mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1235 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1235 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*****************************************************************************
 | |
|  * sofalizer.c : SOFAlizer filter for virtual binaural acoustics
 | |
|  *****************************************************************************
 | |
|  * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda,
 | |
|  *                         Acoustics Research Institute (ARI), Vienna, Austria
 | |
|  *
 | |
|  * Authors: Andreas Fuchs <andi.fuchs.mail@gmail.com>
 | |
|  *          Wolfgang Hrauda <wolfgang.hrauda@gmx.at>
 | |
|  *
 | |
|  * SOFAlizer project coordinator at ARI, main developer of SOFA:
 | |
|  *          Piotr Majdak <piotr@majdak.at>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU Lesser General Public License as published by
 | |
|  * the Free Software Foundation; either version 2.1 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
|  * GNU Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
 | |
|  *****************************************************************************/
 | |
| 
 | |
| #include <math.h>
 | |
| #include <netcdf.h>
 | |
| 
 | |
| #include "libavcodec/avfft.h"
 | |
| #include "libavutil/avstring.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/intmath.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "avfilter.h"
 | |
| #include "internal.h"
 | |
| #include "audio.h"
 | |
| 
 | |
| #define TIME_DOMAIN      0
 | |
| #define FREQUENCY_DOMAIN 1
 | |
| 
 | |
| typedef struct NCSofa {  /* contains data of one SOFA file */
 | |
|     int ncid;            /* netCDF ID of the opened SOFA file */
 | |
|     int n_samples;       /* length of one impulse response (IR) */
 | |
|     int m_dim;           /* number of measurement positions */
 | |
|     int *data_delay;     /* broadband delay of each IR */
 | |
|                          /* all measurement positions for each receiver (i.e. ear): */
 | |
|     float *sp_a;         /* azimuth angles */
 | |
|     float *sp_e;         /* elevation angles */
 | |
|     float *sp_r;         /* radii */
 | |
|                          /* data at each measurement position for each receiver: */
 | |
|     float *data_ir;      /* IRs (time-domain) */
 | |
| } NCSofa;
 | |
| 
 | |
| typedef struct VirtualSpeaker {
 | |
|     uint8_t set;
 | |
|     float azim;
 | |
|     float elev;
 | |
| } VirtualSpeaker;
 | |
| 
 | |
| typedef struct SOFAlizerContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     char *filename;             /* name of SOFA file */
 | |
|     NCSofa sofa;                /* contains data of the SOFA file */
 | |
| 
 | |
|     int sample_rate;            /* sample rate from SOFA file */
 | |
|     float *speaker_azim;        /* azimuth of the virtual loudspeakers */
 | |
|     float *speaker_elev;        /* elevation of the virtual loudspeakers */
 | |
|     char *speakers_pos;         /* custom positions of the virtual loudspeakers */
 | |
|     float gain_lfe;             /* gain applied to LFE channel */
 | |
|     int lfe_channel;            /* LFE channel position in channel layout */
 | |
| 
 | |
|     int n_conv;                 /* number of channels to convolute */
 | |
| 
 | |
|                                 /* buffer variables (for convolution) */
 | |
|     float *ringbuffer[2];       /* buffers input samples, length of one buffer: */
 | |
|                                 /* no. input ch. (incl. LFE) x buffer_length */
 | |
|     int write[2];               /* current write position to ringbuffer */
 | |
|     int buffer_length;          /* is: longest IR plus max. delay in all SOFA files */
 | |
|                                 /* then choose next power of 2 */
 | |
|     int n_fft;                  /* number of samples in one FFT block */
 | |
| 
 | |
|                                 /* netCDF variables */
 | |
|     int *delay[2];              /* broadband delay for each channel/IR to be convolved */
 | |
| 
 | |
|     float *data_ir[2];          /* IRs for all channels to be convolved */
 | |
|                                 /* (this excludes the LFE) */
 | |
|     float *temp_src[2];
 | |
|     FFTComplex *temp_fft[2];
 | |
| 
 | |
|                          /* control variables */
 | |
|     float gain;          /* filter gain (in dB) */
 | |
|     float rotation;      /* rotation of virtual loudspeakers (in degrees)  */
 | |
|     float elevation;     /* elevation of virtual loudspeakers (in deg.) */
 | |
|     float radius;        /* distance virtual loudspeakers to listener (in metres) */
 | |
|     int type;            /* processing type */
 | |
| 
 | |
|     VirtualSpeaker vspkrpos[64];
 | |
| 
 | |
|     FFTContext *fft[2], *ifft[2];
 | |
|     FFTComplex *data_hrtf[2];
 | |
| 
 | |
|     AVFloatDSPContext *fdsp;
 | |
| } SOFAlizerContext;
 | |
| 
 | |
| static int close_sofa(struct NCSofa *sofa)
 | |
| {
 | |
|     av_freep(&sofa->data_delay);
 | |
|     av_freep(&sofa->sp_a);
 | |
|     av_freep(&sofa->sp_e);
 | |
|     av_freep(&sofa->sp_r);
 | |
|     av_freep(&sofa->data_ir);
 | |
|     nc_close(sofa->ncid);
 | |
|     sofa->ncid = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
 | |
| {
 | |
|     struct SOFAlizerContext *s = ctx->priv;
 | |
|     /* variables associated with content of SOFA file: */
 | |
|     int ncid, n_dims, n_vars, n_gatts, n_unlim_dim_id, status;
 | |
|     char data_delay_dim_name[NC_MAX_NAME];
 | |
|     float *sp_a, *sp_e, *sp_r, *data_ir;
 | |
|     char *sofa_conventions;
 | |
|     char dim_name[NC_MAX_NAME];   /* names of netCDF dimensions */
 | |
|     size_t *dim_length;           /* lengths of netCDF dimensions */
 | |
|     char *text;
 | |
|     unsigned int sample_rate;
 | |
|     int data_delay_dim_id[2];
 | |
|     int samplingrate_id;
 | |
|     int data_delay_id;
 | |
|     int n_samples;
 | |
|     int m_dim_id = -1;
 | |
|     int n_dim_id = -1;
 | |
|     int data_ir_id;
 | |
|     size_t att_len;
 | |
|     int m_dim;
 | |
|     int *data_delay;
 | |
|     int sp_id;
 | |
|     int i, ret;
 | |
| 
 | |
|     s->sofa.ncid = 0;
 | |
|     status = nc_open(filename, NC_NOWRITE, &ncid); /* open SOFA file read-only */
 | |
|     if (status != NC_NOERR) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* get number of dimensions, vars, global attributes and Id of unlimited dimensions: */
 | |
|     nc_inq(ncid, &n_dims, &n_vars, &n_gatts, &n_unlim_dim_id);
 | |
| 
 | |
|     /* -- get number of measurements ("M") and length of one IR ("N") -- */
 | |
|     dim_length = av_malloc_array(n_dims, sizeof(*dim_length));
 | |
|     if (!dim_length) {
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < n_dims; i++) { /* go through all dimensions of file */
 | |
|         nc_inq_dim(ncid, i, (char *)&dim_name, &dim_length[i]); /* get dimensions */
 | |
|         if (!strncmp("M", (const char *)&dim_name, 1)) /* get ID of dimension "M" */
 | |
|             m_dim_id = i;
 | |
|         if (!strncmp("N", (const char *)&dim_name, 1)) /* get ID of dimension "N" */
 | |
|             n_dim_id = i;
 | |
|     }
 | |
| 
 | |
|     if ((m_dim_id == -1) || (n_dim_id == -1)) { /* dimension "M" or "N" couldn't be found */
 | |
|         av_log(ctx, AV_LOG_ERROR, "Can't find required dimensions in SOFA file.\n");
 | |
|         av_freep(&dim_length);
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     n_samples = dim_length[n_dim_id]; /* get length of one IR */
 | |
|     m_dim     = dim_length[m_dim_id]; /* get number of measurements */
 | |
| 
 | |
|     av_freep(&dim_length);
 | |
| 
 | |
|     /* -- check file type -- */
 | |
|     /* get length of attritube "Conventions" */
 | |
|     status = nc_inq_attlen(ncid, NC_GLOBAL, "Conventions", &att_len);
 | |
|     if (status != NC_NOERR) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"Conventions\".\n");
 | |
|         nc_close(ncid);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /* check whether file is SOFA file */
 | |
|     text = av_malloc(att_len + 1);
 | |
|     if (!text) {
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     nc_get_att_text(ncid, NC_GLOBAL, "Conventions", text);
 | |
|     *(text + att_len) = 0;
 | |
|     if (strncmp("SOFA", text, 4)) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Not a SOFA file!\n");
 | |
|         av_freep(&text);
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     av_freep(&text);
 | |
| 
 | |
|     status = nc_inq_attlen(ncid, NC_GLOBAL, "License", &att_len);
 | |
|     if (status == NC_NOERR) {
 | |
|         text = av_malloc(att_len + 1);
 | |
|         if (text) {
 | |
|             nc_get_att_text(ncid, NC_GLOBAL, "License", text);
 | |
|             *(text + att_len) = 0;
 | |
|             av_log(ctx, AV_LOG_INFO, "SOFA file License: %s\n", text);
 | |
|             av_freep(&text);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nc_inq_attlen(ncid, NC_GLOBAL, "SourceDescription", &att_len);
 | |
|     if (status == NC_NOERR) {
 | |
|         text = av_malloc(att_len + 1);
 | |
|         if (text) {
 | |
|             nc_get_att_text(ncid, NC_GLOBAL, "SourceDescription", text);
 | |
|             *(text + att_len) = 0;
 | |
|             av_log(ctx, AV_LOG_INFO, "SOFA file SourceDescription: %s\n", text);
 | |
|             av_freep(&text);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nc_inq_attlen(ncid, NC_GLOBAL, "Comment", &att_len);
 | |
|     if (status == NC_NOERR) {
 | |
|         text = av_malloc(att_len + 1);
 | |
|         if (text) {
 | |
|             nc_get_att_text(ncid, NC_GLOBAL, "Comment", text);
 | |
|             *(text + att_len) = 0;
 | |
|             av_log(ctx, AV_LOG_INFO, "SOFA file Comment: %s\n", text);
 | |
|             av_freep(&text);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nc_inq_attlen(ncid, NC_GLOBAL, "SOFAConventions", &att_len);
 | |
|     if (status != NC_NOERR) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"SOFAConventions\".\n");
 | |
|         nc_close(ncid);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     sofa_conventions = av_malloc(att_len + 1);
 | |
|     if (!sofa_conventions) {
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     nc_get_att_text(ncid, NC_GLOBAL, "SOFAConventions", sofa_conventions);
 | |
|     *(sofa_conventions + att_len) = 0;
 | |
|     if (strncmp("SimpleFreeFieldHRIR", sofa_conventions, att_len)) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Not a SimpleFreeFieldHRIR file!\n");
 | |
|         av_freep(&sofa_conventions);
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     av_freep(&sofa_conventions);
 | |
| 
 | |
|     /* -- get sampling rate of HRTFs -- */
 | |
|     /* read ID, then value */
 | |
|     status  = nc_inq_varid(ncid, "Data.SamplingRate", &samplingrate_id);
 | |
|     status += nc_get_var_uint(ncid, samplingrate_id, &sample_rate);
 | |
|     if (status != NC_NOERR) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.SamplingRate.\n");
 | |
|         nc_close(ncid);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     *samplingrate = sample_rate; /* remember sampling rate */
 | |
| 
 | |
|     /* -- allocate memory for one value for each measurement position: -- */
 | |
|     sp_a = s->sofa.sp_a = av_malloc_array(m_dim, sizeof(float));
 | |
|     sp_e = s->sofa.sp_e = av_malloc_array(m_dim, sizeof(float));
 | |
|     sp_r = s->sofa.sp_r = av_malloc_array(m_dim, sizeof(float));
 | |
|     /* delay and IR values required for each ear and measurement position: */
 | |
|     data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int));
 | |
|     data_ir = s->sofa.data_ir = av_calloc(m_dim * FFALIGN(n_samples, 16), sizeof(float) * 2);
 | |
| 
 | |
|     if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir) {
 | |
|         /* if memory could not be allocated */
 | |
|         close_sofa(&s->sofa);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     /* get impulse responses (HRTFs): */
 | |
|     /* get corresponding ID */
 | |
|     status = nc_inq_varid(ncid, "Data.IR", &data_ir_id);
 | |
|     status += nc_get_var_float(ncid, data_ir_id, data_ir); /* read and store IRs */
 | |
|     if (status != NC_NOERR) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.IR!\n");
 | |
|         ret = AVERROR(EINVAL);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* get source positions of the HRTFs in the SOFA file: */
 | |
|     status  = nc_inq_varid(ncid, "SourcePosition", &sp_id); /* get corresponding ID */
 | |
|     status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 0 } ,
 | |
|                 (size_t[2]){ m_dim, 1}, sp_a); /* read & store azimuth angles */
 | |
|     status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 1 } ,
 | |
|                 (size_t[2]){ m_dim, 1}, sp_e); /* read & store elevation angles */
 | |
|     status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 2 } ,
 | |
|                 (size_t[2]){ m_dim, 1}, sp_r); /* read & store radii */
 | |
|     if (status != NC_NOERR) { /* if any source position variable coudn't be read */
 | |
|         av_log(ctx, AV_LOG_ERROR, "Couldn't read SourcePosition.\n");
 | |
|         ret = AVERROR(EINVAL);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* read Data.Delay, check for errors and fit it to data_delay */
 | |
|     status  = nc_inq_varid(ncid, "Data.Delay", &data_delay_id);
 | |
|     status += nc_inq_vardimid(ncid, data_delay_id, &data_delay_dim_id[0]);
 | |
|     status += nc_inq_dimname(ncid, data_delay_dim_id[0], data_delay_dim_name);
 | |
|     if (status != NC_NOERR) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay.\n");
 | |
|         ret = AVERROR(EINVAL);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* Data.Delay dimension check */
 | |
|     /* dimension of Data.Delay is [I R]: */
 | |
|     if (!strncmp(data_delay_dim_name, "I", 2)) {
 | |
|         /* check 2 characters to assure string is 0-terminated after "I" */
 | |
|         int delay[2]; /* delays get from SOFA file: */
 | |
|         int *data_delay_r;
 | |
| 
 | |
|         av_log(ctx, AV_LOG_DEBUG, "Data.Delay has dimension [I R]\n");
 | |
|         status = nc_get_var_int(ncid, data_delay_id, &delay[0]);
 | |
|         if (status != NC_NOERR) {
 | |
|             av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
 | |
|             ret = AVERROR(EINVAL);
 | |
|             goto error;
 | |
|         }
 | |
|         data_delay_r = data_delay + m_dim;
 | |
|         for (i = 0; i < m_dim; i++) { /* extend given dimension [I R] to [M R] */
 | |
|             /* assign constant delay value for all measurements to data_delay fields */
 | |
|             data_delay[i]   = delay[0];
 | |
|             data_delay_r[i] = delay[1];
 | |
|         }
 | |
|         /* dimension of Data.Delay is [M R] */
 | |
|     } else if (!strncmp(data_delay_dim_name, "M", 2)) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Data.Delay in dimension [M R]\n");
 | |
|         /* get delays from SOFA file: */
 | |
|         status = nc_get_var_int(ncid, data_delay_id, data_delay);
 | |
|         if (status != NC_NOERR) {
 | |
|             av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
 | |
|             ret = AVERROR(EINVAL);
 | |
|             goto error;
 | |
|         }
 | |
|     } else { /* dimension of Data.Delay is neither [I R] nor [M R] */
 | |
|         av_log(ctx, AV_LOG_ERROR, "Data.Delay does not have the required dimensions [I R] or [M R].\n");
 | |
|         ret = AVERROR(EINVAL);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* save information in SOFA struct: */
 | |
|     s->sofa.m_dim = m_dim; /* no. measurement positions */
 | |
|     s->sofa.n_samples = n_samples; /* length on one IR */
 | |
|     s->sofa.ncid = ncid; /* netCDF ID of SOFA file */
 | |
|     nc_close(ncid); /* close SOFA file */
 | |
| 
 | |
|     av_log(ctx, AV_LOG_DEBUG, "m_dim: %d n_samples %d\n", m_dim, n_samples);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| error:
 | |
|     close_sofa(&s->sofa);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int parse_channel_name(char **arg, int *rchannel, char *buf)
 | |
| {
 | |
|     int len, i, channel_id = 0;
 | |
|     int64_t layout, layout0;
 | |
| 
 | |
|     /* try to parse a channel name, e.g. "FL" */
 | |
|     if (sscanf(*arg, "%7[A-Z]%n", buf, &len)) {
 | |
|         layout0 = layout = av_get_channel_layout(buf);
 | |
|         /* channel_id <- first set bit in layout */
 | |
|         for (i = 32; i > 0; i >>= 1) {
 | |
|             if (layout >= (int64_t)1 << i) {
 | |
|                 channel_id += i;
 | |
|                 layout >>= i;
 | |
|             }
 | |
|         }
 | |
|         /* reject layouts that are not a single channel */
 | |
|         if (channel_id >= 64 || layout0 != (int64_t)1 << channel_id)
 | |
|             return AVERROR(EINVAL);
 | |
|         *rchannel = channel_id;
 | |
|         *arg += len;
 | |
|         return 0;
 | |
|     }
 | |
|     return AVERROR(EINVAL);
 | |
| }
 | |
| 
 | |
| static void parse_speaker_pos(AVFilterContext *ctx, int64_t in_channel_layout)
 | |
| {
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
|     char *arg, *tokenizer, *p, *args = av_strdup(s->speakers_pos);
 | |
| 
 | |
|     if (!args)
 | |
|         return;
 | |
|     p = args;
 | |
| 
 | |
|     while ((arg = av_strtok(p, "|", &tokenizer))) {
 | |
|         char buf[8];
 | |
|         float azim, elev;
 | |
|         int out_ch_id;
 | |
| 
 | |
|         p = NULL;
 | |
|         if (parse_channel_name(&arg, &out_ch_id, buf)) {
 | |
|             av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf);
 | |
|             continue;
 | |
|         }
 | |
|         if (sscanf(arg, "%f %f", &azim, &elev) == 2) {
 | |
|             s->vspkrpos[out_ch_id].set = 1;
 | |
|             s->vspkrpos[out_ch_id].azim = azim;
 | |
|             s->vspkrpos[out_ch_id].elev = elev;
 | |
|         } else if (sscanf(arg, "%f", &azim) == 1) {
 | |
|             s->vspkrpos[out_ch_id].set = 1;
 | |
|             s->vspkrpos[out_ch_id].azim = azim;
 | |
|             s->vspkrpos[out_ch_id].elev = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_free(args);
 | |
| }
 | |
| 
 | |
| static int get_speaker_pos(AVFilterContext *ctx,
 | |
|                            float *speaker_azim, float *speaker_elev)
 | |
| {
 | |
|     struct SOFAlizerContext *s = ctx->priv;
 | |
|     uint64_t channels_layout = ctx->inputs[0]->channel_layout;
 | |
|     float azim[16] = { 0 };
 | |
|     float elev[16] = { 0 };
 | |
|     int m, ch, n_conv = ctx->inputs[0]->channels; /* get no. input channels */
 | |
| 
 | |
|     if (n_conv > 16)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     s->lfe_channel = -1;
 | |
| 
 | |
|     if (s->speakers_pos)
 | |
|         parse_speaker_pos(ctx, channels_layout);
 | |
| 
 | |
|     /* set speaker positions according to input channel configuration: */
 | |
|     for (m = 0, ch = 0; ch < n_conv && m < 64; m++) {
 | |
|         uint64_t mask = channels_layout & (1 << m);
 | |
| 
 | |
|         switch (mask) {
 | |
|         case AV_CH_FRONT_LEFT:            azim[ch] =  30;      break;
 | |
|         case AV_CH_FRONT_RIGHT:           azim[ch] = 330;      break;
 | |
|         case AV_CH_FRONT_CENTER:          azim[ch] =   0;      break;
 | |
|         case AV_CH_LOW_FREQUENCY:
 | |
|         case AV_CH_LOW_FREQUENCY_2:       s->lfe_channel = ch; break;
 | |
|         case AV_CH_BACK_LEFT:             azim[ch] = 150;      break;
 | |
|         case AV_CH_BACK_RIGHT:            azim[ch] = 210;      break;
 | |
|         case AV_CH_BACK_CENTER:           azim[ch] = 180;      break;
 | |
|         case AV_CH_SIDE_LEFT:             azim[ch] =  90;      break;
 | |
|         case AV_CH_SIDE_RIGHT:            azim[ch] = 270;      break;
 | |
|         case AV_CH_FRONT_LEFT_OF_CENTER:  azim[ch] =  15;      break;
 | |
|         case AV_CH_FRONT_RIGHT_OF_CENTER: azim[ch] = 345;      break;
 | |
|         case AV_CH_TOP_CENTER:            azim[ch] =   0;
 | |
|                                           elev[ch] =  90;      break;
 | |
|         case AV_CH_TOP_FRONT_LEFT:        azim[ch] =  30;
 | |
|                                           elev[ch] =  45;      break;
 | |
|         case AV_CH_TOP_FRONT_CENTER:      azim[ch] =   0;
 | |
|                                           elev[ch] =  45;      break;
 | |
|         case AV_CH_TOP_FRONT_RIGHT:       azim[ch] = 330;
 | |
|                                           elev[ch] =  45;      break;
 | |
|         case AV_CH_TOP_BACK_LEFT:         azim[ch] = 150;
 | |
|                                           elev[ch] =  45;      break;
 | |
|         case AV_CH_TOP_BACK_RIGHT:        azim[ch] = 210;
 | |
|                                           elev[ch] =  45;      break;
 | |
|         case AV_CH_TOP_BACK_CENTER:       azim[ch] = 180;
 | |
|                                           elev[ch] =  45;      break;
 | |
|         case AV_CH_WIDE_LEFT:             azim[ch] =  90;      break;
 | |
|         case AV_CH_WIDE_RIGHT:            azim[ch] = 270;      break;
 | |
|         case AV_CH_SURROUND_DIRECT_LEFT:  azim[ch] =  90;      break;
 | |
|         case AV_CH_SURROUND_DIRECT_RIGHT: azim[ch] = 270;      break;
 | |
|         case AV_CH_STEREO_LEFT:           azim[ch] =  90;      break;
 | |
|         case AV_CH_STEREO_RIGHT:          azim[ch] = 270;      break;
 | |
|         case 0:                                                break;
 | |
|         default:
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         if (s->vspkrpos[m].set) {
 | |
|             azim[ch] = s->vspkrpos[m].azim;
 | |
|             elev[ch] = s->vspkrpos[m].elev;
 | |
|         }
 | |
| 
 | |
|         if (mask)
 | |
|             ch++;
 | |
|     }
 | |
| 
 | |
|     memcpy(speaker_azim, azim, n_conv * sizeof(float));
 | |
|     memcpy(speaker_elev, elev, n_conv * sizeof(float));
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int max_delay(struct NCSofa *sofa)
 | |
| {
 | |
|     int i, max = 0;
 | |
| 
 | |
|     for (i = 0; i < sofa->m_dim * 2; i++) {
 | |
|         /* search maximum delay in given SOFA file */
 | |
|         max = FFMAX(max, sofa->data_delay[i]);
 | |
|     }
 | |
| 
 | |
|     return max;
 | |
| }
 | |
| 
 | |
| static int find_m(SOFAlizerContext *s, int azim, int elev, float radius)
 | |
| {
 | |
|     /* get source positions and M of currently selected SOFA file */
 | |
|     float *sp_a = s->sofa.sp_a; /* azimuth angle */
 | |
|     float *sp_e = s->sofa.sp_e; /* elevation angle */
 | |
|     float *sp_r = s->sofa.sp_r; /* radius */
 | |
|     int m_dim = s->sofa.m_dim; /* no. measurements */
 | |
|     int best_id = 0; /* index m currently closest to desired source pos. */
 | |
|     float delta = 1000; /* offset between desired and currently best pos. */
 | |
|     float current;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < m_dim; i++) {
 | |
|         /* search through all measurements in currently selected SOFA file */
 | |
|         /* distance of current to desired source position: */
 | |
|         current = fabs(sp_a[i] - azim) +
 | |
|                   fabs(sp_e[i] - elev) +
 | |
|                   fabs(sp_r[i] - radius);
 | |
|         if (current <= delta) {
 | |
|             /* if current distance is smaller than smallest distance so far */
 | |
|             delta = current;
 | |
|             best_id = i; /* remember index */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return best_id;
 | |
| }
 | |
| 
 | |
| static int compensate_volume(AVFilterContext *ctx)
 | |
| {
 | |
|     struct SOFAlizerContext *s = ctx->priv;
 | |
|     float compensate;
 | |
|     float energy = 0;
 | |
|     float *ir;
 | |
|     int m;
 | |
| 
 | |
|     if (s->sofa.ncid) {
 | |
|         /* find IR at front center position in the SOFA file (IR closest to 0°,0°,1m) */
 | |
|         struct NCSofa *sofa = &s->sofa;
 | |
|         m = find_m(s, 0, 0, 1);
 | |
|         /* get energy of that IR and compensate volume */
 | |
|         ir = sofa->data_ir + 2 * m * sofa->n_samples;
 | |
|         if (sofa->n_samples & 31) {
 | |
|             energy = avpriv_scalarproduct_float_c(ir, ir, sofa->n_samples);
 | |
|         } else {
 | |
|             energy = s->fdsp->scalarproduct_float(ir, ir, sofa->n_samples);
 | |
|         }
 | |
|         compensate = 256 / (sofa->n_samples * sqrt(energy));
 | |
|         av_log(ctx, AV_LOG_DEBUG, "Compensate-factor: %f\n", compensate);
 | |
|         ir = sofa->data_ir;
 | |
|         /* apply volume compensation to IRs */
 | |
|         if (sofa->n_samples & 31) {
 | |
|             int i;
 | |
|             for (i = 0; i < sofa->n_samples * sofa->m_dim * 2; i++) {
 | |
|                 ir[i] = ir[i] * compensate;
 | |
|             }
 | |
|         } else {
 | |
|             s->fdsp->vector_fmul_scalar(ir, ir, compensate, sofa->n_samples * sofa->m_dim * 2);
 | |
|             emms_c();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef struct ThreadData {
 | |
|     AVFrame *in, *out;
 | |
|     int *write;
 | |
|     int **delay;
 | |
|     float **ir;
 | |
|     int *n_clippings;
 | |
|     float **ringbuffer;
 | |
|     float **temp_src;
 | |
|     FFTComplex **temp_fft;
 | |
| } ThreadData;
 | |
| 
 | |
| static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
|     ThreadData *td = arg;
 | |
|     AVFrame *in = td->in, *out = td->out;
 | |
|     int offset = jobnr;
 | |
|     int *write = &td->write[jobnr];
 | |
|     const int *const delay = td->delay[jobnr];
 | |
|     const float *const ir = td->ir[jobnr];
 | |
|     int *n_clippings = &td->n_clippings[jobnr];
 | |
|     float *ringbuffer = td->ringbuffer[jobnr];
 | |
|     float *temp_src = td->temp_src[jobnr];
 | |
|     const int n_samples = s->sofa.n_samples; /* length of one IR */
 | |
|     const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */
 | |
|     float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */
 | |
|     const int in_channels = s->n_conv; /* number of input channels */
 | |
|     /* ring buffer length is: longest IR plus max. delay -> next power of 2 */
 | |
|     const int buffer_length = s->buffer_length;
 | |
|     /* -1 for AND instead of MODULO (applied to powers of 2): */
 | |
|     const uint32_t modulo = (uint32_t)buffer_length - 1;
 | |
|     float *buffer[16]; /* holds ringbuffer for each input channel */
 | |
|     int wr = *write;
 | |
|     int read;
 | |
|     int i, l;
 | |
| 
 | |
|     dst += offset;
 | |
|     for (l = 0; l < in_channels; l++) {
 | |
|         /* get starting address of ringbuffer for each input channel */
 | |
|         buffer[l] = ringbuffer + l * buffer_length;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < in->nb_samples; i++) {
 | |
|         const float *temp_ir = ir; /* using same set of IRs for each sample */
 | |
| 
 | |
|         *dst = 0;
 | |
|         for (l = 0; l < in_channels; l++) {
 | |
|             /* write current input sample to ringbuffer (for each channel) */
 | |
|             *(buffer[l] + wr) = src[l];
 | |
|         }
 | |
| 
 | |
|         /* loop goes through all channels to be convolved */
 | |
|         for (l = 0; l < in_channels; l++) {
 | |
|             const float *const bptr = buffer[l];
 | |
| 
 | |
|             if (l == s->lfe_channel) {
 | |
|                 /* LFE is an input channel but requires no convolution */
 | |
|                 /* apply gain to LFE signal and add to output buffer */
 | |
|                 *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
 | |
|                 temp_ir += FFALIGN(n_samples, 16);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /* current read position in ringbuffer: input sample write position
 | |
|              * - delay for l-th ch. + diff. betw. IR length and buffer length
 | |
|              * (mod buffer length) */
 | |
|             read = (wr - *(delay + l) - (n_samples - 1) + buffer_length) & modulo;
 | |
| 
 | |
|             if (read + n_samples < buffer_length) {
 | |
|                 memcpy(temp_src, bptr + read, n_samples * sizeof(*temp_src));
 | |
|             } else {
 | |
|                 int len = FFMIN(n_samples - (read % n_samples), buffer_length - read);
 | |
| 
 | |
|                 memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
 | |
|                 memcpy(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src));
 | |
|             }
 | |
| 
 | |
|             /* multiply signal and IR, and add up the results */
 | |
|             dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples);
 | |
|             temp_ir += FFALIGN(n_samples, 16);
 | |
|         }
 | |
| 
 | |
|         /* clippings counter */
 | |
|         if (fabs(*dst) > 1)
 | |
|             *n_clippings += 1;
 | |
| 
 | |
|         /* move output buffer pointer by +2 to get to next sample of processed channel: */
 | |
|         dst += 2;
 | |
|         src += in_channels;
 | |
|         wr   = (wr + 1) & modulo; /* update ringbuffer write position */
 | |
|     }
 | |
| 
 | |
|     *write = wr; /* remember write position in ringbuffer for next call */
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
|     ThreadData *td = arg;
 | |
|     AVFrame *in = td->in, *out = td->out;
 | |
|     int offset = jobnr;
 | |
|     int *write = &td->write[jobnr];
 | |
|     FFTComplex *hrtf = s->data_hrtf[jobnr]; /* get pointers to current HRTF data */
 | |
|     int *n_clippings = &td->n_clippings[jobnr];
 | |
|     float *ringbuffer = td->ringbuffer[jobnr];
 | |
|     const int n_samples = s->sofa.n_samples; /* length of one IR */
 | |
|     const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */
 | |
|     float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */
 | |
|     const int in_channels = s->n_conv; /* number of input channels */
 | |
|     /* ring buffer length is: longest IR plus max. delay -> next power of 2 */
 | |
|     const int buffer_length = s->buffer_length;
 | |
|     /* -1 for AND instead of MODULO (applied to powers of 2): */
 | |
|     const uint32_t modulo = (uint32_t)buffer_length - 1;
 | |
|     FFTComplex *fft_in = s->temp_fft[jobnr]; /* temporary array for FFT input/output data */
 | |
|     FFTContext *ifft = s->ifft[jobnr];
 | |
|     FFTContext *fft = s->fft[jobnr];
 | |
|     const int n_conv = s->n_conv;
 | |
|     const int n_fft = s->n_fft;
 | |
|     const float fft_scale = 1.0f / s->n_fft;
 | |
|     FFTComplex *hrtf_offset;
 | |
|     int wr = *write;
 | |
|     int n_read;
 | |
|     int i, j;
 | |
| 
 | |
|     dst += offset;
 | |
| 
 | |
|     /* find minimum between number of samples and output buffer length:
 | |
|      * (important, if one IR is longer than the output buffer) */
 | |
|     n_read = FFMIN(s->sofa.n_samples, in->nb_samples);
 | |
|     for (j = 0; j < n_read; j++) {
 | |
|         /* initialize output buf with saved signal from overflow buf */
 | |
|         dst[2 * j]     = ringbuffer[wr];
 | |
|         ringbuffer[wr] = 0.0; /* re-set read samples to zero */
 | |
|         /* update ringbuffer read/write position */
 | |
|         wr  = (wr + 1) & modulo;
 | |
|     }
 | |
| 
 | |
|     /* initialize rest of output buffer with 0 */
 | |
|     for (j = n_read; j < in->nb_samples; j++) {
 | |
|         dst[2 * j] = 0;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < n_conv; i++) {
 | |
|         if (i == s->lfe_channel) { /* LFE */
 | |
|             for (j = 0; j < in->nb_samples; j++) {
 | |
|                 /* apply gain to LFE signal and add to output buffer */
 | |
|                 dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
 | |
|             }
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* outer loop: go through all input channels to be convolved */
 | |
|         offset = i * n_fft; /* no. samples already processed */
 | |
|         hrtf_offset = hrtf + offset;
 | |
| 
 | |
|         /* fill FFT input with 0 (we want to zero-pad) */
 | |
|         memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
 | |
| 
 | |
|         for (j = 0; j < in->nb_samples; j++) {
 | |
|             /* prepare input for FFT */
 | |
|             /* write all samples of current input channel to FFT input array */
 | |
|             fft_in[j].re = src[j * in_channels + i];
 | |
|         }
 | |
| 
 | |
|         /* transform input signal of current channel to frequency domain */
 | |
|         av_fft_permute(fft, fft_in);
 | |
|         av_fft_calc(fft, fft_in);
 | |
|         for (j = 0; j < n_fft; j++) {
 | |
|             const FFTComplex *hcomplex = hrtf_offset + j;
 | |
|             const float re = fft_in[j].re;
 | |
|             const float im = fft_in[j].im;
 | |
| 
 | |
|             /* complex multiplication of input signal and HRTFs */
 | |
|             /* output channel (real): */
 | |
|             fft_in[j].re = re * hcomplex->re - im * hcomplex->im;
 | |
|             /* output channel (imag): */
 | |
|             fft_in[j].im = re * hcomplex->im + im * hcomplex->re;
 | |
|         }
 | |
| 
 | |
|         /* transform output signal of current channel back to time domain */
 | |
|         av_fft_permute(ifft, fft_in);
 | |
|         av_fft_calc(ifft, fft_in);
 | |
| 
 | |
|         for (j = 0; j < in->nb_samples; j++) {
 | |
|             /* write output signal of current channel to output buffer */
 | |
|             dst[2 * j] += fft_in[j].re * fft_scale;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < n_samples - 1; j++) { /* overflow length is IR length - 1 */
 | |
|             /* write the rest of output signal to overflow buffer */
 | |
|             int write_pos = (wr + j) & modulo;
 | |
| 
 | |
|             *(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re * fft_scale;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* go through all samples of current output buffer: count clippings */
 | |
|     for (i = 0; i < out->nb_samples; i++) {
 | |
|         /* clippings counter */
 | |
|         if (fabs(*dst) > 1) { /* if current output sample > 1 */
 | |
|             n_clippings[0]++;
 | |
|         }
 | |
| 
 | |
|         /* move output buffer pointer by +2 to get to next sample of processed channel: */
 | |
|         dst += 2;
 | |
|     }
 | |
| 
 | |
|     /* remember read/write position in ringbuffer for next call */
 | |
|     *write = wr;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     int n_clippings[2] = { 0 };
 | |
|     ThreadData td;
 | |
|     AVFrame *out;
 | |
| 
 | |
|     out = ff_get_audio_buffer(outlink, in->nb_samples);
 | |
|     if (!out) {
 | |
|         av_frame_free(&in);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     av_frame_copy_props(out, in);
 | |
| 
 | |
|     td.in = in; td.out = out; td.write = s->write;
 | |
|     td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
 | |
|     td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
 | |
|     td.temp_fft = s->temp_fft;
 | |
| 
 | |
|     if (s->type == TIME_DOMAIN) {
 | |
|         ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2);
 | |
|     } else {
 | |
|         ctx->internal->execute(ctx, sofalizer_fast_convolute, &td, NULL, 2);
 | |
|     }
 | |
|     emms_c();
 | |
| 
 | |
|     /* display error message if clipping occurred */
 | |
|     if (n_clippings[0] + n_clippings[1] > 0) {
 | |
|         av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
 | |
|                n_clippings[0] + n_clippings[1], out->nb_samples * 2);
 | |
|     }
 | |
| 
 | |
|     av_frame_free(&in);
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static int query_formats(AVFilterContext *ctx)
 | |
| {
 | |
|     struct SOFAlizerContext *s = ctx->priv;
 | |
|     AVFilterFormats *formats = NULL;
 | |
|     AVFilterChannelLayouts *layouts = NULL;
 | |
|     int ret, sample_rates[] = { 48000, -1 };
 | |
| 
 | |
|     ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
 | |
|     if (ret)
 | |
|         return ret;
 | |
|     ret = ff_set_common_formats(ctx, formats);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     layouts = ff_all_channel_layouts();
 | |
|     if (!layouts)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     layouts = NULL;
 | |
|     ret = ff_add_channel_layout(&layouts, AV_CH_LAYOUT_STEREO);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts);
 | |
|     if (ret)
 | |
|         return ret;
 | |
| 
 | |
|     sample_rates[0] = s->sample_rate;
 | |
|     formats = ff_make_format_list(sample_rates);
 | |
|     if (!formats)
 | |
|         return AVERROR(ENOMEM);
 | |
|     return ff_set_common_samplerates(ctx, formats);
 | |
| }
 | |
| 
 | |
| static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
 | |
| {
 | |
|     struct SOFAlizerContext *s = ctx->priv;
 | |
|     const int n_samples = s->sofa.n_samples;
 | |
|     int n_conv = s->n_conv; /* no. channels to convolve */
 | |
|     int n_fft = s->n_fft;
 | |
|     int delay_l[16]; /* broadband delay for each IR */
 | |
|     int delay_r[16];
 | |
|     int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */
 | |
|     float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */
 | |
|     FFTComplex *data_hrtf_l = NULL;
 | |
|     FFTComplex *data_hrtf_r = NULL;
 | |
|     FFTComplex *fft_in_l = NULL;
 | |
|     FFTComplex *fft_in_r = NULL;
 | |
|     float *data_ir_l = NULL;
 | |
|     float *data_ir_r = NULL;
 | |
|     int offset = 0; /* used for faster pointer arithmetics in for-loop */
 | |
|     int m[16]; /* measurement index m of IR closest to required source positions */
 | |
|     int i, j, azim_orig = azim, elev_orig = elev;
 | |
| 
 | |
|     if (!s->sofa.ncid) { /* if an invalid SOFA file has been selected */
 | |
|         av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (s->type == TIME_DOMAIN) {
 | |
|         s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
 | |
|         s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
 | |
| 
 | |
|         /* get temporary IR for L and R channel */
 | |
|         data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 16), sizeof(*data_ir_l));
 | |
|         data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 16), sizeof(*data_ir_r));
 | |
|         if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
 | |
|             av_free(data_ir_l);
 | |
|             av_free(data_ir_r);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|     } else {
 | |
|         /* get temporary HRTF memory for L and R channel */
 | |
|         data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv);
 | |
|         data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv);
 | |
|         if (!data_hrtf_r || !data_hrtf_l) {
 | |
|             av_free(data_hrtf_l);
 | |
|             av_free(data_hrtf_r);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < s->n_conv; i++) {
 | |
|         /* load and store IRs and corresponding delays */
 | |
|         azim = (int)(s->speaker_azim[i] + azim_orig) % 360;
 | |
|         elev = (int)(s->speaker_elev[i] + elev_orig) % 90;
 | |
|         /* get id of IR closest to desired position */
 | |
|         m[i] = find_m(s, azim, elev, radius);
 | |
| 
 | |
|         /* load the delays associated with the current IRs */
 | |
|         delay_l[i] = *(s->sofa.data_delay + 2 * m[i]);
 | |
|         delay_r[i] = *(s->sofa.data_delay + 2 * m[i] + 1);
 | |
| 
 | |
|         if (s->type == TIME_DOMAIN) {
 | |
|             offset = i * FFALIGN(n_samples, 16); /* no. samples already written */
 | |
|             for (j = 0; j < n_samples; j++) {
 | |
|                 /* load reversed IRs of the specified source position
 | |
|                  * sample-by-sample for left and right ear; and apply gain */
 | |
|                 *(data_ir_l + offset + j) = /* left channel */
 | |
|                 *(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin;
 | |
|                 *(data_ir_r + offset + j) = /* right channel */
 | |
|                 *(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j  + n_samples) * gain_lin;
 | |
|             }
 | |
|         } else {
 | |
|             fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
 | |
|             fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
 | |
|             if (!fft_in_l || !fft_in_r) {
 | |
|                 av_free(data_hrtf_l);
 | |
|                 av_free(data_hrtf_r);
 | |
|                 av_free(fft_in_l);
 | |
|                 av_free(fft_in_r);
 | |
|                 return AVERROR(ENOMEM);
 | |
|             }
 | |
| 
 | |
|             offset = i * n_fft; /* no. samples already written */
 | |
|             for (j = 0; j < n_samples; j++) {
 | |
|                 /* load non-reversed IRs of the specified source position
 | |
|                  * sample-by-sample and apply gain,
 | |
|                  * L channel is loaded to real part, R channel to imag part,
 | |
|                  * IRs ared shifted by L and R delay */
 | |
|                 fft_in_l[delay_l[i] + j].re = /* left channel */
 | |
|                 *(s->sofa.data_ir + 2 * m[i] * n_samples + j) * gain_lin;
 | |
|                 fft_in_r[delay_r[i] + j].re = /* right channel */
 | |
|                 *(s->sofa.data_ir + (2 * m[i] + 1) * n_samples + j) * gain_lin;
 | |
|             }
 | |
| 
 | |
|             /* actually transform to frequency domain (IRs -> HRTFs) */
 | |
|             av_fft_permute(s->fft[0], fft_in_l);
 | |
|             av_fft_calc(s->fft[0], fft_in_l);
 | |
|             memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
 | |
|             av_fft_permute(s->fft[0], fft_in_r);
 | |
|             av_fft_calc(s->fft[0], fft_in_r);
 | |
|             memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
 | |
|         }
 | |
| 
 | |
|         av_log(ctx, AV_LOG_DEBUG, "Index: %d, Azimuth: %f, Elevation: %f, Radius: %f of SOFA file.\n",
 | |
|                m[i], *(s->sofa.sp_a + m[i]), *(s->sofa.sp_e + m[i]), *(s->sofa.sp_r + m[i]));
 | |
|     }
 | |
| 
 | |
|     if (s->type == TIME_DOMAIN) {
 | |
|         /* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */
 | |
|         memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * FFALIGN(n_samples, 16));
 | |
|         memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * FFALIGN(n_samples, 16));
 | |
| 
 | |
|         av_freep(&data_ir_l); /* free temporary IR memory */
 | |
|         av_freep(&data_ir_r);
 | |
|     } else {
 | |
|         s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
 | |
|         s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
 | |
|         if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
 | |
|             av_freep(&data_hrtf_l);
 | |
|             av_freep(&data_hrtf_r);
 | |
|             av_freep(&fft_in_l);
 | |
|             av_freep(&fft_in_r);
 | |
|             return AVERROR(ENOMEM); /* memory allocation failed */
 | |
|         }
 | |
| 
 | |
|         memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */
 | |
|             sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */
 | |
|         memcpy(s->data_hrtf[1], data_hrtf_r,
 | |
|             sizeof(FFTComplex) * n_conv * n_fft);
 | |
| 
 | |
|         av_freep(&data_hrtf_l); /* free temporary HRTF memory */
 | |
|         av_freep(&data_hrtf_r);
 | |
| 
 | |
|         av_freep(&fft_in_l); /* free temporary FFT memory */
 | |
|         av_freep(&fft_in_r);
 | |
|     }
 | |
| 
 | |
|     memcpy(s->delay[0], &delay_l[0], sizeof(int) * s->n_conv);
 | |
|     memcpy(s->delay[1], &delay_r[0], sizeof(int) * s->n_conv);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int init(AVFilterContext *ctx)
 | |
| {
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
|     int ret;
 | |
| 
 | |
|     if (!s->filename) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Valid SOFA filename must be set.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* load SOFA file, */
 | |
|     /* initialize file IDs to 0 before attempting to load SOFA files,
 | |
|      * this assures that in case of error, only the memory of already
 | |
|      * loaded files is free'd */
 | |
|     s->sofa.ncid = 0;
 | |
|     ret = load_sofa(ctx, s->filename, &s->sample_rate);
 | |
|     if (ret) {
 | |
|         /* file loading error */
 | |
|         av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename);
 | |
|     } else { /* no file loading error, resampling not required */
 | |
|         av_log(ctx, AV_LOG_DEBUG, "File '%s' loaded.\n", s->filename);
 | |
|     }
 | |
| 
 | |
|     if (ret) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "No valid SOFA file could be loaded. Please specify valid SOFA file.\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     s->fdsp = avpriv_float_dsp_alloc(0);
 | |
|     if (!s->fdsp)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
|     int nb_input_channels = inlink->channels; /* no. input channels */
 | |
|     int n_max_ir = 0;
 | |
|     int n_current;
 | |
|     int n_max = 0;
 | |
|     int ret;
 | |
| 
 | |
|     if (s->type == FREQUENCY_DOMAIN) {
 | |
|         inlink->partial_buf_size =
 | |
|         inlink->min_samples =
 | |
|         inlink->max_samples = inlink->sample_rate;
 | |
|     }
 | |
| 
 | |
|     /* gain -3 dB per channel, -6 dB to get LFE on a similar level */
 | |
|     s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6) / 20 * M_LN10);
 | |
| 
 | |
|     s->n_conv = nb_input_channels;
 | |
| 
 | |
|     /* get size of ringbuffer (longest IR plus max. delay) */
 | |
|     /* then choose next power of 2 for performance optimization */
 | |
|     n_current = s->sofa.n_samples + max_delay(&s->sofa);
 | |
|     if (n_current > n_max) {
 | |
|         /* length of longest IR plus max. delay (in all SOFA files) */
 | |
|         n_max = n_current;
 | |
|         /* length of longest IR (without delay, in all SOFA files) */
 | |
|         n_max_ir = s->sofa.n_samples;
 | |
|     }
 | |
|     /* buffer length is longest IR plus max. delay -> next power of 2
 | |
|        (32 - count leading zeros gives required exponent)  */
 | |
|     s->buffer_length = 1 << (32 - ff_clz(n_max));
 | |
|     s->n_fft         = 1 << (32 - ff_clz(n_max + inlink->sample_rate));
 | |
| 
 | |
|     if (s->type == FREQUENCY_DOMAIN) {
 | |
|         av_fft_end(s->fft[0]);
 | |
|         av_fft_end(s->fft[1]);
 | |
|         s->fft[0] = av_fft_init(log2(s->n_fft), 0);
 | |
|         s->fft[1] = av_fft_init(log2(s->n_fft), 0);
 | |
|         av_fft_end(s->ifft[0]);
 | |
|         av_fft_end(s->ifft[1]);
 | |
|         s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
 | |
|         s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
 | |
| 
 | |
|         if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
 | |
|             av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Allocate memory for the impulse responses, delays and the ringbuffers */
 | |
|     /* size: (longest IR) * (number of channels to convolute) */
 | |
|     s->data_ir[0] = av_calloc(FFALIGN(n_max_ir, 16), sizeof(float) * s->n_conv);
 | |
|     s->data_ir[1] = av_calloc(FFALIGN(n_max_ir, 16), sizeof(float) * s->n_conv);
 | |
|     /* length:  number of channels to convolute */
 | |
|     s->delay[0] = av_malloc_array(s->n_conv, sizeof(float));
 | |
|     s->delay[1] = av_malloc_array(s->n_conv, sizeof(float));
 | |
|     /* length: (buffer length) * (number of input channels),
 | |
|      * OR: buffer length (if frequency domain processing)
 | |
|      * calloc zero-initializes the buffer */
 | |
| 
 | |
|     if (s->type == TIME_DOMAIN) {
 | |
|         s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
 | |
|         s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
 | |
|     } else {
 | |
|         s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
 | |
|         s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
 | |
|         s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
 | |
|         s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
 | |
|         if (!s->temp_fft[0] || !s->temp_fft[1])
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     /* length: number of channels to convolute */
 | |
|     s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim));
 | |
|     s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev));
 | |
| 
 | |
|     /* memory allocation failed: */
 | |
|     if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[1] ||
 | |
|         !s->delay[0] || !s->ringbuffer[0] || !s->ringbuffer[1] ||
 | |
|         !s->speaker_azim || !s->speaker_elev)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     compensate_volume(ctx);
 | |
| 
 | |
|     /* get speaker positions */
 | |
|     if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* load IRs to data_ir[0] and data_ir[1] for required directions */
 | |
|     if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n",
 | |
|         inlink->sample_rate, s->n_conv, nb_input_channels, s->buffer_length);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     SOFAlizerContext *s = ctx->priv;
 | |
| 
 | |
|     if (s->sofa.ncid) {
 | |
|         av_freep(&s->sofa.sp_a);
 | |
|         av_freep(&s->sofa.sp_e);
 | |
|         av_freep(&s->sofa.sp_r);
 | |
|         av_freep(&s->sofa.data_delay);
 | |
|         av_freep(&s->sofa.data_ir);
 | |
|     }
 | |
|     av_fft_end(s->ifft[0]);
 | |
|     av_fft_end(s->ifft[1]);
 | |
|     av_fft_end(s->fft[0]);
 | |
|     av_fft_end(s->fft[1]);
 | |
|     av_freep(&s->delay[0]);
 | |
|     av_freep(&s->delay[1]);
 | |
|     av_freep(&s->data_ir[0]);
 | |
|     av_freep(&s->data_ir[1]);
 | |
|     av_freep(&s->ringbuffer[0]);
 | |
|     av_freep(&s->ringbuffer[1]);
 | |
|     av_freep(&s->speaker_azim);
 | |
|     av_freep(&s->speaker_elev);
 | |
|     av_freep(&s->temp_src[0]);
 | |
|     av_freep(&s->temp_src[1]);
 | |
|     av_freep(&s->temp_fft[0]);
 | |
|     av_freep(&s->temp_fft[1]);
 | |
|     av_freep(&s->data_hrtf[0]);
 | |
|     av_freep(&s->data_hrtf[1]);
 | |
|     av_freep(&s->fdsp);
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(SOFAlizerContext, x)
 | |
| #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
 | |
| 
 | |
| static const AVOption sofalizer_options[] = {
 | |
|     { "sofa",      "sofa filename",  OFFSET(filename),  AV_OPT_TYPE_STRING, {.str=NULL},            .flags = FLAGS },
 | |
|     { "gain",      "set gain in dB", OFFSET(gain),      AV_OPT_TYPE_FLOAT,  {.dbl=0},     -20,  40, .flags = FLAGS },
 | |
|     { "rotation",  "set rotation"  , OFFSET(rotation),  AV_OPT_TYPE_FLOAT,  {.dbl=0},    -360, 360, .flags = FLAGS },
 | |
|     { "elevation", "set elevation",  OFFSET(elevation), AV_OPT_TYPE_FLOAT,  {.dbl=0},     -90,  90, .flags = FLAGS },
 | |
|     { "radius",    "set radius",     OFFSET(radius),    AV_OPT_TYPE_FLOAT,  {.dbl=1},       0,   3, .flags = FLAGS },
 | |
|     { "type",      "set processing", OFFSET(type),      AV_OPT_TYPE_INT,    {.i64=1},       0,   1, .flags = FLAGS, "type" },
 | |
|     { "time",      "time domain",      0,               AV_OPT_TYPE_CONST,  {.i64=0},       0,   0, .flags = FLAGS, "type" },
 | |
|     { "freq",      "frequency domain", 0,               AV_OPT_TYPE_CONST,  {.i64=1},       0,   0, .flags = FLAGS, "type" },
 | |
|     { "speakers",  "set speaker custom positions", OFFSET(speakers_pos), AV_OPT_TYPE_STRING,  {.str=0},    0, 0, .flags = FLAGS },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(sofalizer);
 | |
| 
 | |
| static const AVFilterPad inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_AUDIO,
 | |
|         .config_props = config_input,
 | |
|         .filter_frame = filter_frame,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVFilterPad outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_AUDIO,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFilter ff_af_sofalizer = {
 | |
|     .name          = "sofalizer",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("SOFAlizer (Spatially Oriented Format for Acoustics)."),
 | |
|     .priv_size     = sizeof(SOFAlizerContext),
 | |
|     .priv_class    = &sofalizer_class,
 | |
|     .init          = init,
 | |
|     .uninit        = uninit,
 | |
|     .query_formats = query_formats,
 | |
|     .inputs        = inputs,
 | |
|     .outputs       = outputs,
 | |
|     .flags         = AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 | 
