mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1382 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1382 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * FLAC audio encoder
 | |
|  * Copyright (c) 2006  Justin Ruggles <jruggle@earthlink.net>
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "bitstream.h"
 | |
| #include "crc.h"
 | |
| #include "golomb.h"
 | |
| #include "lls.h"
 | |
| 
 | |
| #define FLAC_MAX_CH  8
 | |
| #define FLAC_MIN_BLOCKSIZE  16
 | |
| #define FLAC_MAX_BLOCKSIZE  65535
 | |
| 
 | |
| #define FLAC_SUBFRAME_CONSTANT  0
 | |
| #define FLAC_SUBFRAME_VERBATIM  1
 | |
| #define FLAC_SUBFRAME_FIXED     8
 | |
| #define FLAC_SUBFRAME_LPC      32
 | |
| 
 | |
| #define FLAC_CHMODE_NOT_STEREO      0
 | |
| #define FLAC_CHMODE_LEFT_RIGHT      1
 | |
| #define FLAC_CHMODE_LEFT_SIDE       8
 | |
| #define FLAC_CHMODE_RIGHT_SIDE      9
 | |
| #define FLAC_CHMODE_MID_SIDE       10
 | |
| 
 | |
| #define ORDER_METHOD_EST     0
 | |
| #define ORDER_METHOD_2LEVEL  1
 | |
| #define ORDER_METHOD_4LEVEL  2
 | |
| #define ORDER_METHOD_8LEVEL  3
 | |
| #define ORDER_METHOD_SEARCH  4
 | |
| #define ORDER_METHOD_LOG     5
 | |
| 
 | |
| #define FLAC_STREAMINFO_SIZE  34
 | |
| 
 | |
| #define MIN_LPC_ORDER       1
 | |
| #define MAX_LPC_ORDER      32
 | |
| #define MAX_FIXED_ORDER     4
 | |
| #define MAX_PARTITION_ORDER 8
 | |
| #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
 | |
| #define MAX_LPC_PRECISION  15
 | |
| #define MAX_LPC_SHIFT      15
 | |
| #define MAX_RICE_PARAM     14
 | |
| 
 | |
| typedef struct CompressionOptions {
 | |
|     int compression_level;
 | |
|     int block_time_ms;
 | |
|     int use_lpc;
 | |
|     int lpc_coeff_precision;
 | |
|     int min_prediction_order;
 | |
|     int max_prediction_order;
 | |
|     int prediction_order_method;
 | |
|     int min_partition_order;
 | |
|     int max_partition_order;
 | |
| } CompressionOptions;
 | |
| 
 | |
| typedef struct RiceContext {
 | |
|     int porder;
 | |
|     int params[MAX_PARTITIONS];
 | |
| } RiceContext;
 | |
| 
 | |
| typedef struct FlacSubframe {
 | |
|     int type;
 | |
|     int type_code;
 | |
|     int obits;
 | |
|     int order;
 | |
|     int32_t coefs[MAX_LPC_ORDER];
 | |
|     int shift;
 | |
|     RiceContext rc;
 | |
|     int32_t samples[FLAC_MAX_BLOCKSIZE];
 | |
|     int32_t residual[FLAC_MAX_BLOCKSIZE];
 | |
| } FlacSubframe;
 | |
| 
 | |
| typedef struct FlacFrame {
 | |
|     FlacSubframe subframes[FLAC_MAX_CH];
 | |
|     int blocksize;
 | |
|     int bs_code[2];
 | |
|     uint8_t crc8;
 | |
|     int ch_mode;
 | |
| } FlacFrame;
 | |
| 
 | |
| typedef struct FlacEncodeContext {
 | |
|     PutBitContext pb;
 | |
|     int channels;
 | |
|     int ch_code;
 | |
|     int samplerate;
 | |
|     int sr_code[2];
 | |
|     int blocksize;
 | |
|     int max_framesize;
 | |
|     uint32_t frame_count;
 | |
|     FlacFrame frame;
 | |
|     CompressionOptions options;
 | |
|     AVCodecContext *avctx;
 | |
| } FlacEncodeContext;
 | |
| 
 | |
| static const int flac_samplerates[16] = {
 | |
|     0, 0, 0, 0,
 | |
|     8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
 | |
|     0, 0, 0, 0
 | |
| };
 | |
| 
 | |
| static const int flac_blocksizes[16] = {
 | |
|     0,
 | |
|     192,
 | |
|     576, 1152, 2304, 4608,
 | |
|     0, 0,
 | |
|     256, 512, 1024, 2048, 4096, 8192, 16384, 32768
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Writes streaminfo metadata block to byte array
 | |
|  */
 | |
| static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
 | |
| {
 | |
|     PutBitContext pb;
 | |
| 
 | |
|     memset(header, 0, FLAC_STREAMINFO_SIZE);
 | |
|     init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
 | |
| 
 | |
|     /* streaminfo metadata block */
 | |
|     put_bits(&pb, 16, s->blocksize);
 | |
|     put_bits(&pb, 16, s->blocksize);
 | |
|     put_bits(&pb, 24, 0);
 | |
|     put_bits(&pb, 24, s->max_framesize);
 | |
|     put_bits(&pb, 20, s->samplerate);
 | |
|     put_bits(&pb, 3, s->channels-1);
 | |
|     put_bits(&pb, 5, 15);       /* bits per sample - 1 */
 | |
|     flush_put_bits(&pb);
 | |
|     /* total samples = 0 */
 | |
|     /* MD5 signature = 0 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Sets blocksize based on samplerate
 | |
|  * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
 | |
|  */
 | |
| static int select_blocksize(int samplerate, int block_time_ms)
 | |
| {
 | |
|     int i;
 | |
|     int target;
 | |
|     int blocksize;
 | |
| 
 | |
|     assert(samplerate > 0);
 | |
|     blocksize = flac_blocksizes[1];
 | |
|     target = (samplerate * block_time_ms) / 1000;
 | |
|     for(i=0; i<16; i++) {
 | |
|         if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
 | |
|             blocksize = flac_blocksizes[i];
 | |
|         }
 | |
|     }
 | |
|     return blocksize;
 | |
| }
 | |
| 
 | |
| static int flac_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int freq = avctx->sample_rate;
 | |
|     int channels = avctx->channels;
 | |
|     FlacEncodeContext *s = avctx->priv_data;
 | |
|     int i, level;
 | |
|     uint8_t *streaminfo;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     if(avctx->sample_fmt != SAMPLE_FMT_S16) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if(channels < 1 || channels > FLAC_MAX_CH) {
 | |
|         return -1;
 | |
|     }
 | |
|     s->channels = channels;
 | |
|     s->ch_code = s->channels-1;
 | |
| 
 | |
|     /* find samplerate in table */
 | |
|     if(freq < 1)
 | |
|         return -1;
 | |
|     for(i=4; i<12; i++) {
 | |
|         if(freq == flac_samplerates[i]) {
 | |
|             s->samplerate = flac_samplerates[i];
 | |
|             s->sr_code[0] = i;
 | |
|             s->sr_code[1] = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     /* if not in table, samplerate is non-standard */
 | |
|     if(i == 12) {
 | |
|         if(freq % 1000 == 0 && freq < 255000) {
 | |
|             s->sr_code[0] = 12;
 | |
|             s->sr_code[1] = freq / 1000;
 | |
|         } else if(freq % 10 == 0 && freq < 655350) {
 | |
|             s->sr_code[0] = 14;
 | |
|             s->sr_code[1] = freq / 10;
 | |
|         } else if(freq < 65535) {
 | |
|             s->sr_code[0] = 13;
 | |
|             s->sr_code[1] = freq;
 | |
|         } else {
 | |
|             return -1;
 | |
|         }
 | |
|         s->samplerate = freq;
 | |
|     }
 | |
| 
 | |
|     /* set compression option defaults based on avctx->compression_level */
 | |
|     if(avctx->compression_level < 0) {
 | |
|         s->options.compression_level = 5;
 | |
|     } else {
 | |
|         s->options.compression_level = avctx->compression_level;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
 | |
| 
 | |
|     level= s->options.compression_level;
 | |
|     if(level > 12) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
 | |
|                s->options.compression_level);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     s->options.block_time_ms       = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
 | |
|     s->options.use_lpc             = ((int[]){  0,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
 | |
|     s->options.min_prediction_order= ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
 | |
|     s->options.max_prediction_order= ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
 | |
|     s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | |
|                                                    ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | |
|                                                    ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
 | |
|                                                    ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
 | |
|                                                    ORDER_METHOD_SEARCH})[level];
 | |
|     s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
 | |
|     s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
 | |
| 
 | |
|     /* set compression option overrides from AVCodecContext */
 | |
|     if(avctx->use_lpc >= 0) {
 | |
|         s->options.use_lpc = clip(avctx->use_lpc, 0, 11);
 | |
|     }
 | |
|     if(s->options.use_lpc == 1)
 | |
|         av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
 | |
|     else if(s->options.use_lpc > 1)
 | |
|         av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
 | |
| 
 | |
|     if(avctx->min_prediction_order >= 0) {
 | |
|         if(s->options.use_lpc) {
 | |
|             if(avctx->min_prediction_order < MIN_LPC_ORDER ||
 | |
|                     avctx->min_prediction_order > MAX_LPC_ORDER) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | |
|                        avctx->min_prediction_order);
 | |
|                 return -1;
 | |
|             }
 | |
|         } else {
 | |
|             if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | |
|                        avctx->min_prediction_order);
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         s->options.min_prediction_order = avctx->min_prediction_order;
 | |
|     }
 | |
|     if(avctx->max_prediction_order >= 0) {
 | |
|         if(s->options.use_lpc) {
 | |
|             if(avctx->max_prediction_order < MIN_LPC_ORDER ||
 | |
|                     avctx->max_prediction_order > MAX_LPC_ORDER) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | |
|                        avctx->max_prediction_order);
 | |
|                 return -1;
 | |
|             }
 | |
|         } else {
 | |
|             if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | |
|                        avctx->max_prediction_order);
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         s->options.max_prediction_order = avctx->max_prediction_order;
 | |
|     }
 | |
|     if(s->options.max_prediction_order < s->options.min_prediction_order) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | |
|                s->options.min_prediction_order, s->options.max_prediction_order);
 | |
|         return -1;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
 | |
|            s->options.min_prediction_order, s->options.max_prediction_order);
 | |
| 
 | |
|     if(avctx->prediction_order_method >= 0) {
 | |
|         if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
 | |
|                    avctx->prediction_order_method);
 | |
|             return -1;
 | |
|         }
 | |
|         s->options.prediction_order_method = avctx->prediction_order_method;
 | |
|     }
 | |
|     switch(s->options.prediction_order_method) {
 | |
|         case ORDER_METHOD_EST:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | |
|                                          "estimate"); break;
 | |
|         case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | |
|                                          "2-level"); break;
 | |
|         case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | |
|                                          "4-level"); break;
 | |
|         case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | |
|                                          "8-level"); break;
 | |
|         case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | |
|                                          "full search"); break;
 | |
|         case ORDER_METHOD_LOG:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
 | |
|                                          "log search"); break;
 | |
|     }
 | |
| 
 | |
|     if(avctx->min_partition_order >= 0) {
 | |
|         if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
 | |
|                    avctx->min_partition_order);
 | |
|             return -1;
 | |
|         }
 | |
|         s->options.min_partition_order = avctx->min_partition_order;
 | |
|     }
 | |
|     if(avctx->max_partition_order >= 0) {
 | |
|         if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
 | |
|                    avctx->max_partition_order);
 | |
|             return -1;
 | |
|         }
 | |
|         s->options.max_partition_order = avctx->max_partition_order;
 | |
|     }
 | |
|     if(s->options.max_partition_order < s->options.min_partition_order) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
 | |
|                s->options.min_partition_order, s->options.max_partition_order);
 | |
|         return -1;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
 | |
|            s->options.min_partition_order, s->options.max_partition_order);
 | |
| 
 | |
|     if(avctx->frame_size > 0) {
 | |
|         if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
 | |
|                 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
 | |
|                    avctx->frame_size);
 | |
|             return -1;
 | |
|         }
 | |
|         s->blocksize = avctx->frame_size;
 | |
|     } else {
 | |
|         s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
 | |
|         avctx->frame_size = s->blocksize;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
 | |
| 
 | |
|     /* set LPC precision */
 | |
|     if(avctx->lpc_coeff_precision > 0) {
 | |
|         if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
 | |
|                    avctx->lpc_coeff_precision);
 | |
|             return -1;
 | |
|         }
 | |
|         s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
 | |
|     } else {
 | |
|         /* select LPC precision based on block size */
 | |
|         if(     s->blocksize <=   192) s->options.lpc_coeff_precision =  7;
 | |
|         else if(s->blocksize <=   384) s->options.lpc_coeff_precision =  8;
 | |
|         else if(s->blocksize <=   576) s->options.lpc_coeff_precision =  9;
 | |
|         else if(s->blocksize <=  1152) s->options.lpc_coeff_precision = 10;
 | |
|         else if(s->blocksize <=  2304) s->options.lpc_coeff_precision = 11;
 | |
|         else if(s->blocksize <=  4608) s->options.lpc_coeff_precision = 12;
 | |
|         else if(s->blocksize <=  8192) s->options.lpc_coeff_precision = 13;
 | |
|         else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
 | |
|         else                           s->options.lpc_coeff_precision = 15;
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
 | |
|            s->options.lpc_coeff_precision);
 | |
| 
 | |
|     /* set maximum encoded frame size in verbatim mode */
 | |
|     if(s->channels == 2) {
 | |
|         s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
 | |
|     } else {
 | |
|         s->max_framesize = 14 + (s->blocksize * s->channels * 2);
 | |
|     }
 | |
| 
 | |
|     streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
 | |
|     write_streaminfo(s, streaminfo);
 | |
|     avctx->extradata = streaminfo;
 | |
|     avctx->extradata_size = FLAC_STREAMINFO_SIZE;
 | |
| 
 | |
|     s->frame_count = 0;
 | |
| 
 | |
|     avctx->coded_frame = avcodec_alloc_frame();
 | |
|     avctx->coded_frame->key_frame = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void init_frame(FlacEncodeContext *s)
 | |
| {
 | |
|     int i, ch;
 | |
|     FlacFrame *frame;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     for(i=0; i<16; i++) {
 | |
|         if(s->blocksize == flac_blocksizes[i]) {
 | |
|             frame->blocksize = flac_blocksizes[i];
 | |
|             frame->bs_code[0] = i;
 | |
|             frame->bs_code[1] = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if(i == 16) {
 | |
|         frame->blocksize = s->blocksize;
 | |
|         if(frame->blocksize <= 256) {
 | |
|             frame->bs_code[0] = 6;
 | |
|             frame->bs_code[1] = frame->blocksize-1;
 | |
|         } else {
 | |
|             frame->bs_code[0] = 7;
 | |
|             frame->bs_code[1] = frame->blocksize-1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(ch=0; ch<s->channels; ch++) {
 | |
|         frame->subframes[ch].obits = 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Copy channel-interleaved input samples into separate subframes
 | |
|  */
 | |
| static void copy_samples(FlacEncodeContext *s, int16_t *samples)
 | |
| {
 | |
|     int i, j, ch;
 | |
|     FlacFrame *frame;
 | |
| 
 | |
|     frame = &s->frame;
 | |
|     for(i=0,j=0; i<frame->blocksize; i++) {
 | |
|         for(ch=0; ch<s->channels; ch++,j++) {
 | |
|             frame->subframes[ch].samples[i] = samples[j];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
 | |
| 
 | |
| static int find_optimal_param(uint32_t sum, int n)
 | |
| {
 | |
|     int k, k_opt;
 | |
|     uint32_t nbits[MAX_RICE_PARAM+1];
 | |
| 
 | |
|     k_opt = 0;
 | |
|     nbits[0] = UINT32_MAX;
 | |
|     for(k=0; k<=MAX_RICE_PARAM; k++) {
 | |
|         nbits[k] = rice_encode_count(sum, n, k);
 | |
|         if(nbits[k] < nbits[k_opt]) {
 | |
|             k_opt = k;
 | |
|         }
 | |
|     }
 | |
|     return k_opt;
 | |
| }
 | |
| 
 | |
| static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
 | |
|                                          uint32_t *sums, int n, int pred_order)
 | |
| {
 | |
|     int i;
 | |
|     int k, cnt, part;
 | |
|     uint32_t all_bits;
 | |
| 
 | |
|     part = (1 << porder);
 | |
|     all_bits = 0;
 | |
| 
 | |
|     cnt = (n >> porder) - pred_order;
 | |
|     for(i=0; i<part; i++) {
 | |
|         if(i == 1) cnt = (n >> porder);
 | |
|         k = find_optimal_param(sums[i], cnt);
 | |
|         rc->params[i] = k;
 | |
|         all_bits += rice_encode_count(sums[i], cnt, k);
 | |
|     }
 | |
|     all_bits += (4 * part);
 | |
| 
 | |
|     rc->porder = porder;
 | |
| 
 | |
|     return all_bits;
 | |
| }
 | |
| 
 | |
| static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
 | |
|                       uint32_t sums[][MAX_PARTITIONS])
 | |
| {
 | |
|     int i, j;
 | |
|     int parts;
 | |
|     uint32_t *res, *res_end;
 | |
| 
 | |
|     /* sums for highest level */
 | |
|     parts = (1 << pmax);
 | |
|     res = &data[pred_order];
 | |
|     res_end = &data[n >> pmax];
 | |
|     for(i=0; i<parts; i++) {
 | |
|         sums[pmax][i] = 0;
 | |
|         while(res < res_end){
 | |
|             sums[pmax][i] += *(res++);
 | |
|         }
 | |
|         res_end+= n >> pmax;
 | |
|     }
 | |
|     /* sums for lower levels */
 | |
|     for(i=pmax-1; i>=pmin; i--) {
 | |
|         parts = (1 << i);
 | |
|         for(j=0; j<parts; j++) {
 | |
|             sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
 | |
|                                  int32_t *data, int n, int pred_order)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t bits[MAX_PARTITION_ORDER+1];
 | |
|     int opt_porder;
 | |
|     RiceContext tmp_rc;
 | |
|     uint32_t *udata;
 | |
|     uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
 | |
| 
 | |
|     assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
 | |
|     assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
 | |
|     assert(pmin <= pmax);
 | |
| 
 | |
|     udata = av_malloc(n * sizeof(uint32_t));
 | |
|     for(i=0; i<n; i++) {
 | |
|         udata[i] = (2*data[i]) ^ (data[i]>>31);
 | |
|     }
 | |
| 
 | |
|     calc_sums(pmin, pmax, udata, n, pred_order, sums);
 | |
| 
 | |
|     opt_porder = pmin;
 | |
|     bits[pmin] = UINT32_MAX;
 | |
|     for(i=pmin; i<=pmax; i++) {
 | |
|         bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
 | |
|         if(bits[i] <= bits[opt_porder]) {
 | |
|             opt_porder = i;
 | |
|             *rc= tmp_rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_freep(&udata);
 | |
|     return bits[opt_porder];
 | |
| }
 | |
| 
 | |
| static int get_max_p_order(int max_porder, int n, int order)
 | |
| {
 | |
|     int porder = FFMIN(max_porder, av_log2(n^(n-1)));
 | |
|     if(order > 0)
 | |
|         porder = FFMIN(porder, av_log2(n/order));
 | |
|     return porder;
 | |
| }
 | |
| 
 | |
| static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
 | |
|                                        int32_t *data, int n, int pred_order,
 | |
|                                        int bps)
 | |
| {
 | |
|     uint32_t bits;
 | |
|     pmin = get_max_p_order(pmin, n, pred_order);
 | |
|     pmax = get_max_p_order(pmax, n, pred_order);
 | |
|     bits = pred_order*bps + 6;
 | |
|     bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
 | |
|                                      int32_t *data, int n, int pred_order,
 | |
|                                      int bps, int precision)
 | |
| {
 | |
|     uint32_t bits;
 | |
|     pmin = get_max_p_order(pmin, n, pred_order);
 | |
|     pmax = get_max_p_order(pmax, n, pred_order);
 | |
|     bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
 | |
|     bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply Welch window function to audio block
 | |
|  */
 | |
| static void apply_welch_window(const int32_t *data, int len, double *w_data)
 | |
| {
 | |
|     int i, n2;
 | |
|     double w;
 | |
|     double c;
 | |
| 
 | |
|     n2 = (len >> 1);
 | |
|     c = 2.0 / (len - 1.0);
 | |
|     for(i=0; i<n2; i++) {
 | |
|         w = c - i - 1.0;
 | |
|         w = 1.0 - (w * w);
 | |
|         w_data[i] = data[i] * w;
 | |
|         w_data[len-1-i] = data[len-1-i] * w;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculates autocorrelation data from audio samples
 | |
|  * A Welch window function is applied before calculation.
 | |
|  */
 | |
| static void compute_autocorr(const int32_t *data, int len, int lag,
 | |
|                              double *autoc)
 | |
| {
 | |
|     int i, lag_ptr;
 | |
|     double tmp[len + lag];
 | |
|     double *data1= tmp + lag;
 | |
| 
 | |
|     apply_welch_window(data, len, data1);
 | |
| 
 | |
|     for(i=0; i<lag; i++){
 | |
|         autoc[i] = 1.0;
 | |
|         data1[i-lag]= 0.0;
 | |
|     }
 | |
| 
 | |
|     for(i=0; i<len; i++){
 | |
|         for(lag_ptr= i-lag; lag_ptr<=i; lag_ptr++){
 | |
|             autoc[i-lag_ptr] += data1[i] * data1[lag_ptr];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Levinson-Durbin recursion.
 | |
|  * Produces LPC coefficients from autocorrelation data.
 | |
|  */
 | |
| static void compute_lpc_coefs(const double *autoc, int max_order,
 | |
|                               double lpc[][MAX_LPC_ORDER], double *ref)
 | |
| {
 | |
|    int i, j, i2;
 | |
|    double r, err, tmp;
 | |
|    double lpc_tmp[MAX_LPC_ORDER];
 | |
| 
 | |
|    for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
 | |
|    err = autoc[0];
 | |
| 
 | |
|    for(i=0; i<max_order; i++) {
 | |
|       r = -autoc[i+1];
 | |
|       for(j=0; j<i; j++) {
 | |
|           r -= lpc_tmp[j] * autoc[i-j];
 | |
|       }
 | |
|       r /= err;
 | |
|       ref[i] = fabs(r);
 | |
| 
 | |
|       err *= 1.0 - (r * r);
 | |
| 
 | |
|       i2 = (i >> 1);
 | |
|       lpc_tmp[i] = r;
 | |
|       for(j=0; j<i2; j++) {
 | |
|          tmp = lpc_tmp[j];
 | |
|          lpc_tmp[j] += r * lpc_tmp[i-1-j];
 | |
|          lpc_tmp[i-1-j] += r * tmp;
 | |
|       }
 | |
|       if(i & 1) {
 | |
|           lpc_tmp[j] += lpc_tmp[j] * r;
 | |
|       }
 | |
| 
 | |
|       for(j=0; j<=i; j++) {
 | |
|           lpc[i][j] = -lpc_tmp[j];
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Quantize LPC coefficients
 | |
|  */
 | |
| static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
 | |
|                                int32_t *lpc_out, int *shift)
 | |
| {
 | |
|     int i;
 | |
|     double cmax, error;
 | |
|     int32_t qmax;
 | |
|     int sh;
 | |
| 
 | |
|     /* define maximum levels */
 | |
|     qmax = (1 << (precision - 1)) - 1;
 | |
| 
 | |
|     /* find maximum coefficient value */
 | |
|     cmax = 0.0;
 | |
|     for(i=0; i<order; i++) {
 | |
|         cmax= FFMAX(cmax, fabs(lpc_in[i]));
 | |
|     }
 | |
| 
 | |
|     /* if maximum value quantizes to zero, return all zeros */
 | |
|     if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
 | |
|         *shift = 0;
 | |
|         memset(lpc_out, 0, sizeof(int32_t) * order);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* calculate level shift which scales max coeff to available bits */
 | |
|     sh = MAX_LPC_SHIFT;
 | |
|     while((cmax * (1 << sh) > qmax) && (sh > 0)) {
 | |
|         sh--;
 | |
|     }
 | |
| 
 | |
|     /* since negative shift values are unsupported in decoder, scale down
 | |
|        coefficients instead */
 | |
|     if(sh == 0 && cmax > qmax) {
 | |
|         double scale = ((double)qmax) / cmax;
 | |
|         for(i=0; i<order; i++) {
 | |
|             lpc_in[i] *= scale;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* output quantized coefficients and level shift */
 | |
|     error=0;
 | |
|     for(i=0; i<order; i++) {
 | |
|         error += lpc_in[i] * (1 << sh);
 | |
|         lpc_out[i] = clip(lrintf(error), -qmax, qmax);
 | |
|         error -= lpc_out[i];
 | |
|     }
 | |
|     *shift = sh;
 | |
| }
 | |
| 
 | |
| static int estimate_best_order(double *ref, int max_order)
 | |
| {
 | |
|     int i, est;
 | |
| 
 | |
|     est = 1;
 | |
|     for(i=max_order-1; i>=0; i--) {
 | |
|         if(ref[i] > 0.10) {
 | |
|             est = i+1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return est;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate LPC coefficients for multiple orders
 | |
|  */
 | |
| static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
 | |
|                           int precision, int32_t coefs[][MAX_LPC_ORDER],
 | |
|                           int *shift, int use_lpc, int omethod)
 | |
| {
 | |
|     double autoc[MAX_LPC_ORDER+1];
 | |
|     double ref[MAX_LPC_ORDER];
 | |
|     double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | |
|     int i, j, pass;
 | |
|     int opt_order;
 | |
| 
 | |
|     assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
 | |
| 
 | |
|     if(use_lpc == 1){
 | |
|         compute_autocorr(samples, blocksize, max_order+1, autoc);
 | |
| 
 | |
|         compute_lpc_coefs(autoc, max_order, lpc, ref);
 | |
|     }else{
 | |
|         LLSModel m[2];
 | |
|         double var[MAX_LPC_ORDER+1], eval, weight;
 | |
| 
 | |
|         for(pass=0; pass<use_lpc-1; pass++){
 | |
|             av_init_lls(&m[pass&1], max_order);
 | |
| 
 | |
|             weight=0;
 | |
|             for(i=max_order; i<blocksize; i++){
 | |
|                 for(j=0; j<=max_order; j++)
 | |
|                     var[j]= samples[i-j];
 | |
| 
 | |
|                 if(pass){
 | |
|                     eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
 | |
|                     eval= (512>>pass) + fabs(eval - var[0]);
 | |
|                     for(j=0; j<=max_order; j++)
 | |
|                         var[j]/= sqrt(eval);
 | |
|                     weight += 1/eval;
 | |
|                 }else
 | |
|                     weight++;
 | |
| 
 | |
|                 av_update_lls(&m[pass&1], var, 1.0);
 | |
|             }
 | |
|             av_solve_lls(&m[pass&1], 0.001, 0);
 | |
|         }
 | |
| 
 | |
|         for(i=0; i<max_order; i++){
 | |
|             for(j=0; j<max_order; j++)
 | |
|                 lpc[i][j]= m[(pass-1)&1].coeff[i][j];
 | |
|             ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
 | |
|         }
 | |
|         for(i=max_order-1; i>0; i--)
 | |
|             ref[i] = ref[i-1] - ref[i];
 | |
|     }
 | |
|     opt_order = max_order;
 | |
| 
 | |
|     if(omethod == ORDER_METHOD_EST) {
 | |
|         opt_order = estimate_best_order(ref, max_order);
 | |
|         i = opt_order-1;
 | |
|         quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
 | |
|     } else {
 | |
|         for(i=0; i<max_order; i++) {
 | |
|             quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return opt_order;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
 | |
| {
 | |
|     assert(n > 0);
 | |
|     memcpy(res, smp, n * sizeof(int32_t));
 | |
| }
 | |
| 
 | |
| static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
 | |
|                                   int order)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for(i=0; i<order; i++) {
 | |
|         res[i] = smp[i];
 | |
|     }
 | |
| 
 | |
|     if(order==0){
 | |
|         for(i=order; i<n; i++)
 | |
|             res[i]= smp[i];
 | |
|     }else if(order==1){
 | |
|         for(i=order; i<n; i++)
 | |
|             res[i]= smp[i] - smp[i-1];
 | |
|     }else if(order==2){
 | |
|         for(i=order; i<n; i++)
 | |
|             res[i]= smp[i] - 2*smp[i-1] + smp[i-2];
 | |
|     }else if(order==3){
 | |
|         for(i=order; i<n; i++)
 | |
|             res[i]= smp[i] - 3*smp[i-1] + 3*smp[i-2] - smp[i-3];
 | |
|     }else{
 | |
|         for(i=order; i<n; i++)
 | |
|             res[i]= smp[i] - 4*smp[i-1] + 6*smp[i-2] - 4*smp[i-3] + smp[i-4];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
 | |
|                                 int order, const int32_t *coefs, int shift)
 | |
| {
 | |
|     int i, j;
 | |
|     int32_t pred;
 | |
| 
 | |
|     for(i=0; i<order; i++) {
 | |
|         res[i] = smp[i];
 | |
|     }
 | |
|     for(i=order; i<n; i++) {
 | |
|         pred = 0;
 | |
|         for(j=0; j<order; j++) {
 | |
|             pred += coefs[j] * smp[i-j-1];
 | |
|         }
 | |
|         res[i] = smp[i] - (pred >> shift);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int encode_residual(FlacEncodeContext *ctx, int ch)
 | |
| {
 | |
|     int i, n;
 | |
|     int min_order, max_order, opt_order, precision, omethod;
 | |
|     int min_porder, max_porder;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | |
|     int shift[MAX_LPC_ORDER];
 | |
|     int32_t *res, *smp;
 | |
| 
 | |
|     frame = &ctx->frame;
 | |
|     sub = &frame->subframes[ch];
 | |
|     res = sub->residual;
 | |
|     smp = sub->samples;
 | |
|     n = frame->blocksize;
 | |
| 
 | |
|     /* CONSTANT */
 | |
|     for(i=1; i<n; i++) {
 | |
|         if(smp[i] != smp[0]) break;
 | |
|     }
 | |
|     if(i == n) {
 | |
|         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | |
|         res[0] = smp[0];
 | |
|         return sub->obits;
 | |
|     }
 | |
| 
 | |
|     /* VERBATIM */
 | |
|     if(n < 5) {
 | |
|         sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
 | |
|         encode_residual_verbatim(res, smp, n);
 | |
|         return sub->obits * n;
 | |
|     }
 | |
| 
 | |
|     min_order = ctx->options.min_prediction_order;
 | |
|     max_order = ctx->options.max_prediction_order;
 | |
|     min_porder = ctx->options.min_partition_order;
 | |
|     max_porder = ctx->options.max_partition_order;
 | |
|     precision = ctx->options.lpc_coeff_precision;
 | |
|     omethod = ctx->options.prediction_order_method;
 | |
| 
 | |
|     /* FIXED */
 | |
|     if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
 | |
|         uint32_t bits[MAX_FIXED_ORDER+1];
 | |
|         if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
 | |
|         opt_order = 0;
 | |
|         bits[0] = UINT32_MAX;
 | |
|         for(i=min_order; i<=max_order; i++) {
 | |
|             encode_residual_fixed(res, smp, n, i);
 | |
|             bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
 | |
|                                              n, i, sub->obits);
 | |
|             if(bits[i] < bits[opt_order]) {
 | |
|                 opt_order = i;
 | |
|             }
 | |
|         }
 | |
|         sub->order = opt_order;
 | |
|         sub->type = FLAC_SUBFRAME_FIXED;
 | |
|         sub->type_code = sub->type | sub->order;
 | |
|         if(sub->order != max_order) {
 | |
|             encode_residual_fixed(res, smp, n, sub->order);
 | |
|             return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
 | |
|                                           sub->order, sub->obits);
 | |
|         }
 | |
|         return bits[sub->order];
 | |
|     }
 | |
| 
 | |
|     /* LPC */
 | |
|     opt_order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod);
 | |
| 
 | |
|     if(omethod == ORDER_METHOD_2LEVEL ||
 | |
|        omethod == ORDER_METHOD_4LEVEL ||
 | |
|        omethod == ORDER_METHOD_8LEVEL) {
 | |
|         int levels = 1 << omethod;
 | |
|         uint32_t bits[levels];
 | |
|         int order;
 | |
|         int opt_index = levels-1;
 | |
|         opt_order = max_order-1;
 | |
|         bits[opt_index] = UINT32_MAX;
 | |
|         for(i=levels-1; i>=0; i--) {
 | |
|             order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
 | |
|             if(order < 0) order = 0;
 | |
|             encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
 | |
|             bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
 | |
|                                            res, n, order+1, sub->obits, precision);
 | |
|             if(bits[i] < bits[opt_index]) {
 | |
|                 opt_index = i;
 | |
|                 opt_order = order;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     } else if(omethod == ORDER_METHOD_SEARCH) {
 | |
|         // brute-force optimal order search
 | |
|         uint32_t bits[MAX_LPC_ORDER];
 | |
|         opt_order = 0;
 | |
|         bits[0] = UINT32_MAX;
 | |
|         for(i=min_order-1; i<max_order; i++) {
 | |
|             encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
 | |
|             bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
 | |
|                                            res, n, i+1, sub->obits, precision);
 | |
|             if(bits[i] < bits[opt_order]) {
 | |
|                 opt_order = i;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     } else if(omethod == ORDER_METHOD_LOG) {
 | |
|         uint32_t bits[MAX_LPC_ORDER];
 | |
|         int step;
 | |
| 
 | |
|         opt_order= min_order - 1 + (max_order-min_order)/3;
 | |
|         memset(bits, -1, sizeof(bits));
 | |
| 
 | |
|         for(step=16 ;step; step>>=1){
 | |
|             int last= opt_order;
 | |
|             for(i=last-step; i<=last+step; i+= step){
 | |
|                 if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
 | |
|                     continue;
 | |
|                 encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
 | |
|                 bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
 | |
|                                             res, n, i+1, sub->obits, precision);
 | |
|                 if(bits[i] < bits[opt_order])
 | |
|                     opt_order= i;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     }
 | |
| 
 | |
|     sub->order = opt_order;
 | |
|     sub->type = FLAC_SUBFRAME_LPC;
 | |
|     sub->type_code = sub->type | (sub->order-1);
 | |
|     sub->shift = shift[sub->order-1];
 | |
|     for(i=0; i<sub->order; i++) {
 | |
|         sub->coefs[i] = coefs[sub->order-1][i];
 | |
|     }
 | |
|     encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
 | |
|     return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
 | |
|                                 sub->obits, precision);
 | |
| }
 | |
| 
 | |
| static int encode_residual_v(FlacEncodeContext *ctx, int ch)
 | |
| {
 | |
|     int i, n;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int32_t *res, *smp;
 | |
| 
 | |
|     frame = &ctx->frame;
 | |
|     sub = &frame->subframes[ch];
 | |
|     res = sub->residual;
 | |
|     smp = sub->samples;
 | |
|     n = frame->blocksize;
 | |
| 
 | |
|     /* CONSTANT */
 | |
|     for(i=1; i<n; i++) {
 | |
|         if(smp[i] != smp[0]) break;
 | |
|     }
 | |
|     if(i == n) {
 | |
|         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | |
|         res[0] = smp[0];
 | |
|         return sub->obits;
 | |
|     }
 | |
| 
 | |
|     /* VERBATIM */
 | |
|     sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
 | |
|     encode_residual_verbatim(res, smp, n);
 | |
|     return sub->obits * n;
 | |
| }
 | |
| 
 | |
| static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | |
| {
 | |
|     int i, best;
 | |
|     int32_t lt, rt;
 | |
|     uint64_t sum[4];
 | |
|     uint64_t score[4];
 | |
|     int k;
 | |
| 
 | |
|     /* calculate sum of 2nd order residual for each channel */
 | |
|     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | |
|     for(i=2; i<n; i++) {
 | |
|         lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
 | |
|         rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
 | |
|         sum[2] += ABS((lt + rt) >> 1);
 | |
|         sum[3] += ABS(lt - rt);
 | |
|         sum[0] += ABS(lt);
 | |
|         sum[1] += ABS(rt);
 | |
|     }
 | |
|     /* estimate bit counts */
 | |
|     for(i=0; i<4; i++) {
 | |
|         k = find_optimal_param(2*sum[i], n);
 | |
|         sum[i] = rice_encode_count(2*sum[i], n, k);
 | |
|     }
 | |
| 
 | |
|     /* calculate score for each mode */
 | |
|     score[0] = sum[0] + sum[1];
 | |
|     score[1] = sum[0] + sum[3];
 | |
|     score[2] = sum[1] + sum[3];
 | |
|     score[3] = sum[2] + sum[3];
 | |
| 
 | |
|     /* return mode with lowest score */
 | |
|     best = 0;
 | |
|     for(i=1; i<4; i++) {
 | |
|         if(score[i] < score[best]) {
 | |
|             best = i;
 | |
|         }
 | |
|     }
 | |
|     if(best == 0) {
 | |
|         return FLAC_CHMODE_LEFT_RIGHT;
 | |
|     } else if(best == 1) {
 | |
|         return FLAC_CHMODE_LEFT_SIDE;
 | |
|     } else if(best == 2) {
 | |
|         return FLAC_CHMODE_RIGHT_SIDE;
 | |
|     } else {
 | |
|         return FLAC_CHMODE_MID_SIDE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform stereo channel decorrelation
 | |
|  */
 | |
| static void channel_decorrelation(FlacEncodeContext *ctx)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     int32_t *left, *right;
 | |
|     int i, n;
 | |
| 
 | |
|     frame = &ctx->frame;
 | |
|     n = frame->blocksize;
 | |
|     left  = frame->subframes[0].samples;
 | |
|     right = frame->subframes[1].samples;
 | |
| 
 | |
|     if(ctx->channels != 2) {
 | |
|         frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     frame->ch_mode = estimate_stereo_mode(left, right, n);
 | |
| 
 | |
|     /* perform decorrelation and adjust bits-per-sample */
 | |
|     if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
 | |
|         return;
 | |
|     }
 | |
|     if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
 | |
|         int32_t tmp;
 | |
|         for(i=0; i<n; i++) {
 | |
|             tmp = left[i];
 | |
|             left[i] = (tmp + right[i]) >> 1;
 | |
|             right[i] = tmp - right[i];
 | |
|         }
 | |
|         frame->subframes[1].obits++;
 | |
|     } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
 | |
|         for(i=0; i<n; i++) {
 | |
|             right[i] = left[i] - right[i];
 | |
|         }
 | |
|         frame->subframes[1].obits++;
 | |
|     } else {
 | |
|         for(i=0; i<n; i++) {
 | |
|             left[i] -= right[i];
 | |
|         }
 | |
|         frame->subframes[0].obits++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void put_sbits(PutBitContext *pb, int bits, int32_t val)
 | |
| {
 | |
|     assert(bits >= 0 && bits <= 31);
 | |
| 
 | |
|     put_bits(pb, bits, val & ((1<<bits)-1));
 | |
| }
 | |
| 
 | |
| static void write_utf8(PutBitContext *pb, uint32_t val)
 | |
| {
 | |
|     int bytes, shift;
 | |
| 
 | |
|     if(val < 0x80){
 | |
|         put_bits(pb, 8, val);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bytes= (av_log2(val)+4) / 5;
 | |
|     shift = (bytes - 1) * 6;
 | |
|     put_bits(pb, 8, (256 - (256>>bytes)) | (val >> shift));
 | |
|     while(shift >= 6){
 | |
|         shift -= 6;
 | |
|         put_bits(pb, 8, 0x80 | ((val >> shift) & 0x3F));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void output_frame_header(FlacEncodeContext *s)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     int crc;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     put_bits(&s->pb, 16, 0xFFF8);
 | |
|     put_bits(&s->pb, 4, frame->bs_code[0]);
 | |
|     put_bits(&s->pb, 4, s->sr_code[0]);
 | |
|     if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
 | |
|         put_bits(&s->pb, 4, s->ch_code);
 | |
|     } else {
 | |
|         put_bits(&s->pb, 4, frame->ch_mode);
 | |
|     }
 | |
|     put_bits(&s->pb, 3, 4); /* bits-per-sample code */
 | |
|     put_bits(&s->pb, 1, 0);
 | |
|     write_utf8(&s->pb, s->frame_count);
 | |
|     if(frame->bs_code[0] == 6) {
 | |
|         put_bits(&s->pb, 8, frame->bs_code[1]);
 | |
|     } else if(frame->bs_code[0] == 7) {
 | |
|         put_bits(&s->pb, 16, frame->bs_code[1]);
 | |
|     }
 | |
|     if(s->sr_code[0] == 12) {
 | |
|         put_bits(&s->pb, 8, s->sr_code[1]);
 | |
|     } else if(s->sr_code[0] > 12) {
 | |
|         put_bits(&s->pb, 16, s->sr_code[1]);
 | |
|     }
 | |
|     flush_put_bits(&s->pb);
 | |
|     crc = av_crc(av_crc07, 0, s->pb.buf, put_bits_count(&s->pb)>>3);
 | |
|     put_bits(&s->pb, 8, crc);
 | |
| }
 | |
| 
 | |
| static void output_subframe_constant(FlacEncodeContext *s, int ch)
 | |
| {
 | |
|     FlacSubframe *sub;
 | |
|     int32_t res;
 | |
| 
 | |
|     sub = &s->frame.subframes[ch];
 | |
|     res = sub->residual[0];
 | |
|     put_sbits(&s->pb, sub->obits, res);
 | |
| }
 | |
| 
 | |
| static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
 | |
| {
 | |
|     int i;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int32_t res;
 | |
| 
 | |
|     frame = &s->frame;
 | |
|     sub = &frame->subframes[ch];
 | |
| 
 | |
|     for(i=0; i<frame->blocksize; i++) {
 | |
|         res = sub->residual[i];
 | |
|         put_sbits(&s->pb, sub->obits, res);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void output_residual(FlacEncodeContext *ctx, int ch)
 | |
| {
 | |
|     int i, j, p, n, parts;
 | |
|     int k, porder, psize, res_cnt;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int32_t *res;
 | |
| 
 | |
|     frame = &ctx->frame;
 | |
|     sub = &frame->subframes[ch];
 | |
|     res = sub->residual;
 | |
|     n = frame->blocksize;
 | |
| 
 | |
|     /* rice-encoded block */
 | |
|     put_bits(&ctx->pb, 2, 0);
 | |
| 
 | |
|     /* partition order */
 | |
|     porder = sub->rc.porder;
 | |
|     psize = n >> porder;
 | |
|     parts = (1 << porder);
 | |
|     put_bits(&ctx->pb, 4, porder);
 | |
|     res_cnt = psize - sub->order;
 | |
| 
 | |
|     /* residual */
 | |
|     j = sub->order;
 | |
|     for(p=0; p<parts; p++) {
 | |
|         k = sub->rc.params[p];
 | |
|         put_bits(&ctx->pb, 4, k);
 | |
|         if(p == 1) res_cnt = psize;
 | |
|         for(i=0; i<res_cnt && j<n; i++, j++) {
 | |
|             set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
 | |
| {
 | |
|     int i;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
| 
 | |
|     frame = &ctx->frame;
 | |
|     sub = &frame->subframes[ch];
 | |
| 
 | |
|     /* warm-up samples */
 | |
|     for(i=0; i<sub->order; i++) {
 | |
|         put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
 | |
|     }
 | |
| 
 | |
|     /* residual */
 | |
|     output_residual(ctx, ch);
 | |
| }
 | |
| 
 | |
| static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
 | |
| {
 | |
|     int i, cbits;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
| 
 | |
|     frame = &ctx->frame;
 | |
|     sub = &frame->subframes[ch];
 | |
| 
 | |
|     /* warm-up samples */
 | |
|     for(i=0; i<sub->order; i++) {
 | |
|         put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
 | |
|     }
 | |
| 
 | |
|     /* LPC coefficients */
 | |
|     cbits = ctx->options.lpc_coeff_precision;
 | |
|     put_bits(&ctx->pb, 4, cbits-1);
 | |
|     put_sbits(&ctx->pb, 5, sub->shift);
 | |
|     for(i=0; i<sub->order; i++) {
 | |
|         put_sbits(&ctx->pb, cbits, sub->coefs[i]);
 | |
|     }
 | |
| 
 | |
|     /* residual */
 | |
|     output_residual(ctx, ch);
 | |
| }
 | |
| 
 | |
| static void output_subframes(FlacEncodeContext *s)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int ch;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     for(ch=0; ch<s->channels; ch++) {
 | |
|         sub = &frame->subframes[ch];
 | |
| 
 | |
|         /* subframe header */
 | |
|         put_bits(&s->pb, 1, 0);
 | |
|         put_bits(&s->pb, 6, sub->type_code);
 | |
|         put_bits(&s->pb, 1, 0); /* no wasted bits */
 | |
| 
 | |
|         /* subframe */
 | |
|         if(sub->type == FLAC_SUBFRAME_CONSTANT) {
 | |
|             output_subframe_constant(s, ch);
 | |
|         } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
 | |
|             output_subframe_verbatim(s, ch);
 | |
|         } else if(sub->type == FLAC_SUBFRAME_FIXED) {
 | |
|             output_subframe_fixed(s, ch);
 | |
|         } else if(sub->type == FLAC_SUBFRAME_LPC) {
 | |
|             output_subframe_lpc(s, ch);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void output_frame_footer(FlacEncodeContext *s)
 | |
| {
 | |
|     int crc;
 | |
|     flush_put_bits(&s->pb);
 | |
|     crc = bswap_16(av_crc(av_crc8005, 0, s->pb.buf, put_bits_count(&s->pb)>>3));
 | |
|     put_bits(&s->pb, 16, crc);
 | |
|     flush_put_bits(&s->pb);
 | |
| }
 | |
| 
 | |
| static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
 | |
|                              int buf_size, void *data)
 | |
| {
 | |
|     int ch;
 | |
|     FlacEncodeContext *s;
 | |
|     int16_t *samples = data;
 | |
|     int out_bytes;
 | |
| 
 | |
|     s = avctx->priv_data;
 | |
| 
 | |
|     s->blocksize = avctx->frame_size;
 | |
|     init_frame(s);
 | |
| 
 | |
|     copy_samples(s, samples);
 | |
| 
 | |
|     channel_decorrelation(s);
 | |
| 
 | |
|     for(ch=0; ch<s->channels; ch++) {
 | |
|         encode_residual(s, ch);
 | |
|     }
 | |
|     init_put_bits(&s->pb, frame, buf_size);
 | |
|     output_frame_header(s);
 | |
|     output_subframes(s);
 | |
|     output_frame_footer(s);
 | |
|     out_bytes = put_bits_count(&s->pb) >> 3;
 | |
| 
 | |
|     if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
 | |
|         /* frame too large. use verbatim mode */
 | |
|         for(ch=0; ch<s->channels; ch++) {
 | |
|             encode_residual_v(s, ch);
 | |
|         }
 | |
|         init_put_bits(&s->pb, frame, buf_size);
 | |
|         output_frame_header(s);
 | |
|         output_subframes(s);
 | |
|         output_frame_footer(s);
 | |
|         out_bytes = put_bits_count(&s->pb) >> 3;
 | |
| 
 | |
|         if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
 | |
|             /* still too large. must be an error. */
 | |
|             av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->frame_count++;
 | |
|     return out_bytes;
 | |
| }
 | |
| 
 | |
| static int flac_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     av_freep(&avctx->extradata);
 | |
|     avctx->extradata_size = 0;
 | |
|     av_freep(&avctx->coded_frame);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec flac_encoder = {
 | |
|     "flac",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_FLAC,
 | |
|     sizeof(FlacEncodeContext),
 | |
|     flac_encode_init,
 | |
|     flac_encode_frame,
 | |
|     flac_encode_close,
 | |
|     NULL,
 | |
|     .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
 | |
| };
 | 
