mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1336 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1336 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * WMA compatible decoder
 | |
|  * Copyright (c) 2002 The FFmpeg Project.
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file wmadec.c
 | |
|  * WMA compatible decoder.
 | |
|  * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
 | |
|  * WMA v1 is identified by audio format 0x160 in Microsoft media files
 | |
|  * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
 | |
|  *
 | |
|  * To use this decoder, a calling application must supply the extra data
 | |
|  * bytes provided with the WMA data. These are the extra, codec-specific
 | |
|  * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
 | |
|  * to the decoder using the extradata[_size] fields in AVCodecContext. There
 | |
|  * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "bitstream.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| /* size of blocks */
 | |
| #define BLOCK_MIN_BITS 7
 | |
| #define BLOCK_MAX_BITS 11
 | |
| #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
 | |
| 
 | |
| #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
 | |
| 
 | |
| /* XXX: find exact max size */
 | |
| #define HIGH_BAND_MAX_SIZE 16
 | |
| 
 | |
| #define NB_LSP_COEFS 10
 | |
| 
 | |
| /* XXX: is it a suitable value ? */
 | |
| #define MAX_CODED_SUPERFRAME_SIZE 16384
 | |
| 
 | |
| #define MAX_CHANNELS 2
 | |
| 
 | |
| #define NOISE_TAB_SIZE 8192
 | |
| 
 | |
| #define LSP_POW_BITS 7
 | |
| 
 | |
| #define VLCBITS 9
 | |
| #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
 | |
| 
 | |
| #define EXPVLCBITS 8
 | |
| #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
 | |
| 
 | |
| #define HGAINVLCBITS 9
 | |
| #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
 | |
| 
 | |
| typedef struct WMADecodeContext {
 | |
|     GetBitContext gb;
 | |
|     int sample_rate;
 | |
|     int nb_channels;
 | |
|     int bit_rate;
 | |
|     int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
 | |
|     int block_align;
 | |
|     int use_bit_reservoir;
 | |
|     int use_variable_block_len;
 | |
|     int use_exp_vlc;  /* exponent coding: 0 = lsp, 1 = vlc + delta */
 | |
|     int use_noise_coding; /* true if perceptual noise is added */
 | |
|     int byte_offset_bits;
 | |
|     VLC exp_vlc;
 | |
|     int exponent_sizes[BLOCK_NB_SIZES];
 | |
|     uint16_t exponent_bands[BLOCK_NB_SIZES][25];
 | |
|     int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
 | |
|     int coefs_start;               /* first coded coef */
 | |
|     int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
 | |
|     int exponent_high_sizes[BLOCK_NB_SIZES];
 | |
|     int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
 | |
|     VLC hgain_vlc;
 | |
| 
 | |
|     /* coded values in high bands */
 | |
|     int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
 | |
|     int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
 | |
| 
 | |
|     /* there are two possible tables for spectral coefficients */
 | |
|     VLC coef_vlc[2];
 | |
|     uint16_t *run_table[2];
 | |
|     uint16_t *level_table[2];
 | |
|     /* frame info */
 | |
|     int frame_len;       /* frame length in samples */
 | |
|     int frame_len_bits;  /* frame_len = 1 << frame_len_bits */
 | |
|     int nb_block_sizes;  /* number of block sizes */
 | |
|     /* block info */
 | |
|     int reset_block_lengths;
 | |
|     int block_len_bits; /* log2 of current block length */
 | |
|     int next_block_len_bits; /* log2 of next block length */
 | |
|     int prev_block_len_bits; /* log2 of prev block length */
 | |
|     int block_len; /* block length in samples */
 | |
|     int block_num; /* block number in current frame */
 | |
|     int block_pos; /* current position in frame */
 | |
|     uint8_t ms_stereo; /* true if mid/side stereo mode */
 | |
|     uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
 | |
|     DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]);
 | |
|     float max_exponent[MAX_CHANNELS];
 | |
|     int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
 | |
|     DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]);
 | |
|     MDCTContext mdct_ctx[BLOCK_NB_SIZES];
 | |
|     float *windows[BLOCK_NB_SIZES];
 | |
|     DECLARE_ALIGNED_16(FFTSample, mdct_tmp[BLOCK_MAX_SIZE]); /* temporary storage for imdct */
 | |
|     /* output buffer for one frame and the last for IMDCT windowing */
 | |
|     DECLARE_ALIGNED_16(float, frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2]);
 | |
|     /* last frame info */
 | |
|     uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
 | |
|     int last_bitoffset;
 | |
|     int last_superframe_len;
 | |
|     float noise_table[NOISE_TAB_SIZE];
 | |
|     int noise_index;
 | |
|     float noise_mult; /* XXX: suppress that and integrate it in the noise array */
 | |
|     /* lsp_to_curve tables */
 | |
|     float lsp_cos_table[BLOCK_MAX_SIZE];
 | |
|     float lsp_pow_e_table[256];
 | |
|     float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
 | |
|     float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
 | |
|     DSPContext dsp;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     int frame_count;
 | |
| #endif
 | |
| } WMADecodeContext;
 | |
| 
 | |
| typedef struct CoefVLCTable {
 | |
|     int n; /* total number of codes */
 | |
|     const uint32_t *huffcodes; /* VLC bit values */
 | |
|     const uint8_t *huffbits;   /* VLC bit size */
 | |
|     const uint16_t *levels; /* table to build run/level tables */
 | |
| } CoefVLCTable;
 | |
| 
 | |
| static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
 | |
| 
 | |
| #include "wmadata.h"
 | |
| 
 | |
| #ifdef TRACE
 | |
| static void dump_shorts(const char *name, const short *tab, int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     tprintf("%s[%d]:\n", name, n);
 | |
|     for(i=0;i<n;i++) {
 | |
|         if ((i & 7) == 0)
 | |
|             tprintf("%4d: ", i);
 | |
|         tprintf(" %5d.0", tab[i]);
 | |
|         if ((i & 7) == 7)
 | |
|             tprintf("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dump_floats(const char *name, int prec, const float *tab, int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     tprintf("%s[%d]:\n", name, n);
 | |
|     for(i=0;i<n;i++) {
 | |
|         if ((i & 7) == 0)
 | |
|             tprintf("%4d: ", i);
 | |
|         tprintf(" %8.*f", prec, tab[i]);
 | |
|         if ((i & 7) == 7)
 | |
|             tprintf("\n");
 | |
|     }
 | |
|     if ((i & 7) != 0)
 | |
|         tprintf("\n");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* XXX: use same run/length optimization as mpeg decoders */
 | |
| static void init_coef_vlc(VLC *vlc,
 | |
|                           uint16_t **prun_table, uint16_t **plevel_table,
 | |
|                           const CoefVLCTable *vlc_table)
 | |
| {
 | |
|     int n = vlc_table->n;
 | |
|     const uint8_t *table_bits = vlc_table->huffbits;
 | |
|     const uint32_t *table_codes = vlc_table->huffcodes;
 | |
|     const uint16_t *levels_table = vlc_table->levels;
 | |
|     uint16_t *run_table, *level_table;
 | |
|     const uint16_t *p;
 | |
|     int i, l, j, level;
 | |
| 
 | |
|     init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
 | |
| 
 | |
|     run_table = av_malloc(n * sizeof(uint16_t));
 | |
|     level_table = av_malloc(n * sizeof(uint16_t));
 | |
|     p = levels_table;
 | |
|     i = 2;
 | |
|     level = 1;
 | |
|     while (i < n) {
 | |
|         l = *p++;
 | |
|         for(j=0;j<l;j++) {
 | |
|             run_table[i] = j;
 | |
|             level_table[i] = level;
 | |
|             i++;
 | |
|         }
 | |
|         level++;
 | |
|     }
 | |
|     *prun_table = run_table;
 | |
|     *plevel_table = level_table;
 | |
| }
 | |
| 
 | |
| static int wma_decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     WMADecodeContext *s = avctx->priv_data;
 | |
|     int i, flags1, flags2;
 | |
|     float *window;
 | |
|     uint8_t *extradata;
 | |
|     float bps1, high_freq;
 | |
|     volatile float bps;
 | |
|     int sample_rate1;
 | |
|     int coef_vlc_table;
 | |
| 
 | |
|     s->sample_rate = avctx->sample_rate;
 | |
|     s->nb_channels = avctx->channels;
 | |
|     s->bit_rate = avctx->bit_rate;
 | |
|     s->block_align = avctx->block_align;
 | |
| 
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
| 
 | |
|     if (avctx->codec->id == CODEC_ID_WMAV1) {
 | |
|         s->version = 1;
 | |
|     } else {
 | |
|         s->version = 2;
 | |
|     }
 | |
| 
 | |
|     /* extract flag infos */
 | |
|     flags1 = 0;
 | |
|     flags2 = 0;
 | |
|     extradata = avctx->extradata;
 | |
|     if (s->version == 1 && avctx->extradata_size >= 4) {
 | |
|         flags1 = extradata[0] | (extradata[1] << 8);
 | |
|         flags2 = extradata[2] | (extradata[3] << 8);
 | |
|     } else if (s->version == 2 && avctx->extradata_size >= 6) {
 | |
|         flags1 = extradata[0] | (extradata[1] << 8) |
 | |
|             (extradata[2] << 16) | (extradata[3] << 24);
 | |
|         flags2 = extradata[4] | (extradata[5] << 8);
 | |
|     }
 | |
|     s->use_exp_vlc = flags2 & 0x0001;
 | |
|     s->use_bit_reservoir = flags2 & 0x0002;
 | |
|     s->use_variable_block_len = flags2 & 0x0004;
 | |
| 
 | |
|     /* compute MDCT block size */
 | |
|     if (s->sample_rate <= 16000) {
 | |
|         s->frame_len_bits = 9;
 | |
|     } else if (s->sample_rate <= 22050 ||
 | |
|                (s->sample_rate <= 32000 && s->version == 1)) {
 | |
|         s->frame_len_bits = 10;
 | |
|     } else {
 | |
|         s->frame_len_bits = 11;
 | |
|     }
 | |
|     s->frame_len = 1 << s->frame_len_bits;
 | |
|     if (s->use_variable_block_len) {
 | |
|         int nb_max, nb;
 | |
|         nb = ((flags2 >> 3) & 3) + 1;
 | |
|         if ((s->bit_rate / s->nb_channels) >= 32000)
 | |
|             nb += 2;
 | |
|         nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
 | |
|         if (nb > nb_max)
 | |
|             nb = nb_max;
 | |
|         s->nb_block_sizes = nb + 1;
 | |
|     } else {
 | |
|         s->nb_block_sizes = 1;
 | |
|     }
 | |
| 
 | |
|     /* init rate dependant parameters */
 | |
|     s->use_noise_coding = 1;
 | |
|     high_freq = s->sample_rate * 0.5;
 | |
| 
 | |
|     /* if version 2, then the rates are normalized */
 | |
|     sample_rate1 = s->sample_rate;
 | |
|     if (s->version == 2) {
 | |
|         if (sample_rate1 >= 44100)
 | |
|             sample_rate1 = 44100;
 | |
|         else if (sample_rate1 >= 22050)
 | |
|             sample_rate1 = 22050;
 | |
|         else if (sample_rate1 >= 16000)
 | |
|             sample_rate1 = 16000;
 | |
|         else if (sample_rate1 >= 11025)
 | |
|             sample_rate1 = 11025;
 | |
|         else if (sample_rate1 >= 8000)
 | |
|             sample_rate1 = 8000;
 | |
|     }
 | |
| 
 | |
|     bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
 | |
|     s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
 | |
| 
 | |
|     /* compute high frequency value and choose if noise coding should
 | |
|        be activated */
 | |
|     bps1 = bps;
 | |
|     if (s->nb_channels == 2)
 | |
|         bps1 = bps * 1.6;
 | |
|     if (sample_rate1 == 44100) {
 | |
|         if (bps1 >= 0.61)
 | |
|             s->use_noise_coding = 0;
 | |
|         else
 | |
|             high_freq = high_freq * 0.4;
 | |
|     } else if (sample_rate1 == 22050) {
 | |
|         if (bps1 >= 1.16)
 | |
|             s->use_noise_coding = 0;
 | |
|         else if (bps1 >= 0.72)
 | |
|             high_freq = high_freq * 0.7;
 | |
|         else
 | |
|             high_freq = high_freq * 0.6;
 | |
|     } else if (sample_rate1 == 16000) {
 | |
|         if (bps > 0.5)
 | |
|             high_freq = high_freq * 0.5;
 | |
|         else
 | |
|             high_freq = high_freq * 0.3;
 | |
|     } else if (sample_rate1 == 11025) {
 | |
|         high_freq = high_freq * 0.7;
 | |
|     } else if (sample_rate1 == 8000) {
 | |
|         if (bps <= 0.625) {
 | |
|             high_freq = high_freq * 0.5;
 | |
|         } else if (bps > 0.75) {
 | |
|             s->use_noise_coding = 0;
 | |
|         } else {
 | |
|             high_freq = high_freq * 0.65;
 | |
|         }
 | |
|     } else {
 | |
|         if (bps >= 0.8) {
 | |
|             high_freq = high_freq * 0.75;
 | |
|         } else if (bps >= 0.6) {
 | |
|             high_freq = high_freq * 0.6;
 | |
|         } else {
 | |
|             high_freq = high_freq * 0.5;
 | |
|         }
 | |
|     }
 | |
|     dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
 | |
|     dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
 | |
|            s->version, s->nb_channels, s->sample_rate, s->bit_rate,
 | |
|            s->block_align);
 | |
|     dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
 | |
|            bps, bps1, high_freq, s->byte_offset_bits);
 | |
|     dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
 | |
|            s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
 | |
| 
 | |
|     /* compute the scale factor band sizes for each MDCT block size */
 | |
|     {
 | |
|         int a, b, pos, lpos, k, block_len, i, j, n;
 | |
|         const uint8_t *table;
 | |
| 
 | |
|         if (s->version == 1) {
 | |
|             s->coefs_start = 3;
 | |
|         } else {
 | |
|             s->coefs_start = 0;
 | |
|         }
 | |
|         for(k = 0; k < s->nb_block_sizes; k++) {
 | |
|             block_len = s->frame_len >> k;
 | |
| 
 | |
|             if (s->version == 1) {
 | |
|                 lpos = 0;
 | |
|                 for(i=0;i<25;i++) {
 | |
|                     a = wma_critical_freqs[i];
 | |
|                     b = s->sample_rate;
 | |
|                     pos = ((block_len * 2 * a)  + (b >> 1)) / b;
 | |
|                     if (pos > block_len)
 | |
|                         pos = block_len;
 | |
|                     s->exponent_bands[0][i] = pos - lpos;
 | |
|                     if (pos >= block_len) {
 | |
|                         i++;
 | |
|                         break;
 | |
|                     }
 | |
|                     lpos = pos;
 | |
|                 }
 | |
|                 s->exponent_sizes[0] = i;
 | |
|             } else {
 | |
|                 /* hardcoded tables */
 | |
|                 table = NULL;
 | |
|                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
 | |
|                 if (a < 3) {
 | |
|                     if (s->sample_rate >= 44100)
 | |
|                         table = exponent_band_44100[a];
 | |
|                     else if (s->sample_rate >= 32000)
 | |
|                         table = exponent_band_32000[a];
 | |
|                     else if (s->sample_rate >= 22050)
 | |
|                         table = exponent_band_22050[a];
 | |
|                 }
 | |
|                 if (table) {
 | |
|                     n = *table++;
 | |
|                     for(i=0;i<n;i++)
 | |
|                         s->exponent_bands[k][i] = table[i];
 | |
|                     s->exponent_sizes[k] = n;
 | |
|                 } else {
 | |
|                     j = 0;
 | |
|                     lpos = 0;
 | |
|                     for(i=0;i<25;i++) {
 | |
|                         a = wma_critical_freqs[i];
 | |
|                         b = s->sample_rate;
 | |
|                         pos = ((block_len * 2 * a)  + (b << 1)) / (4 * b);
 | |
|                         pos <<= 2;
 | |
|                         if (pos > block_len)
 | |
|                             pos = block_len;
 | |
|                         if (pos > lpos)
 | |
|                             s->exponent_bands[k][j++] = pos - lpos;
 | |
|                         if (pos >= block_len)
 | |
|                             break;
 | |
|                         lpos = pos;
 | |
|                     }
 | |
|                     s->exponent_sizes[k] = j;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* max number of coefs */
 | |
|             s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
 | |
|             /* high freq computation */
 | |
|             s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
 | |
|                                           s->sample_rate + 0.5);
 | |
|             n = s->exponent_sizes[k];
 | |
|             j = 0;
 | |
|             pos = 0;
 | |
|             for(i=0;i<n;i++) {
 | |
|                 int start, end;
 | |
|                 start = pos;
 | |
|                 pos += s->exponent_bands[k][i];
 | |
|                 end = pos;
 | |
|                 if (start < s->high_band_start[k])
 | |
|                     start = s->high_band_start[k];
 | |
|                 if (end > s->coefs_end[k])
 | |
|                     end = s->coefs_end[k];
 | |
|                 if (end > start)
 | |
|                     s->exponent_high_bands[k][j++] = end - start;
 | |
|             }
 | |
|             s->exponent_high_sizes[k] = j;
 | |
| #if 0
 | |
|             tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
 | |
|                   s->frame_len >> k,
 | |
|                   s->coefs_end[k],
 | |
|                   s->high_band_start[k],
 | |
|                   s->exponent_high_sizes[k]);
 | |
|             for(j=0;j<s->exponent_high_sizes[k];j++)
 | |
|                 tprintf(" %d", s->exponent_high_bands[k][j]);
 | |
|             tprintf("\n");
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef TRACE
 | |
|     {
 | |
|         int i, j;
 | |
|         for(i = 0; i < s->nb_block_sizes; i++) {
 | |
|             tprintf("%5d: n=%2d:",
 | |
|                    s->frame_len >> i,
 | |
|                    s->exponent_sizes[i]);
 | |
|             for(j=0;j<s->exponent_sizes[i];j++)
 | |
|                 tprintf(" %d", s->exponent_bands[i][j]);
 | |
|             tprintf("\n");
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* init MDCT */
 | |
|     for(i = 0; i < s->nb_block_sizes; i++)
 | |
|         ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
 | |
| 
 | |
|     /* init MDCT windows : simple sinus window */
 | |
|     for(i = 0; i < s->nb_block_sizes; i++) {
 | |
|         int n, j;
 | |
|         float alpha;
 | |
|         n = 1 << (s->frame_len_bits - i);
 | |
|         window = av_malloc(sizeof(float) * n);
 | |
|         alpha = M_PI / (2.0 * n);
 | |
|         for(j=0;j<n;j++) {
 | |
|             window[n - j - 1] = sin((j + 0.5) * alpha);
 | |
|         }
 | |
|         s->windows[i] = window;
 | |
|     }
 | |
| 
 | |
|     s->reset_block_lengths = 1;
 | |
| 
 | |
|     if (s->use_noise_coding) {
 | |
| 
 | |
|         /* init the noise generator */
 | |
|         if (s->use_exp_vlc)
 | |
|             s->noise_mult = 0.02;
 | |
|         else
 | |
|             s->noise_mult = 0.04;
 | |
| 
 | |
| #ifdef TRACE
 | |
|         for(i=0;i<NOISE_TAB_SIZE;i++)
 | |
|             s->noise_table[i] = 1.0 * s->noise_mult;
 | |
| #else
 | |
|         {
 | |
|             unsigned int seed;
 | |
|             float norm;
 | |
|             seed = 1;
 | |
|             norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
 | |
|             for(i=0;i<NOISE_TAB_SIZE;i++) {
 | |
|                 seed = seed * 314159 + 1;
 | |
|                 s->noise_table[i] = (float)((int)seed) * norm;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
 | |
|                  hgain_huffbits, 1, 1,
 | |
|                  hgain_huffcodes, 2, 2, 0);
 | |
|     }
 | |
| 
 | |
|     if (s->use_exp_vlc) {
 | |
|         init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
 | |
|                  scale_huffbits, 1, 1,
 | |
|                  scale_huffcodes, 4, 4, 0);
 | |
|     } else {
 | |
|         wma_lsp_to_curve_init(s, s->frame_len);
 | |
|     }
 | |
| 
 | |
|     /* choose the VLC tables for the coefficients */
 | |
|     coef_vlc_table = 2;
 | |
|     if (s->sample_rate >= 32000) {
 | |
|         if (bps1 < 0.72)
 | |
|             coef_vlc_table = 0;
 | |
|         else if (bps1 < 1.16)
 | |
|             coef_vlc_table = 1;
 | |
|     }
 | |
| 
 | |
|     init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
 | |
|                   &coef_vlcs[coef_vlc_table * 2]);
 | |
|     init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
 | |
|                   &coef_vlcs[coef_vlc_table * 2 + 1]);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* interpolate values for a bigger or smaller block. The block must
 | |
|    have multiple sizes */
 | |
| static void interpolate_array(float *scale, int old_size, int new_size)
 | |
| {
 | |
|     int i, j, jincr, k;
 | |
|     float v;
 | |
| 
 | |
|     if (new_size > old_size) {
 | |
|         jincr = new_size / old_size;
 | |
|         j = new_size;
 | |
|         for(i = old_size - 1; i >=0; i--) {
 | |
|             v = scale[i];
 | |
|             k = jincr;
 | |
|             do {
 | |
|                 scale[--j] = v;
 | |
|             } while (--k);
 | |
|         }
 | |
|     } else if (new_size < old_size) {
 | |
|         j = 0;
 | |
|         jincr = old_size / new_size;
 | |
|         for(i = 0; i < new_size; i++) {
 | |
|             scale[i] = scale[j];
 | |
|             j += jincr;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* compute x^-0.25 with an exponent and mantissa table. We use linear
 | |
|    interpolation to reduce the mantissa table size at a small speed
 | |
|    expense (linear interpolation approximately doubles the number of
 | |
|    bits of precision). */
 | |
| static inline float pow_m1_4(WMADecodeContext *s, float x)
 | |
| {
 | |
|     union {
 | |
|         float f;
 | |
|         unsigned int v;
 | |
|     } u, t;
 | |
|     unsigned int e, m;
 | |
|     float a, b;
 | |
| 
 | |
|     u.f = x;
 | |
|     e = u.v >> 23;
 | |
|     m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
 | |
|     /* build interpolation scale: 1 <= t < 2. */
 | |
|     t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
 | |
|     a = s->lsp_pow_m_table1[m];
 | |
|     b = s->lsp_pow_m_table2[m];
 | |
|     return s->lsp_pow_e_table[e] * (a + b * t.f);
 | |
| }
 | |
| 
 | |
| static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
 | |
| {
 | |
|     float wdel, a, b;
 | |
|     int i, e, m;
 | |
| 
 | |
|     wdel = M_PI / frame_len;
 | |
|     for(i=0;i<frame_len;i++)
 | |
|         s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
 | |
| 
 | |
|     /* tables for x^-0.25 computation */
 | |
|     for(i=0;i<256;i++) {
 | |
|         e = i - 126;
 | |
|         s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
 | |
|     }
 | |
| 
 | |
|     /* NOTE: these two tables are needed to avoid two operations in
 | |
|        pow_m1_4 */
 | |
|     b = 1.0;
 | |
|     for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
 | |
|         m = (1 << LSP_POW_BITS) + i;
 | |
|         a = (float)m * (0.5 / (1 << LSP_POW_BITS));
 | |
|         a = pow(a, -0.25);
 | |
|         s->lsp_pow_m_table1[i] = 2 * a - b;
 | |
|         s->lsp_pow_m_table2[i] = b - a;
 | |
|         b = a;
 | |
|     }
 | |
| #if 0
 | |
|     for(i=1;i<20;i++) {
 | |
|         float v, r1, r2;
 | |
|         v = 5.0 / i;
 | |
|         r1 = pow_m1_4(s, v);
 | |
|         r2 = pow(v,-0.25);
 | |
|         printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* NOTE: We use the same code as Vorbis here */
 | |
| /* XXX: optimize it further with SSE/3Dnow */
 | |
| static void wma_lsp_to_curve(WMADecodeContext *s,
 | |
|                              float *out, float *val_max_ptr,
 | |
|                              int n, float *lsp)
 | |
| {
 | |
|     int i, j;
 | |
|     float p, q, w, v, val_max;
 | |
| 
 | |
|     val_max = 0;
 | |
|     for(i=0;i<n;i++) {
 | |
|         p = 0.5f;
 | |
|         q = 0.5f;
 | |
|         w = s->lsp_cos_table[i];
 | |
|         for(j=1;j<NB_LSP_COEFS;j+=2){
 | |
|             q *= w - lsp[j - 1];
 | |
|             p *= w - lsp[j];
 | |
|         }
 | |
|         p *= p * (2.0f - w);
 | |
|         q *= q * (2.0f + w);
 | |
|         v = p + q;
 | |
|         v = pow_m1_4(s, v);
 | |
|         if (v > val_max)
 | |
|             val_max = v;
 | |
|         out[i] = v;
 | |
|     }
 | |
|     *val_max_ptr = val_max;
 | |
| }
 | |
| 
 | |
| /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
 | |
| static void decode_exp_lsp(WMADecodeContext *s, int ch)
 | |
| {
 | |
|     float lsp_coefs[NB_LSP_COEFS];
 | |
|     int val, i;
 | |
| 
 | |
|     for(i = 0; i < NB_LSP_COEFS; i++) {
 | |
|         if (i == 0 || i >= 8)
 | |
|             val = get_bits(&s->gb, 3);
 | |
|         else
 | |
|             val = get_bits(&s->gb, 4);
 | |
|         lsp_coefs[i] = lsp_codebook[i][val];
 | |
|     }
 | |
| 
 | |
|     wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
 | |
|                      s->block_len, lsp_coefs);
 | |
| }
 | |
| 
 | |
| /* decode exponents coded with VLC codes */
 | |
| static int decode_exp_vlc(WMADecodeContext *s, int ch)
 | |
| {
 | |
|     int last_exp, n, code;
 | |
|     const uint16_t *ptr, *band_ptr;
 | |
|     float v, *q, max_scale, *q_end;
 | |
| 
 | |
|     band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
 | |
|     ptr = band_ptr;
 | |
|     q = s->exponents[ch];
 | |
|     q_end = q + s->block_len;
 | |
|     max_scale = 0;
 | |
|     if (s->version == 1) {
 | |
|         last_exp = get_bits(&s->gb, 5) + 10;
 | |
|         /* XXX: use a table */
 | |
|         v = pow(10, last_exp * (1.0 / 16.0));
 | |
|         max_scale = v;
 | |
|         n = *ptr++;
 | |
|         do {
 | |
|             *q++ = v;
 | |
|         } while (--n);
 | |
|     }
 | |
|     last_exp = 36;
 | |
|     while (q < q_end) {
 | |
|         code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
 | |
|         if (code < 0)
 | |
|             return -1;
 | |
|         /* NOTE: this offset is the same as MPEG4 AAC ! */
 | |
|         last_exp += code - 60;
 | |
|         /* XXX: use a table */
 | |
|         v = pow(10, last_exp * (1.0 / 16.0));
 | |
|         if (v > max_scale)
 | |
|             max_scale = v;
 | |
|         n = *ptr++;
 | |
|         do {
 | |
|             *q++ = v;
 | |
|         } while (--n);
 | |
|     }
 | |
|     s->max_exponent[ch] = max_scale;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* return 0 if OK. return 1 if last block of frame. return -1 if
 | |
|    unrecorrable error. */
 | |
| static int wma_decode_block(WMADecodeContext *s)
 | |
| {
 | |
|     int n, v, a, ch, code, bsize;
 | |
|     int coef_nb_bits, total_gain, parse_exponents;
 | |
|     DECLARE_ALIGNED_16(float, window[BLOCK_MAX_SIZE * 2]);
 | |
|     int nb_coefs[MAX_CHANNELS];
 | |
|     float mdct_norm;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
 | |
| #endif
 | |
| 
 | |
|     /* compute current block length */
 | |
|     if (s->use_variable_block_len) {
 | |
|         n = av_log2(s->nb_block_sizes - 1) + 1;
 | |
| 
 | |
|         if (s->reset_block_lengths) {
 | |
|             s->reset_block_lengths = 0;
 | |
|             v = get_bits(&s->gb, n);
 | |
|             if (v >= s->nb_block_sizes)
 | |
|                 return -1;
 | |
|             s->prev_block_len_bits = s->frame_len_bits - v;
 | |
|             v = get_bits(&s->gb, n);
 | |
|             if (v >= s->nb_block_sizes)
 | |
|                 return -1;
 | |
|             s->block_len_bits = s->frame_len_bits - v;
 | |
|         } else {
 | |
|             /* update block lengths */
 | |
|             s->prev_block_len_bits = s->block_len_bits;
 | |
|             s->block_len_bits = s->next_block_len_bits;
 | |
|         }
 | |
|         v = get_bits(&s->gb, n);
 | |
|         if (v >= s->nb_block_sizes)
 | |
|             return -1;
 | |
|         s->next_block_len_bits = s->frame_len_bits - v;
 | |
|     } else {
 | |
|         /* fixed block len */
 | |
|         s->next_block_len_bits = s->frame_len_bits;
 | |
|         s->prev_block_len_bits = s->frame_len_bits;
 | |
|         s->block_len_bits = s->frame_len_bits;
 | |
|     }
 | |
| 
 | |
|     /* now check if the block length is coherent with the frame length */
 | |
|     s->block_len = 1 << s->block_len_bits;
 | |
|     if ((s->block_pos + s->block_len) > s->frame_len)
 | |
|         return -1;
 | |
| 
 | |
|     if (s->nb_channels == 2) {
 | |
|         s->ms_stereo = get_bits(&s->gb, 1);
 | |
|     }
 | |
|     v = 0;
 | |
|     for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|         a = get_bits(&s->gb, 1);
 | |
|         s->channel_coded[ch] = a;
 | |
|         v |= a;
 | |
|     }
 | |
|     /* if no channel coded, no need to go further */
 | |
|     /* XXX: fix potential framing problems */
 | |
|     if (!v)
 | |
|         goto next;
 | |
| 
 | |
|     bsize = s->frame_len_bits - s->block_len_bits;
 | |
| 
 | |
|     /* read total gain and extract corresponding number of bits for
 | |
|        coef escape coding */
 | |
|     total_gain = 1;
 | |
|     for(;;) {
 | |
|         a = get_bits(&s->gb, 7);
 | |
|         total_gain += a;
 | |
|         if (a != 127)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     if (total_gain < 15)
 | |
|         coef_nb_bits = 13;
 | |
|     else if (total_gain < 32)
 | |
|         coef_nb_bits = 12;
 | |
|     else if (total_gain < 40)
 | |
|         coef_nb_bits = 11;
 | |
|     else if (total_gain < 45)
 | |
|         coef_nb_bits = 10;
 | |
|     else
 | |
|         coef_nb_bits = 9;
 | |
| 
 | |
|     /* compute number of coefficients */
 | |
|     n = s->coefs_end[bsize] - s->coefs_start;
 | |
|     for(ch = 0; ch < s->nb_channels; ch++)
 | |
|         nb_coefs[ch] = n;
 | |
| 
 | |
|     /* complex coding */
 | |
|     if (s->use_noise_coding) {
 | |
| 
 | |
|         for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (s->channel_coded[ch]) {
 | |
|                 int i, n, a;
 | |
|                 n = s->exponent_high_sizes[bsize];
 | |
|                 for(i=0;i<n;i++) {
 | |
|                     a = get_bits(&s->gb, 1);
 | |
|                     s->high_band_coded[ch][i] = a;
 | |
|                     /* if noise coding, the coefficients are not transmitted */
 | |
|                     if (a)
 | |
|                         nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (s->channel_coded[ch]) {
 | |
|                 int i, n, val, code;
 | |
| 
 | |
|                 n = s->exponent_high_sizes[bsize];
 | |
|                 val = (int)0x80000000;
 | |
|                 for(i=0;i<n;i++) {
 | |
|                     if (s->high_band_coded[ch][i]) {
 | |
|                         if (val == (int)0x80000000) {
 | |
|                             val = get_bits(&s->gb, 7) - 19;
 | |
|                         } else {
 | |
|                             code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
 | |
|                             if (code < 0)
 | |
|                                 return -1;
 | |
|                             val += code - 18;
 | |
|                         }
 | |
|                         s->high_band_values[ch][i] = val;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* exposant can be interpolated in short blocks. */
 | |
|     parse_exponents = 1;
 | |
|     if (s->block_len_bits != s->frame_len_bits) {
 | |
|         parse_exponents = get_bits(&s->gb, 1);
 | |
|     }
 | |
| 
 | |
|     if (parse_exponents) {
 | |
|         for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (s->channel_coded[ch]) {
 | |
|                 if (s->use_exp_vlc) {
 | |
|                     if (decode_exp_vlc(s, ch) < 0)
 | |
|                         return -1;
 | |
|                 } else {
 | |
|                     decode_exp_lsp(s, ch);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|             if (s->channel_coded[ch]) {
 | |
|                 interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
 | |
|                                   s->block_len);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* parse spectral coefficients : just RLE encoding */
 | |
|     for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|         if (s->channel_coded[ch]) {
 | |
|             VLC *coef_vlc;
 | |
|             int level, run, sign, tindex;
 | |
|             int16_t *ptr, *eptr;
 | |
|             const uint16_t *level_table, *run_table;
 | |
| 
 | |
|             /* special VLC tables are used for ms stereo because
 | |
|                there is potentially less energy there */
 | |
|             tindex = (ch == 1 && s->ms_stereo);
 | |
|             coef_vlc = &s->coef_vlc[tindex];
 | |
|             run_table = s->run_table[tindex];
 | |
|             level_table = s->level_table[tindex];
 | |
|             /* XXX: optimize */
 | |
|             ptr = &s->coefs1[ch][0];
 | |
|             eptr = ptr + nb_coefs[ch];
 | |
|             memset(ptr, 0, s->block_len * sizeof(int16_t));
 | |
|             for(;;) {
 | |
|                 code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
 | |
|                 if (code < 0)
 | |
|                     return -1;
 | |
|                 if (code == 1) {
 | |
|                     /* EOB */
 | |
|                     break;
 | |
|                 } else if (code == 0) {
 | |
|                     /* escape */
 | |
|                     level = get_bits(&s->gb, coef_nb_bits);
 | |
|                     /* NOTE: this is rather suboptimal. reading
 | |
|                        block_len_bits would be better */
 | |
|                     run = get_bits(&s->gb, s->frame_len_bits);
 | |
|                 } else {
 | |
|                     /* normal code */
 | |
|                     run = run_table[code];
 | |
|                     level = level_table[code];
 | |
|                 }
 | |
|                 sign = get_bits(&s->gb, 1);
 | |
|                 if (!sign)
 | |
|                     level = -level;
 | |
|                 ptr += run;
 | |
|                 if (ptr >= eptr)
 | |
|                 {
 | |
|                     av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
 | |
|                     break;
 | |
|                 }
 | |
|                 *ptr++ = level;
 | |
|                 /* NOTE: EOB can be omitted */
 | |
|                 if (ptr >= eptr)
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
|         if (s->version == 1 && s->nb_channels >= 2) {
 | |
|             align_get_bits(&s->gb);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* normalize */
 | |
|     {
 | |
|         int n4 = s->block_len / 2;
 | |
|         mdct_norm = 1.0 / (float)n4;
 | |
|         if (s->version == 1) {
 | |
|             mdct_norm *= sqrt(n4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* finally compute the MDCT coefficients */
 | |
|     for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|         if (s->channel_coded[ch]) {
 | |
|             int16_t *coefs1;
 | |
|             float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
 | |
|             int i, j, n, n1, last_high_band;
 | |
|             float exp_power[HIGH_BAND_MAX_SIZE];
 | |
| 
 | |
|             coefs1 = s->coefs1[ch];
 | |
|             exponents = s->exponents[ch];
 | |
|             mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
 | |
|             mult *= mdct_norm;
 | |
|             coefs = s->coefs[ch];
 | |
|             if (s->use_noise_coding) {
 | |
|                 mult1 = mult;
 | |
|                 /* very low freqs : noise */
 | |
|                 for(i = 0;i < s->coefs_start; i++) {
 | |
|                     *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
 | |
|                     s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
 | |
|                 }
 | |
| 
 | |
|                 n1 = s->exponent_high_sizes[bsize];
 | |
| 
 | |
|                 /* compute power of high bands */
 | |
|                 exp_ptr = exponents +
 | |
|                     s->high_band_start[bsize] -
 | |
|                     s->coefs_start;
 | |
|                 last_high_band = 0; /* avoid warning */
 | |
|                 for(j=0;j<n1;j++) {
 | |
|                     n = s->exponent_high_bands[s->frame_len_bits -
 | |
|                                               s->block_len_bits][j];
 | |
|                     if (s->high_band_coded[ch][j]) {
 | |
|                         float e2, v;
 | |
|                         e2 = 0;
 | |
|                         for(i = 0;i < n; i++) {
 | |
|                             v = exp_ptr[i];
 | |
|                             e2 += v * v;
 | |
|                         }
 | |
|                         exp_power[j] = e2 / n;
 | |
|                         last_high_band = j;
 | |
|                         tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
 | |
|                     }
 | |
|                     exp_ptr += n;
 | |
|                 }
 | |
| 
 | |
|                 /* main freqs and high freqs */
 | |
|                 for(j=-1;j<n1;j++) {
 | |
|                     if (j < 0) {
 | |
|                         n = s->high_band_start[bsize] -
 | |
|                             s->coefs_start;
 | |
|                     } else {
 | |
|                         n = s->exponent_high_bands[s->frame_len_bits -
 | |
|                                                   s->block_len_bits][j];
 | |
|                     }
 | |
|                     if (j >= 0 && s->high_band_coded[ch][j]) {
 | |
|                         /* use noise with specified power */
 | |
|                         mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
 | |
|                         /* XXX: use a table */
 | |
|                         mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
 | |
|                         mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
 | |
|                         mult1 *= mdct_norm;
 | |
|                         for(i = 0;i < n; i++) {
 | |
|                             noise = s->noise_table[s->noise_index];
 | |
|                             s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
 | |
|                             *coefs++ = (*exponents++) * noise * mult1;
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* coded values + small noise */
 | |
|                         for(i = 0;i < n; i++) {
 | |
|                             noise = s->noise_table[s->noise_index];
 | |
|                             s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
 | |
|                             *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /* very high freqs : noise */
 | |
|                 n = s->block_len - s->coefs_end[bsize];
 | |
|                 mult1 = mult * exponents[-1];
 | |
|                 for(i = 0; i < n; i++) {
 | |
|                     *coefs++ = s->noise_table[s->noise_index] * mult1;
 | |
|                     s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
 | |
|                 }
 | |
|             } else {
 | |
|                 /* XXX: optimize more */
 | |
|                 for(i = 0;i < s->coefs_start; i++)
 | |
|                     *coefs++ = 0.0;
 | |
|                 n = nb_coefs[ch];
 | |
|                 for(i = 0;i < n; i++) {
 | |
|                     *coefs++ = coefs1[i] * exponents[i] * mult;
 | |
|                 }
 | |
|                 n = s->block_len - s->coefs_end[bsize];
 | |
|                 for(i = 0;i < n; i++)
 | |
|                     *coefs++ = 0.0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef TRACE
 | |
|     for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|         if (s->channel_coded[ch]) {
 | |
|             dump_floats("exponents", 3, s->exponents[ch], s->block_len);
 | |
|             dump_floats("coefs", 1, s->coefs[ch], s->block_len);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (s->ms_stereo && s->channel_coded[1]) {
 | |
|         float a, b;
 | |
|         int i;
 | |
| 
 | |
|         /* nominal case for ms stereo: we do it before mdct */
 | |
|         /* no need to optimize this case because it should almost
 | |
|            never happen */
 | |
|         if (!s->channel_coded[0]) {
 | |
|             tprintf("rare ms-stereo case happened\n");
 | |
|             memset(s->coefs[0], 0, sizeof(float) * s->block_len);
 | |
|             s->channel_coded[0] = 1;
 | |
|         }
 | |
| 
 | |
|         for(i = 0; i < s->block_len; i++) {
 | |
|             a = s->coefs[0][i];
 | |
|             b = s->coefs[1][i];
 | |
|             s->coefs[0][i] = a + b;
 | |
|             s->coefs[1][i] = a - b;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* build the window : we ensure that when the windows overlap
 | |
|        their squared sum is always 1 (MDCT reconstruction rule) */
 | |
|     /* XXX: merge with output */
 | |
|     {
 | |
|         int i, next_block_len, block_len, prev_block_len, n;
 | |
|         float *wptr;
 | |
| 
 | |
|         block_len = s->block_len;
 | |
|         prev_block_len = 1 << s->prev_block_len_bits;
 | |
|         next_block_len = 1 << s->next_block_len_bits;
 | |
| 
 | |
|         /* right part */
 | |
|         wptr = window + block_len;
 | |
|         if (block_len <= next_block_len) {
 | |
|             for(i=0;i<block_len;i++)
 | |
|                 *wptr++ = s->windows[bsize][i];
 | |
|         } else {
 | |
|             /* overlap */
 | |
|             n = (block_len / 2) - (next_block_len / 2);
 | |
|             for(i=0;i<n;i++)
 | |
|                 *wptr++ = 1.0;
 | |
|             for(i=0;i<next_block_len;i++)
 | |
|                 *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
 | |
|             for(i=0;i<n;i++)
 | |
|                 *wptr++ = 0.0;
 | |
|         }
 | |
| 
 | |
|         /* left part */
 | |
|         wptr = window + block_len;
 | |
|         if (block_len <= prev_block_len) {
 | |
|             for(i=0;i<block_len;i++)
 | |
|                 *--wptr = s->windows[bsize][i];
 | |
|         } else {
 | |
|             /* overlap */
 | |
|             n = (block_len / 2) - (prev_block_len / 2);
 | |
|             for(i=0;i<n;i++)
 | |
|                 *--wptr = 1.0;
 | |
|             for(i=0;i<prev_block_len;i++)
 | |
|                 *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
 | |
|             for(i=0;i<n;i++)
 | |
|                 *--wptr = 0.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|         if (s->channel_coded[ch]) {
 | |
|             DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]);
 | |
|             float *ptr;
 | |
|             int n4, index, n;
 | |
| 
 | |
|             n = s->block_len;
 | |
|             n4 = s->block_len / 2;
 | |
|             s->mdct_ctx[bsize].fft.imdct_calc(&s->mdct_ctx[bsize],
 | |
|                           output, s->coefs[ch], s->mdct_tmp);
 | |
| 
 | |
|             /* XXX: optimize all that by build the window and
 | |
|                multipying/adding at the same time */
 | |
| 
 | |
|             /* multiply by the window and add in the frame */
 | |
|             index = (s->frame_len / 2) + s->block_pos - n4;
 | |
|             ptr = &s->frame_out[ch][index];
 | |
|             s->dsp.vector_fmul_add_add(ptr,window,output,ptr,0,2*n,1);
 | |
| 
 | |
|             /* specific fast case for ms-stereo : add to second
 | |
|                channel if it is not coded */
 | |
|             if (s->ms_stereo && !s->channel_coded[1]) {
 | |
|                 ptr = &s->frame_out[1][index];
 | |
|                 s->dsp.vector_fmul_add_add(ptr,window,output,ptr,0,2*n,1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|  next:
 | |
|     /* update block number */
 | |
|     s->block_num++;
 | |
|     s->block_pos += s->block_len;
 | |
|     if (s->block_pos >= s->frame_len)
 | |
|         return 1;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| /* decode a frame of frame_len samples */
 | |
| static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
 | |
| {
 | |
|     int ret, i, n, a, ch, incr;
 | |
|     int16_t *ptr;
 | |
|     float *iptr;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
 | |
| #endif
 | |
| 
 | |
|     /* read each block */
 | |
|     s->block_num = 0;
 | |
|     s->block_pos = 0;
 | |
|     for(;;) {
 | |
|         ret = wma_decode_block(s);
 | |
|         if (ret < 0)
 | |
|             return -1;
 | |
|         if (ret)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     /* convert frame to integer */
 | |
|     n = s->frame_len;
 | |
|     incr = s->nb_channels;
 | |
|     for(ch = 0; ch < s->nb_channels; ch++) {
 | |
|         ptr = samples + ch;
 | |
|         iptr = s->frame_out[ch];
 | |
| 
 | |
|         for(i=0;i<n;i++) {
 | |
|             a = lrintf(*iptr++);
 | |
|             if (a > 32767)
 | |
|                 a = 32767;
 | |
|             else if (a < -32768)
 | |
|                 a = -32768;
 | |
|             *ptr = a;
 | |
|             ptr += incr;
 | |
|         }
 | |
|         /* prepare for next block */
 | |
|         memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
 | |
|                 s->frame_len * sizeof(float));
 | |
|         /* XXX: suppress this */
 | |
|         memset(&s->frame_out[ch][s->frame_len], 0,
 | |
|                s->frame_len * sizeof(float));
 | |
|     }
 | |
| 
 | |
| #ifdef TRACE
 | |
|     dump_shorts("samples", samples, n * s->nb_channels);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int wma_decode_superframe(AVCodecContext *avctx,
 | |
|                                  void *data, int *data_size,
 | |
|                                  uint8_t *buf, int buf_size)
 | |
| {
 | |
|     WMADecodeContext *s = avctx->priv_data;
 | |
|     int nb_frames, bit_offset, i, pos, len;
 | |
|     uint8_t *q;
 | |
|     int16_t *samples;
 | |
| 
 | |
|     tprintf("***decode_superframe:\n");
 | |
| 
 | |
|     if(buf_size==0){
 | |
|         s->last_superframe_len = 0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     samples = data;
 | |
| 
 | |
|     init_get_bits(&s->gb, buf, buf_size*8);
 | |
| 
 | |
|     if (s->use_bit_reservoir) {
 | |
|         /* read super frame header */
 | |
|         get_bits(&s->gb, 4); /* super frame index */
 | |
|         nb_frames = get_bits(&s->gb, 4) - 1;
 | |
| 
 | |
|         bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
 | |
| 
 | |
|         if (s->last_superframe_len > 0) {
 | |
|             //        printf("skip=%d\n", s->last_bitoffset);
 | |
|             /* add bit_offset bits to last frame */
 | |
|             if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
 | |
|                 MAX_CODED_SUPERFRAME_SIZE)
 | |
|                 goto fail;
 | |
|             q = s->last_superframe + s->last_superframe_len;
 | |
|             len = bit_offset;
 | |
|             while (len > 7) {
 | |
|                 *q++ = (get_bits)(&s->gb, 8);
 | |
|                 len -= 8;
 | |
|             }
 | |
|             if (len > 0) {
 | |
|                 *q++ = (get_bits)(&s->gb, len) << (8 - len);
 | |
|             }
 | |
| 
 | |
|             /* XXX: bit_offset bits into last frame */
 | |
|             init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
 | |
|             /* skip unused bits */
 | |
|             if (s->last_bitoffset > 0)
 | |
|                 skip_bits(&s->gb, s->last_bitoffset);
 | |
|             /* this frame is stored in the last superframe and in the
 | |
|                current one */
 | |
|             if (wma_decode_frame(s, samples) < 0)
 | |
|                 goto fail;
 | |
|             samples += s->nb_channels * s->frame_len;
 | |
|         }
 | |
| 
 | |
|         /* read each frame starting from bit_offset */
 | |
|         pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
 | |
|         init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
 | |
|         len = pos & 7;
 | |
|         if (len > 0)
 | |
|             skip_bits(&s->gb, len);
 | |
| 
 | |
|         s->reset_block_lengths = 1;
 | |
|         for(i=0;i<nb_frames;i++) {
 | |
|             if (wma_decode_frame(s, samples) < 0)
 | |
|                 goto fail;
 | |
|             samples += s->nb_channels * s->frame_len;
 | |
|         }
 | |
| 
 | |
|         /* we copy the end of the frame in the last frame buffer */
 | |
|         pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
 | |
|         s->last_bitoffset = pos & 7;
 | |
|         pos >>= 3;
 | |
|         len = buf_size - pos;
 | |
|         if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
 | |
|             goto fail;
 | |
|         }
 | |
|         s->last_superframe_len = len;
 | |
|         memcpy(s->last_superframe, buf + pos, len);
 | |
|     } else {
 | |
|         /* single frame decode */
 | |
|         if (wma_decode_frame(s, samples) < 0)
 | |
|             goto fail;
 | |
|         samples += s->nb_channels * s->frame_len;
 | |
|     }
 | |
|     *data_size = (int8_t *)samples - (int8_t *)data;
 | |
|     return s->block_align;
 | |
|  fail:
 | |
|     /* when error, we reset the bit reservoir */
 | |
|     s->last_superframe_len = 0;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static int wma_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     WMADecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for(i = 0; i < s->nb_block_sizes; i++)
 | |
|         ff_mdct_end(&s->mdct_ctx[i]);
 | |
|     for(i = 0; i < s->nb_block_sizes; i++)
 | |
|         av_free(s->windows[i]);
 | |
| 
 | |
|     if (s->use_exp_vlc) {
 | |
|         free_vlc(&s->exp_vlc);
 | |
|     }
 | |
|     if (s->use_noise_coding) {
 | |
|         free_vlc(&s->hgain_vlc);
 | |
|     }
 | |
|     for(i = 0;i < 2; i++) {
 | |
|         free_vlc(&s->coef_vlc[i]);
 | |
|         av_free(s->run_table[i]);
 | |
|         av_free(s->level_table[i]);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec wmav1_decoder =
 | |
| {
 | |
|     "wmav1",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_WMAV1,
 | |
|     sizeof(WMADecodeContext),
 | |
|     wma_decode_init,
 | |
|     NULL,
 | |
|     wma_decode_end,
 | |
|     wma_decode_superframe,
 | |
| };
 | |
| 
 | |
| AVCodec wmav2_decoder =
 | |
| {
 | |
|     "wmav2",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_WMAV2,
 | |
|     sizeof(WMADecodeContext),
 | |
|     wma_decode_init,
 | |
|     NULL,
 | |
|     wma_decode_end,
 | |
|     wma_decode_superframe,
 | |
| };
 | 
