaptcoeffs[-8] >>= 1;
 | |
|         }
 | |
| 
 | |
|         f->adaptcoeffs++;
 | |
| 
 | |
|         /* Have we filled the history buffer? */
 | |
|         if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
 | |
|             memmove(f->historybuffer, f->delay - (order * 2),
 | |
|                     (order * 2) * sizeof(int16_t));
 | |
|             f->delay = f->historybuffer + order * 2;
 | |
|             f->adaptcoeffs = f->historybuffer + order;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void apply_filter(APEContext *ctx, APEFilter *f,
 | |
|                          int32_t *data0, int32_t *data1,
 | |
|                          int count, int order, int fracbits)
 | |
| {
 | |
|     do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
 | |
|     if (data1)
 | |
|         do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
 | |
| }
 | |
| 
 | |
| static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
 | |
|                               int32_t *decoded1, int count)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < APE_FILTER_LEVELS; i++) {
 | |
|         if (!ape_filter_orders[ctx->fset][i])
 | |
|             break;
 | |
|         apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
 | |
|                      ape_filter_orders[ctx->fset][i],
 | |
|                      ape_filter_fracbits[ctx->fset][i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int init_frame_decoder(APEContext *ctx)
 | |
| {
 | |
|     int i, ret;
 | |
|     if ((ret = init_entropy_decoder(ctx)) < 0)
 | |
|         return ret;
 | |
|     init_predictor_decoder(ctx);
 | |
| 
 | |
|     for (i = 0; i < APE_FILTER_LEVELS; i++) {
 | |
|         if (!ape_filter_orders[ctx->fset][i])
 | |
|             break;
 | |
|         init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
 | |
|                     ape_filter_orders[ctx->fset][i]);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ape_unpack_mono(APEContext *ctx, int count)
 | |
| {
 | |
|     int32_t *decoded0 = ctx->decoded0;
 | |
|     int32_t *decoded1 = ctx->decoded1;
 | |
| 
 | |
|     if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
 | |
|         entropy_decode(ctx, count, 0);
 | |
|         /* We are pure silence, so we're done. */
 | |
|         av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     entropy_decode(ctx, count, 0);
 | |
|     ape_apply_filters(ctx, decoded0, NULL, count);
 | |
| 
 | |
|     /* Now apply the predictor decoding */
 | |
|     predictor_decode_mono(ctx, count);
 | |
| 
 | |
|     /* Pseudo-stereo - just copy left channel to right channel */
 | |
|     if (ctx->channels == 2) {
 | |
|         memcpy(decoded1, decoded0, count * sizeof(*decoded1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ape_unpack_stereo(APEContext *ctx, int count)
 | |
| {
 | |
|     int32_t left, right;
 | |
|     int32_t *decoded0 = ctx->decoded0;
 | |
|     int32_t *decoded1 = ctx->decoded1;
 | |
| 
 | |
|     if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
 | |
|         /* We are pure silence, so we're done. */
 | |
|         av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     entropy_decode(ctx, count, 1);
 | |
|     ape_apply_filters(ctx, decoded0, decoded1, count);
 | |
| 
 | |
|     /* Now apply the predictor decoding */
 | |
|     predictor_decode_stereo(ctx, count);
 | |
| 
 | |
|     /* Decorrelate and scale to output depth */
 | |
|     while (count--) {
 | |
|         left = *decoded1 - (*decoded0 / 2);
 | |
|         right = left + *decoded0;
 | |
| 
 | |
|         *(decoded0++) = left;
 | |
|         *(decoded1++) = right;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int ape_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                             int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     APEContext *s = avctx->priv_data;
 | |
|     int16_t *samples;
 | |
|     int i, ret;
 | |
|     int blockstodecode;
 | |
|     int bytes_used = 0;
 | |
| 
 | |
|     /* this should never be negative, but bad things will happen if it is, so
 | |
|        check it just to make sure. */
 | |
|     av_assert0(s->samples >= 0);
 | |
| 
 | |
|     if(!s->samples){
 | |
|         uint32_t nblocks, offset;
 | |
|         void *tmp_data;
 | |
| 
 | |
|         if (!buf_size) {
 | |
|             *got_frame_ptr = 0;
 | |
|             return 0;
 | |
|         }
 | |
|         if (buf_size < 8) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         tmp_data = av_realloc(s->data, FFALIGN(buf_size, 4));
 | |
|         if (!tmp_data)
 | |
|             return AVERROR(ENOMEM);
 | |
|         s->data = tmp_data;
 | |
|         s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
 | |
|         s->ptr = s->data;
 | |
|         s->data_end = s->data + buf_size;
 | |
| 
 | |
|         nblocks = bytestream_get_be32(&s->ptr);
 | |
|         offset  = bytestream_get_be32(&s->ptr);
 | |
|         if (offset > 3) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
 | |
|             s->data = NULL;
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         if (s->data_end - s->ptr < offset) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         s->ptr += offset;
 | |
| 
 | |
|         if (!nblocks || nblocks > INT_MAX) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         s->samples = nblocks;
 | |
| 
 | |
|         memset(s->decoded0,  0, sizeof(s->decoded0));
 | |
|         memset(s->decoded1,  0, sizeof(s->decoded1));
 | |
| 
 | |
|         /* Initialize the frame decoder */
 | |
|         if (init_frame_decoder(s) < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         bytes_used = buf_size;
 | |
|     }
 | |
| 
 | |
|     if (!s->data) {
 | |
|         *got_frame_ptr = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     blockstodecode = FFMIN(BLOCKS_PER_LOOP, s->samples);
 | |
| 
 | |
|     /* get output buffer */
 | |
|     s->frame.nb_samples = blockstodecode;
 | |
|     if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         return ret;
 | |
|     }
 | |
|     samples = (int16_t *)s->frame.data[0];
 | |
| 
 | |
|     s->error=0;
 | |
| 
 | |
|     if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
 | |
|         ape_unpack_mono(s, blockstodecode);
 | |
|     else
 | |
|         ape_unpack_stereo(s, blockstodecode);
 | |
|     emms_c();
 | |
| 
 | |
|     if (s->error) {
 | |
|         s->samples=0;
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < blockstodecode; i++) {
 | |
|         *samples++ = s->decoded0[i];
 | |
|         if(s->channels == 2)
 | |
|             *samples++ = s->decoded1[i];
 | |
|     }
 | |
| 
 | |
|     s->samples -= blockstodecode;
 | |
| 
 | |
|     *got_frame_ptr   = 1;
 | |
|     *(AVFrame *)data = s->frame;
 | |
| 
 | |
|     return bytes_used;
 | |
| }
 | |
| 
 | |
| static void ape_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     APEContext *s = avctx->priv_data;
 | |
|     s->samples= 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_ape_decoder = {
 | |
|     .name           = "ape",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = CODEC_ID_APE,
 | |
|     .priv_data_size = sizeof(APEContext),
 | |
|     .init           = ape_decode_init,
 | |
|     .close          = ape_decode_close,
 | |
|     .decode         = ape_decode_frame,
 | |
|     .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DELAY | CODEC_CAP_DR1,
 | |
|     .flush = ape_flush,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
 | |
| };
 |