mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			616 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			616 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003 LeFunGus, lefungus@altern.org
 | |
|  *
 | |
|  * This file is part of FFmpeg
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along
 | |
|  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 | |
|  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | |
|  */
 | |
| 
 | |
| #include <float.h>
 | |
| 
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/pixdesc.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "libavutil/opt.h"
 | |
| 
 | |
| #include "avfilter.h"
 | |
| #include "formats.h"
 | |
| #include "internal.h"
 | |
| #include "video.h"
 | |
| 
 | |
| typedef struct VagueDenoiserContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     float threshold;
 | |
|     float percent;
 | |
|     int method;
 | |
|     int type;
 | |
|     int nsteps;
 | |
|     int planes;
 | |
| 
 | |
|     int depth;
 | |
|     int bpc;
 | |
|     int peak;
 | |
|     int nb_planes;
 | |
|     int planeheight[4];
 | |
|     int planewidth[4];
 | |
| 
 | |
|     float *block;
 | |
|     float *in;
 | |
|     float *out;
 | |
|     float *tmp;
 | |
| 
 | |
|     int hlowsize[4][32];
 | |
|     int hhighsize[4][32];
 | |
|     int vlowsize[4][32];
 | |
|     int vhighsize[4][32];
 | |
| 
 | |
|     void (*thresholding)(float *block, const int width, const int height,
 | |
|                          const int stride, const float threshold,
 | |
|                          const float percent);
 | |
| } VagueDenoiserContext;
 | |
| 
 | |
| #define OFFSET(x) offsetof(VagueDenoiserContext, x)
 | |
| #define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
 | |
| static const AVOption vaguedenoiser_options[] = {
 | |
|     { "threshold", "set filtering strength",   OFFSET(threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.},  0,DBL_MAX, FLAGS },
 | |
|     { "method",    "set filtering method",     OFFSET(method),    AV_OPT_TYPE_INT,   {.i64=2 },  0, 2,      FLAGS, "method" },
 | |
|         { "hard",   "hard thresholding",       0,                 AV_OPT_TYPE_CONST, {.i64=0},   0, 0,      FLAGS, "method" },
 | |
|         { "soft",   "soft thresholding",       0,                 AV_OPT_TYPE_CONST, {.i64=1},   0, 0,      FLAGS, "method" },
 | |
|         { "garrote", "garrote thresholding",   0,                 AV_OPT_TYPE_CONST, {.i64=2},   0, 0,      FLAGS, "method" },
 | |
|     { "nsteps",    "set number of steps",      OFFSET(nsteps),    AV_OPT_TYPE_INT,   {.i64=6 },  1, 32,     FLAGS },
 | |
|     { "percent", "set percent of full denoising", OFFSET(percent),AV_OPT_TYPE_FLOAT, {.dbl=85},  0,100,     FLAGS },
 | |
|     { "planes",    "set planes to filter",     OFFSET(planes),    AV_OPT_TYPE_INT,   {.i64=15 }, 0, 15,     FLAGS },
 | |
|     { "type",    "set threshold type",     OFFSET(type),          AV_OPT_TYPE_INT,   {.i64=0 },  0, 1,      FLAGS, "type" },
 | |
|         { "universal",  "universal (VisuShrink)", 0,              AV_OPT_TYPE_CONST, {.i64=0},   0, 0,      FLAGS, "type" },
 | |
|         { "bayes",      "bayes (BayesShrink)",    0,              AV_OPT_TYPE_CONST, {.i64=1},   0, 0,      FLAGS, "type" },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(vaguedenoiser);
 | |
| 
 | |
| #define NPAD 10
 | |
| 
 | |
| static const float analysis_low[9] = {
 | |
|     0.037828455506995f, -0.023849465019380f, -0.110624404418423f, 0.377402855612654f,
 | |
|     0.852698679009403f, 0.377402855612654f, -0.110624404418423f, -0.023849465019380f, 0.037828455506995f
 | |
| };
 | |
| 
 | |
| static const float analysis_high[7] = {
 | |
|     -0.064538882628938f, 0.040689417609558f, 0.418092273222212f, -0.788485616405664f,
 | |
|     0.418092273222212f, 0.040689417609558f, -0.064538882628938f
 | |
| };
 | |
| 
 | |
| static const float synthesis_low[7] = {
 | |
|     -0.064538882628938f, -0.040689417609558f, 0.418092273222212f, 0.788485616405664f,
 | |
|     0.418092273222212f, -0.040689417609558f, -0.064538882628938f
 | |
| };
 | |
| 
 | |
| static const float synthesis_high[9] = {
 | |
|     -0.037828455506995f, -0.023849465019380f, 0.110624404418423f, 0.377402855612654f,
 | |
|     -0.852698679009403f, 0.377402855612654f, 0.110624404418423f, -0.023849465019380f, -0.037828455506995f
 | |
| };
 | |
| 
 | |
| static const enum AVPixelFormat pix_fmts[] = {
 | |
|     AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
 | |
|     AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
 | |
|     AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
 | |
|     AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
 | |
|     AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
 | |
|     AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
 | |
|     AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
 | |
|     AV_PIX_FMT_YUVJ411P,
 | |
|     AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
 | |
|     AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
 | |
|     AV_PIX_FMT_YUV440P10,
 | |
|     AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
 | |
|     AV_PIX_FMT_YUV440P12,
 | |
|     AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
 | |
|     AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
 | |
|     AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
 | |
|     AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
 | |
|     AV_PIX_FMT_YUVA420P,  AV_PIX_FMT_YUVA422P,   AV_PIX_FMT_YUVA444P,
 | |
|     AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
 | |
|     AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
 | |
|     AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
 | |
|     AV_PIX_FMT_GBRAP,     AV_PIX_FMT_GBRAP10,    AV_PIX_FMT_GBRAP12,    AV_PIX_FMT_GBRAP16,
 | |
|     AV_PIX_FMT_NONE
 | |
| };
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     VagueDenoiserContext *s = inlink->dst->priv;
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 | |
|     int p, i, nsteps_width, nsteps_height, nsteps_max;
 | |
| 
 | |
|     s->depth = desc->comp[0].depth;
 | |
|     s->bpc = (s->depth + 7) / 8;
 | |
|     s->nb_planes = desc->nb_components;
 | |
| 
 | |
|     s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
 | |
|     s->planeheight[0] = s->planeheight[3] = inlink->h;
 | |
|     s->planewidth[1]  = s->planewidth[2]  = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
 | |
|     s->planewidth[0]  = s->planewidth[3]  = inlink->w;
 | |
| 
 | |
|     s->block = av_malloc_array(inlink->w * inlink->h, sizeof(*s->block));
 | |
|     s->in    = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->in));
 | |
|     s->out   = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->out));
 | |
|     s->tmp   = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->tmp));
 | |
| 
 | |
|     if (!s->block || !s->in || !s->out || !s->tmp)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->threshold *= 1 << (s->depth - 8);
 | |
|     s->peak = (1 << s->depth) - 1;
 | |
| 
 | |
|     nsteps_width  = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planewidth[1] : s->planewidth[0];
 | |
|     nsteps_height = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planeheight[1] : s->planeheight[0];
 | |
| 
 | |
|     for (nsteps_max = 1; nsteps_max < 15; nsteps_max++) {
 | |
|         if (pow(2, nsteps_max) >= nsteps_width || pow(2, nsteps_max) >= nsteps_height)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     s->nsteps = FFMIN(s->nsteps, nsteps_max - 2);
 | |
| 
 | |
|     for (p = 0; p < 4; p++) {
 | |
|         s->hlowsize[p][0]  = (s->planewidth[p] + 1) >> 1;
 | |
|         s->hhighsize[p][0] =  s->planewidth[p] >> 1;
 | |
|         s->vlowsize[p][0]  = (s->planeheight[p] + 1) >> 1;
 | |
|         s->vhighsize[p][0] =  s->planeheight[p] >> 1;
 | |
| 
 | |
|         for (i = 1; i < s->nsteps; i++) {
 | |
|             s->hlowsize[p][i]  = (s->hlowsize[p][i - 1] + 1) >> 1;
 | |
|             s->hhighsize[p][i] =  s->hlowsize[p][i - 1] >> 1;
 | |
|             s->vlowsize[p][i]  = (s->vlowsize[p][i - 1] + 1) >> 1;
 | |
|             s->vhighsize[p][i] =  s->vlowsize[p][i - 1] >> 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void copy(const float *p1, float *p2, const int length)
 | |
| {
 | |
|     memcpy(p2, p1, length * sizeof(float));
 | |
| }
 | |
| 
 | |
| static inline void copyv(const float *p1, const int stride1, float *p2, const int length)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < length; i++) {
 | |
|         p2[i] = *p1;
 | |
|         p1 += stride1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void copyh(const float *p1, float *p2, const int stride2, const int length)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < length; i++) {
 | |
|         *p2 = p1[i];
 | |
|         p2 += stride2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Do symmetric extension of data using prescribed symmetries
 | |
| // Original values are in output[npad] through output[npad+size-1]
 | |
| // New values will be placed in output[0] through output[npad] and in output[npad+size] through output[2*npad+size-1] (note: end values may not be filled in)
 | |
| // extension at left bdry is ... 3 2 1 0 | 0 1 2 3 ...
 | |
| // same for right boundary
 | |
| // if right_ext=1 then ... 3 2 1 0 | 1 2 3
 | |
| static void symmetric_extension(float *output, const int size, const int left_ext, const int right_ext)
 | |
| {
 | |
|     int first = NPAD;
 | |
|     int last = NPAD - 1 + size;
 | |
|     const int originalLast = last;
 | |
|     int i, nextend, idx;
 | |
| 
 | |
|     if (left_ext == 2)
 | |
|         output[--first] = output[NPAD];
 | |
|     if (right_ext == 2)
 | |
|         output[++last] = output[originalLast];
 | |
| 
 | |
|     // extend left end
 | |
|     nextend = first;
 | |
|     for (i = 0; i < nextend; i++)
 | |
|         output[--first] = output[NPAD + 1 + i];
 | |
| 
 | |
|     idx = NPAD + NPAD - 1 + size;
 | |
| 
 | |
|     // extend right end
 | |
|     nextend = idx - last;
 | |
|     for (i = 0; i < nextend; i++)
 | |
|         output[++last] = output[originalLast - 1 - i];
 | |
| }
 | |
| 
 | |
| static void transform_step(float *input, float *output, const int size, const int low_size, VagueDenoiserContext *s)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     symmetric_extension(input, size, 1, 1);
 | |
| 
 | |
|     for (i = NPAD; i < NPAD + low_size; i++) {
 | |
|         const float a = input[2 * i - 14] * analysis_low[0];
 | |
|         const float b = input[2 * i - 13] * analysis_low[1];
 | |
|         const float c = input[2 * i - 12] * analysis_low[2];
 | |
|         const float d = input[2 * i - 11] * analysis_low[3];
 | |
|         const float e = input[2 * i - 10] * analysis_low[4];
 | |
|         const float f = input[2 * i -  9] * analysis_low[3];
 | |
|         const float g = input[2 * i -  8] * analysis_low[2];
 | |
|         const float h = input[2 * i -  7] * analysis_low[1];
 | |
|         const float k = input[2 * i -  6] * analysis_low[0];
 | |
| 
 | |
|         output[i] = a + b + c + d + e + f + g + h + k;
 | |
|     }
 | |
| 
 | |
|     for (i = NPAD; i < NPAD + low_size; i++) {
 | |
|         const float a = input[2 * i - 12] * analysis_high[0];
 | |
|         const float b = input[2 * i - 11] * analysis_high[1];
 | |
|         const float c = input[2 * i - 10] * analysis_high[2];
 | |
|         const float d = input[2 * i -  9] * analysis_high[3];
 | |
|         const float e = input[2 * i -  8] * analysis_high[2];
 | |
|         const float f = input[2 * i -  7] * analysis_high[1];
 | |
|         const float g = input[2 * i -  6] * analysis_high[0];
 | |
| 
 | |
|         output[i + low_size] = a + b + c + d + e + f + g;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void invert_step(const float *input, float *output, float *temp, const int size, VagueDenoiserContext *s)
 | |
| {
 | |
|     const int low_size = (size + 1) >> 1;
 | |
|     const int high_size = size >> 1;
 | |
|     int left_ext = 1, right_ext, i;
 | |
|     int findex;
 | |
| 
 | |
|     memcpy(temp + NPAD, input + NPAD, low_size * sizeof(float));
 | |
| 
 | |
|     right_ext = (size % 2 == 0) ? 2 : 1;
 | |
|     symmetric_extension(temp, low_size, left_ext, right_ext);
 | |
| 
 | |
|     memset(output, 0, (NPAD + NPAD + size) * sizeof(float));
 | |
|     findex = (size + 2) >> 1;
 | |
| 
 | |
|     for (i = 9; i < findex + 11; i++) {
 | |
|         const float a = temp[i] * synthesis_low[0];
 | |
|         const float b = temp[i] * synthesis_low[1];
 | |
|         const float c = temp[i] * synthesis_low[2];
 | |
|         const float d = temp[i] * synthesis_low[3];
 | |
| 
 | |
|         output[2 * i - 13] += a;
 | |
|         output[2 * i - 12] += b;
 | |
|         output[2 * i - 11] += c;
 | |
|         output[2 * i - 10] += d;
 | |
|         output[2 * i -  9] += c;
 | |
|         output[2 * i -  8] += b;
 | |
|         output[2 * i -  7] += a;
 | |
|     }
 | |
| 
 | |
|     memcpy(temp + NPAD, input + NPAD + low_size, high_size * sizeof(float));
 | |
| 
 | |
|     left_ext = 2;
 | |
|     right_ext = (size % 2 == 0) ? 1 : 2;
 | |
|     symmetric_extension(temp, high_size, left_ext, right_ext);
 | |
| 
 | |
|     for (i = 8; i < findex + 11; i++) {
 | |
|         const float a = temp[i] * synthesis_high[0];
 | |
|         const float b = temp[i] * synthesis_high[1];
 | |
|         const float c = temp[i] * synthesis_high[2];
 | |
|         const float d = temp[i] * synthesis_high[3];
 | |
|         const float e = temp[i] * synthesis_high[4];
 | |
| 
 | |
|         output[2 * i - 13] += a;
 | |
|         output[2 * i - 12] += b;
 | |
|         output[2 * i - 11] += c;
 | |
|         output[2 * i - 10] += d;
 | |
|         output[2 * i -  9] += e;
 | |
|         output[2 * i -  8] += d;
 | |
|         output[2 * i -  7] += c;
 | |
|         output[2 * i -  6] += b;
 | |
|         output[2 * i -  5] += a;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hard_thresholding(float *block, const int width, const int height,
 | |
|                               const int stride, const float threshold,
 | |
|                               const float percent)
 | |
| {
 | |
|     const float frac = 1.f - percent * 0.01f;
 | |
|     int y, x;
 | |
| 
 | |
|     for (y = 0; y < height; y++) {
 | |
|         for (x = 0; x < width; x++) {
 | |
|             if (FFABS(block[x]) <= threshold)
 | |
|                 block[x] *= frac;
 | |
|         }
 | |
|         block += stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void soft_thresholding(float *block, const int width, const int height, const int stride,
 | |
|                               const float threshold, const float percent)
 | |
| {
 | |
|     const float frac = 1.f - percent * 0.01f;
 | |
|     const float shift = threshold * 0.01f * percent;
 | |
|     int y, x;
 | |
| 
 | |
|     for (y = 0; y < height; y++) {
 | |
|         for (x = 0; x < width; x++) {
 | |
|             const float temp = FFABS(block[x]);
 | |
|             if (temp <= threshold)
 | |
|                 block[x] *= frac;
 | |
|             else
 | |
|                 block[x] = (block[x] < 0.f ? -1.f : (block[x] > 0.f ? 1.f : 0.f)) * (temp - shift);
 | |
|         }
 | |
|         block += stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void qian_thresholding(float *block, const int width, const int height,
 | |
|                               const int stride, const float threshold,
 | |
|                               const float percent)
 | |
| {
 | |
|     const float percent01 = percent * 0.01f;
 | |
|     const float tr2 = threshold * threshold * percent01;
 | |
|     const float frac = 1.f - percent01;
 | |
|     int y, x;
 | |
| 
 | |
|     for (y = 0; y < height; y++) {
 | |
|         for (x = 0; x < width; x++) {
 | |
|             const float temp = FFABS(block[x]);
 | |
|             if (temp <= threshold) {
 | |
|                 block[x] *= frac;
 | |
|             } else {
 | |
|                 const float tp2 = temp * temp;
 | |
|                 block[x] *= (tp2 - tr2) / tp2;
 | |
|             }
 | |
|         }
 | |
|         block += stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static float bayes_threshold(float *block, const int width, const int height,
 | |
|                               const int stride, const float threshold)
 | |
| {
 | |
|     float mean = 0.f;
 | |
| 
 | |
|     for (int y = 0; y < height; y++) {
 | |
|         for (int x = 0; x < width; x++) {
 | |
|             mean += block[x] * block[x];
 | |
|         }
 | |
|         block += stride;
 | |
|     }
 | |
| 
 | |
|     mean /= width * height;
 | |
| 
 | |
|     return threshold * threshold / (FFMAX(sqrtf(mean - threshold), FLT_EPSILON));
 | |
| }
 | |
| 
 | |
| static void filter(VagueDenoiserContext *s, AVFrame *in, AVFrame *out)
 | |
| {
 | |
|     int p, y, x, i, j;
 | |
| 
 | |
|     for (p = 0; p < s->nb_planes; p++) {
 | |
|         const int height = s->planeheight[p];
 | |
|         const int width = s->planewidth[p];
 | |
|         const uint8_t *srcp8 = in->data[p];
 | |
|         const uint16_t *srcp16 = (const uint16_t *)in->data[p];
 | |
|         uint8_t *dstp8 = out->data[p];
 | |
|         uint16_t *dstp16 = (uint16_t *)out->data[p];
 | |
|         float *output = s->block;
 | |
|         int h_low_size0 = width;
 | |
|         int v_low_size0 = height;
 | |
|         int nsteps_transform = s->nsteps;
 | |
|         int nsteps_invert = s->nsteps;
 | |
|         const float *input = s->block;
 | |
| 
 | |
|         if (!((1 << p) & s->planes)) {
 | |
|             av_image_copy_plane(out->data[p], out->linesize[p], in->data[p], in->linesize[p],
 | |
|                                 s->planewidth[p] * s->bpc, s->planeheight[p]);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (s->depth <= 8) {
 | |
|             for (y = 0; y < height; y++) {
 | |
|                 for (x = 0; x < width; x++)
 | |
|                     output[x] = srcp8[x];
 | |
|                 srcp8 += in->linesize[p];
 | |
|                 output += width;
 | |
|             }
 | |
|         } else {
 | |
|             for (y = 0; y < height; y++) {
 | |
|                 for (x = 0; x < width; x++)
 | |
|                     output[x] = srcp16[x];
 | |
|                 srcp16 += in->linesize[p] / 2;
 | |
|                 output += width;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         while (nsteps_transform--) {
 | |
|             int low_size = (h_low_size0 + 1) >> 1;
 | |
|             float *input = s->block;
 | |
|             for (j = 0; j < v_low_size0; j++) {
 | |
|                 copy(input, s->in + NPAD, h_low_size0);
 | |
|                 transform_step(s->in, s->out, h_low_size0, low_size, s);
 | |
|                 copy(s->out + NPAD, input, h_low_size0);
 | |
|                 input += width;
 | |
|             }
 | |
| 
 | |
|             low_size = (v_low_size0 + 1) >> 1;
 | |
|             input = s->block;
 | |
|             for (j = 0; j < h_low_size0; j++) {
 | |
|                 copyv(input, width, s->in + NPAD, v_low_size0);
 | |
|                 transform_step(s->in, s->out, v_low_size0, low_size, s);
 | |
|                 copyh(s->out + NPAD, input, width, v_low_size0);
 | |
|                 input++;
 | |
|             }
 | |
| 
 | |
|             h_low_size0 = (h_low_size0 + 1) >> 1;
 | |
|             v_low_size0 = (v_low_size0 + 1) >> 1;
 | |
|         }
 | |
| 
 | |
|         if (s->type == 0) {
 | |
|             s->thresholding(s->block, width, height, width, s->threshold, s->percent);
 | |
|         } else {
 | |
|             for (int n = 0; n < s->nsteps; n++) {
 | |
|                 float threshold;
 | |
|                 float *block;
 | |
| 
 | |
|                 if (n == s->nsteps - 1) {
 | |
|                     threshold = bayes_threshold(s->block, s->hlowsize[p][n], s->vlowsize[p][n], width, s->threshold);
 | |
|                     s->thresholding(s->block, s->hlowsize[p][n], s->vlowsize[p][n], width, threshold, s->percent);
 | |
|                 }
 | |
|                 block = s->block + s->hlowsize[p][n];
 | |
|                 threshold = bayes_threshold(block, s->hhighsize[p][n], s->vlowsize[p][n], width, s->threshold);
 | |
|                 s->thresholding(block, s->hhighsize[p][n], s->vlowsize[p][n], width, threshold, s->percent);
 | |
|                 block = s->block + s->vlowsize[p][n] * width;
 | |
|                 threshold = bayes_threshold(block, s->hlowsize[p][n], s->vhighsize[p][n], width, s->threshold);
 | |
|                 s->thresholding(block, s->hlowsize[p][n], s->vhighsize[p][n], width, threshold, s->percent);
 | |
|                 block = s->block + s->hlowsize[p][n] + s->vlowsize[p][n] * width;
 | |
|                 threshold = bayes_threshold(block, s->hhighsize[p][n], s->vhighsize[p][n], width, s->threshold);
 | |
|                 s->thresholding(block, s->hhighsize[p][n], s->vhighsize[p][n], width, threshold, s->percent);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         while (nsteps_invert--) {
 | |
|             const int idx = s->vlowsize[p][nsteps_invert]  + s->vhighsize[p][nsteps_invert];
 | |
|             const int idx2 = s->hlowsize[p][nsteps_invert] + s->hhighsize[p][nsteps_invert];
 | |
|             float * idx3 = s->block;
 | |
|             for (i = 0; i < idx2; i++) {
 | |
|                 copyv(idx3, width, s->in + NPAD, idx);
 | |
|                 invert_step(s->in, s->out, s->tmp, idx, s);
 | |
|                 copyh(s->out + NPAD, idx3, width, idx);
 | |
|                 idx3++;
 | |
|             }
 | |
| 
 | |
|             idx3 = s->block;
 | |
|             for (i = 0; i < idx; i++) {
 | |
|                 copy(idx3, s->in + NPAD, idx2);
 | |
|                 invert_step(s->in, s->out, s->tmp, idx2, s);
 | |
|                 copy(s->out + NPAD, idx3, idx2);
 | |
|                 idx3 += width;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->depth <= 8) {
 | |
|             for (y = 0; y < height; y++) {
 | |
|                 for (x = 0; x < width; x++)
 | |
|                     dstp8[x] = av_clip_uint8(input[x] + 0.5f);
 | |
|                 input += width;
 | |
|                 dstp8 += out->linesize[p];
 | |
|             }
 | |
|         } else {
 | |
|             for (y = 0; y < height; y++) {
 | |
|                 for (x = 0; x < width; x++)
 | |
|                     dstp16[x] = av_clip(input[x] + 0.5f, 0, s->peak);
 | |
|                 input += width;
 | |
|                 dstp16 += out->linesize[p] / 2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx  = inlink->dst;
 | |
|     VagueDenoiserContext *s = ctx->priv;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AVFrame *out;
 | |
|     int direct = av_frame_is_writable(in);
 | |
| 
 | |
|     if (direct) {
 | |
|         out = in;
 | |
|     } else {
 | |
|         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | |
|         if (!out) {
 | |
|             av_frame_free(&in);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
| 
 | |
|         av_frame_copy_props(out, in);
 | |
|     }
 | |
| 
 | |
|     filter(s, in, out);
 | |
| 
 | |
|     if (!direct)
 | |
|         av_frame_free(&in);
 | |
| 
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static av_cold int init(AVFilterContext *ctx)
 | |
| {
 | |
|     VagueDenoiserContext *s = ctx->priv;
 | |
| 
 | |
|     switch (s->method) {
 | |
|     case 0:
 | |
|         s->thresholding = hard_thresholding;
 | |
|         break;
 | |
|     case 1:
 | |
|         s->thresholding = soft_thresholding;
 | |
|         break;
 | |
|     case 2:
 | |
|         s->thresholding = qian_thresholding;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     VagueDenoiserContext *s = ctx->priv;
 | |
| 
 | |
|     av_freep(&s->block);
 | |
|     av_freep(&s->in);
 | |
|     av_freep(&s->out);
 | |
|     av_freep(&s->tmp);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad vaguedenoiser_inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .config_props = config_input,
 | |
|         .filter_frame = filter_frame,
 | |
|     },
 | |
| };
 | |
| 
 | |
| 
 | |
| static const AVFilterPad vaguedenoiser_outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_VIDEO
 | |
|     },
 | |
| };
 | |
| 
 | |
| const AVFilter ff_vf_vaguedenoiser = {
 | |
|     .name          = "vaguedenoiser",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Apply a Wavelet based Denoiser."),
 | |
|     .priv_size     = sizeof(VagueDenoiserContext),
 | |
|     .priv_class    = &vaguedenoiser_class,
 | |
|     .init          = init,
 | |
|     .uninit        = uninit,
 | |
|     FILTER_INPUTS(vaguedenoiser_inputs),
 | |
|     FILTER_OUTPUTS(vaguedenoiser_outputs),
 | |
|     FILTER_PIXFMTS_ARRAY(pix_fmts),
 | |
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
 | |
| };
 | 
