mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1972 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1972 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * DCA compatible decoder
 | |
|  * Copyright (C) 2004 Gildas Bazin
 | |
|  * Copyright (C) 2004 Benjamin Zores
 | |
|  * Copyright (C) 2006 Benjamin Larsson
 | |
|  * Copyright (C) 2007 Konstantin Shishkov
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/intmath.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "libavutil/audioconvert.h"
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| #include "fft.h"
 | |
| #include "get_bits.h"
 | |
| #include "put_bits.h"
 | |
| #include "dcadata.h"
 | |
| #include "dcahuff.h"
 | |
| #include "dca.h"
 | |
| #include "dca_parser.h"
 | |
| #include "synth_filter.h"
 | |
| #include "dcadsp.h"
 | |
| #include "fmtconvert.h"
 | |
| 
 | |
| #if ARCH_ARM
 | |
| #   include "arm/dca.h"
 | |
| #endif
 | |
| 
 | |
| //#define TRACE
 | |
| 
 | |
| #define DCA_PRIM_CHANNELS_MAX  (7)
 | |
| #define DCA_SUBBANDS          (32)
 | |
| #define DCA_ABITS_MAX         (32)      /* Should be 28 */
 | |
| #define DCA_SUBSUBFRAMES_MAX   (4)
 | |
| #define DCA_SUBFRAMES_MAX     (16)
 | |
| #define DCA_BLOCKS_MAX        (16)
 | |
| #define DCA_LFE_MAX            (3)
 | |
| 
 | |
| enum DCAMode {
 | |
|     DCA_MONO = 0,
 | |
|     DCA_CHANNEL,
 | |
|     DCA_STEREO,
 | |
|     DCA_STEREO_SUMDIFF,
 | |
|     DCA_STEREO_TOTAL,
 | |
|     DCA_3F,
 | |
|     DCA_2F1R,
 | |
|     DCA_3F1R,
 | |
|     DCA_2F2R,
 | |
|     DCA_3F2R,
 | |
|     DCA_4F2R
 | |
| };
 | |
| 
 | |
| /* these are unconfirmed but should be mostly correct */
 | |
| enum DCAExSSSpeakerMask {
 | |
|     DCA_EXSS_FRONT_CENTER          = 0x0001,
 | |
|     DCA_EXSS_FRONT_LEFT_RIGHT      = 0x0002,
 | |
|     DCA_EXSS_SIDE_REAR_LEFT_RIGHT  = 0x0004,
 | |
|     DCA_EXSS_LFE                   = 0x0008,
 | |
|     DCA_EXSS_REAR_CENTER           = 0x0010,
 | |
|     DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
 | |
|     DCA_EXSS_REAR_LEFT_RIGHT       = 0x0040,
 | |
|     DCA_EXSS_FRONT_HIGH_CENTER     = 0x0080,
 | |
|     DCA_EXSS_OVERHEAD              = 0x0100,
 | |
|     DCA_EXSS_CENTER_LEFT_RIGHT     = 0x0200,
 | |
|     DCA_EXSS_WIDE_LEFT_RIGHT       = 0x0400,
 | |
|     DCA_EXSS_SIDE_LEFT_RIGHT       = 0x0800,
 | |
|     DCA_EXSS_LFE2                  = 0x1000,
 | |
|     DCA_EXSS_SIDE_HIGH_LEFT_RIGHT  = 0x2000,
 | |
|     DCA_EXSS_REAR_HIGH_CENTER      = 0x4000,
 | |
|     DCA_EXSS_REAR_HIGH_LEFT_RIGHT  = 0x8000,
 | |
| };
 | |
| 
 | |
| enum DCAExtensionMask {
 | |
|     DCA_EXT_CORE       = 0x001, ///< core in core substream
 | |
|     DCA_EXT_XXCH       = 0x002, ///< XXCh channels extension in core substream
 | |
|     DCA_EXT_X96        = 0x004, ///< 96/24 extension in core substream
 | |
|     DCA_EXT_XCH        = 0x008, ///< XCh channel extension in core substream
 | |
|     DCA_EXT_EXSS_CORE  = 0x010, ///< core in ExSS (extension substream)
 | |
|     DCA_EXT_EXSS_XBR   = 0x020, ///< extended bitrate extension in ExSS
 | |
|     DCA_EXT_EXSS_XXCH  = 0x040, ///< XXCh channels extension in ExSS
 | |
|     DCA_EXT_EXSS_X96   = 0x080, ///< 96/24 extension in ExSS
 | |
|     DCA_EXT_EXSS_LBR   = 0x100, ///< low bitrate component in ExSS
 | |
|     DCA_EXT_EXSS_XLL   = 0x200, ///< lossless extension in ExSS
 | |
| };
 | |
| 
 | |
| /* -1 are reserved or unknown */
 | |
| static const int dca_ext_audio_descr_mask[] = {
 | |
|     DCA_EXT_XCH,
 | |
|     -1,
 | |
|     DCA_EXT_X96,
 | |
|     DCA_EXT_XCH | DCA_EXT_X96,
 | |
|     -1,
 | |
|     -1,
 | |
|     DCA_EXT_XXCH,
 | |
|     -1,
 | |
| };
 | |
| 
 | |
| /* extensions that reside in core substream */
 | |
| #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
 | |
| 
 | |
| /* Tables for mapping dts channel configurations to libavcodec multichannel api.
 | |
|  * Some compromises have been made for special configurations. Most configurations
 | |
|  * are never used so complete accuracy is not needed.
 | |
|  *
 | |
|  * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
 | |
|  * S  -> side, when both rear and back are configured move one of them to the side channel
 | |
|  * OV -> center back
 | |
|  * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
 | |
|  */
 | |
| static const uint64_t dca_core_channel_layout[] = {
 | |
|     AV_CH_FRONT_CENTER,                                                     ///< 1, A
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, A + B (dual mono)
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, L + R (stereo)
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, (L + R) + (L - R) (sum-difference)
 | |
|     AV_CH_LAYOUT_STEREO,                                                    ///< 2, LT + RT (left and right total)
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER,                               ///< 3, C + L + R
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER,                                ///< 3, L + R + S
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER,           ///< 4, C + L + R + S
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,               ///< 4, L + R + SL + SR
 | |
| 
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
 | |
|     AV_CH_SIDE_RIGHT,                                                       ///< 5, C + L + R + SL + SR
 | |
| 
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER,               ///< 6, CL + CR + L + R + SL + SR
 | |
| 
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
 | |
|     AV_CH_FRONT_CENTER  | AV_CH_BACK_CENTER,                                ///< 6, C + L + R + LR + RR + OV
 | |
| 
 | |
|     AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER   |
 | |
|     AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT,                                     ///< 6, CF + CR + LF + RF + LR + RR
 | |
| 
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER   |
 | |
|     AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
 | |
|     AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,                                     ///< 7, CL + C + CR + L + R + SL + SR
 | |
| 
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
 | |
|     AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
 | |
|     AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT,                                     ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
 | |
| 
 | |
|     AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER   |
 | |
|     AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
 | |
|     AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT,                 ///< 8, CL + C + CR + L + R + SL + S + SR
 | |
| };
 | |
| 
 | |
| static const int8_t dca_lfe_index[] = {
 | |
|     1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
 | |
| };
 | |
| 
 | |
| static const int8_t dca_channel_reorder_lfe[][9] = {
 | |
|     { 0, -1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3,  4, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4,  5, -1, -1, -1, -1},
 | |
|     { 3,  4,  0,  1,  5,  6, -1, -1, -1},
 | |
|     { 2,  0,  1,  4,  5,  6, -1, -1, -1},
 | |
|     { 0,  6,  4,  5,  2,  3, -1, -1, -1},
 | |
|     { 4,  2,  5,  0,  1,  6,  7, -1, -1},
 | |
|     { 5,  6,  0,  1,  7,  3,  8,  4, -1},
 | |
|     { 4,  2,  5,  0,  1,  6,  8,  7, -1},
 | |
| };
 | |
| 
 | |
| static const int8_t dca_channel_reorder_lfe_xch[][9] = {
 | |
|     { 0,  2, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  3,  4, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4,  5, -1, -1, -1, -1},
 | |
|     { 0,  1,  4,  5,  3, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  5,  6,  4, -1, -1, -1},
 | |
|     { 3,  4,  0,  1,  6,  7,  5, -1, -1},
 | |
|     { 2,  0,  1,  4,  5,  6,  7, -1, -1},
 | |
|     { 0,  6,  4,  5,  2,  3,  7, -1, -1},
 | |
|     { 4,  2,  5,  0,  1,  7,  8,  6, -1},
 | |
|     { 5,  6,  0,  1,  8,  3,  9,  4,  7},
 | |
|     { 4,  2,  5,  0,  1,  6,  9,  8,  7},
 | |
| };
 | |
| 
 | |
| static const int8_t dca_channel_reorder_nolfe[][9] = {
 | |
|     { 0, -1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  3, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2,  3, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  3,  4, -1, -1, -1, -1},
 | |
|     { 2,  3,  0,  1,  4,  5, -1, -1, -1},
 | |
|     { 2,  0,  1,  3,  4,  5, -1, -1, -1},
 | |
|     { 0,  5,  3,  4,  1,  2, -1, -1, -1},
 | |
|     { 3,  2,  4,  0,  1,  5,  6, -1, -1},
 | |
|     { 4,  5,  0,  1,  6,  2,  7,  3, -1},
 | |
|     { 3,  2,  4,  0,  1,  5,  7,  6, -1},
 | |
| };
 | |
| 
 | |
| static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
 | |
|     { 0,  1, -1, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2, -1, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2, -1, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  3, -1, -1, -1, -1, -1},
 | |
|     { 0,  1,  2,  3, -1, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  3,  4, -1, -1, -1, -1},
 | |
|     { 0,  1,  3,  4,  2, -1, -1, -1, -1},
 | |
|     { 2,  0,  1,  4,  5,  3, -1, -1, -1},
 | |
|     { 2,  3,  0,  1,  5,  6,  4, -1, -1},
 | |
|     { 2,  0,  1,  3,  4,  5,  6, -1, -1},
 | |
|     { 0,  5,  3,  4,  1,  2,  6, -1, -1},
 | |
|     { 3,  2,  4,  0,  1,  6,  7,  5, -1},
 | |
|     { 4,  5,  0,  1,  7,  2,  8,  3,  6},
 | |
|     { 3,  2,  4,  0,  1,  5,  8,  7,  6},
 | |
| };
 | |
| 
 | |
| #define DCA_DOLBY                  101           /* FIXME */
 | |
| 
 | |
| #define DCA_CHANNEL_BITS             6
 | |
| #define DCA_CHANNEL_MASK          0x3F
 | |
| 
 | |
| #define DCA_LFE                   0x80
 | |
| 
 | |
| #define HEADER_SIZE                 14
 | |
| 
 | |
| #define DCA_MAX_FRAME_SIZE       16384
 | |
| #define DCA_MAX_EXSS_HEADER_SIZE  4096
 | |
| 
 | |
| #define DCA_BUFFER_PADDING_SIZE   1024
 | |
| 
 | |
| /** Bit allocation */
 | |
| typedef struct {
 | |
|     int offset;                 ///< code values offset
 | |
|     int maxbits[8];             ///< max bits in VLC
 | |
|     int wrap;                   ///< wrap for get_vlc2()
 | |
|     VLC vlc[8];                 ///< actual codes
 | |
| } BitAlloc;
 | |
| 
 | |
| static BitAlloc dca_bitalloc_index;    ///< indexes for samples VLC select
 | |
| static BitAlloc dca_tmode;             ///< transition mode VLCs
 | |
| static BitAlloc dca_scalefactor;       ///< scalefactor VLCs
 | |
| static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
 | |
| 
 | |
| static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
 | |
|                                          int idx)
 | |
| {
 | |
|     return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
 | |
|            ba->offset;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     AVCodecContext *avctx;
 | |
|     AVFrame frame;
 | |
|     /* Frame header */
 | |
|     int frame_type;             ///< type of the current frame
 | |
|     int samples_deficit;        ///< deficit sample count
 | |
|     int crc_present;            ///< crc is present in the bitstream
 | |
|     int sample_blocks;          ///< number of PCM sample blocks
 | |
|     int frame_size;             ///< primary frame byte size
 | |
|     int amode;                  ///< audio channels arrangement
 | |
|     int sample_rate;            ///< audio sampling rate
 | |
|     int bit_rate;               ///< transmission bit rate
 | |
|     int bit_rate_index;         ///< transmission bit rate index
 | |
| 
 | |
|     int downmix;                ///< embedded downmix enabled
 | |
|     int dynrange;               ///< embedded dynamic range flag
 | |
|     int timestamp;              ///< embedded time stamp flag
 | |
|     int aux_data;               ///< auxiliary data flag
 | |
|     int hdcd;                   ///< source material is mastered in HDCD
 | |
|     int ext_descr;              ///< extension audio descriptor flag
 | |
|     int ext_coding;             ///< extended coding flag
 | |
|     int aspf;                   ///< audio sync word insertion flag
 | |
|     int lfe;                    ///< low frequency effects flag
 | |
|     int predictor_history;      ///< predictor history flag
 | |
|     int header_crc;             ///< header crc check bytes
 | |
|     int multirate_inter;        ///< multirate interpolator switch
 | |
|     int version;                ///< encoder software revision
 | |
|     int copy_history;           ///< copy history
 | |
|     int source_pcm_res;         ///< source pcm resolution
 | |
|     int front_sum;              ///< front sum/difference flag
 | |
|     int surround_sum;           ///< surround sum/difference flag
 | |
|     int dialog_norm;            ///< dialog normalisation parameter
 | |
| 
 | |
|     /* Primary audio coding header */
 | |
|     int subframes;              ///< number of subframes
 | |
|     int is_channels_set;        ///< check for if the channel number is already set
 | |
|     int total_channels;         ///< number of channels including extensions
 | |
|     int prim_channels;          ///< number of primary audio channels
 | |
|     int subband_activity[DCA_PRIM_CHANNELS_MAX];    ///< subband activity count
 | |
|     int vq_start_subband[DCA_PRIM_CHANNELS_MAX];    ///< high frequency vq start subband
 | |
|     int joint_intensity[DCA_PRIM_CHANNELS_MAX];     ///< joint intensity coding index
 | |
|     int transient_huffman[DCA_PRIM_CHANNELS_MAX];   ///< transient mode code book
 | |
|     int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
 | |
|     int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX];    ///< bit allocation quantizer select
 | |
|     int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
 | |
|     float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX];   ///< scale factor adjustment
 | |
| 
 | |
|     /* Primary audio coding side information */
 | |
|     int subsubframes[DCA_SUBFRAMES_MAX];                         ///< number of subsubframes
 | |
|     int partial_samples[DCA_SUBFRAMES_MAX];                      ///< partial subsubframe samples count
 | |
|     int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< prediction mode (ADPCM used or not)
 | |
|     int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];      ///< prediction VQ coefs
 | |
|     int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];           ///< bit allocation index
 | |
|     int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];    ///< transition mode (transients)
 | |
|     int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];    ///< scale factors (2 if transient)
 | |
|     int joint_huff[DCA_PRIM_CHANNELS_MAX];                       ///< joint subband scale factors codebook
 | |
|     int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
 | |
|     int downmix_coef[DCA_PRIM_CHANNELS_MAX][2];                  ///< stereo downmix coefficients
 | |
|     int dynrange_coef;                                           ///< dynamic range coefficient
 | |
| 
 | |
|     int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS];       ///< VQ encoded high frequency subbands
 | |
| 
 | |
|     float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)];      ///< Low frequency effect data
 | |
|     int lfe_scale_factor;
 | |
| 
 | |
|     /* Subband samples history (for ADPCM) */
 | |
|     DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
 | |
|     DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
 | |
|     DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
 | |
|     int hist_index[DCA_PRIM_CHANNELS_MAX];
 | |
|     DECLARE_ALIGNED(32, float, raXin)[32];
 | |
| 
 | |
|     int output;                 ///< type of output
 | |
|     float scale_bias;           ///< output scale
 | |
| 
 | |
|     DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
 | |
|     DECLARE_ALIGNED(32, float, samples)[(DCA_PRIM_CHANNELS_MAX + 1) * 256];
 | |
|     const float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
 | |
| 
 | |
|     uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
 | |
|     int dca_buffer_size;        ///< how much data is in the dca_buffer
 | |
| 
 | |
|     const int8_t *channel_order_tab;  ///< channel reordering table, lfe and non lfe
 | |
|     GetBitContext gb;
 | |
|     /* Current position in DCA frame */
 | |
|     int current_subframe;
 | |
|     int current_subsubframe;
 | |
| 
 | |
|     int core_ext_mask;          ///< present extensions in the core substream
 | |
| 
 | |
|     /* XCh extension information */
 | |
|     int xch_present;            ///< XCh extension present and valid
 | |
|     int xch_base_channel;       ///< index of first (only) channel containing XCH data
 | |
| 
 | |
|     /* ExSS header parser */
 | |
|     int static_fields;          ///< static fields present
 | |
|     int mix_metadata;           ///< mixing metadata present
 | |
|     int num_mix_configs;        ///< number of mix out configurations
 | |
|     int mix_config_num_ch[4];   ///< number of channels in each mix out configuration
 | |
| 
 | |
|     int profile;
 | |
| 
 | |
|     int debug_flag;             ///< used for suppressing repeated error messages output
 | |
|     AVFloatDSPContext fdsp;
 | |
|     FFTContext imdct;
 | |
|     SynthFilterContext synth;
 | |
|     DCADSPContext dcadsp;
 | |
|     FmtConvertContext fmt_conv;
 | |
| } DCAContext;
 | |
| 
 | |
| static const uint16_t dca_vlc_offs[] = {
 | |
|         0,   512,   640,   768,  1282,  1794,  2436,  3080,  3770,  4454,  5364,
 | |
|      5372,  5380,  5388,  5392,  5396,  5412,  5420,  5428,  5460,  5492,  5508,
 | |
|      5572,  5604,  5668,  5796,  5860,  5892,  6412,  6668,  6796,  7308,  7564,
 | |
|      7820,  8076,  8620,  9132,  9388,  9910, 10166, 10680, 11196, 11726, 12240,
 | |
|     12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
 | |
|     18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
 | |
| };
 | |
| 
 | |
| static av_cold void dca_init_vlcs(void)
 | |
| {
 | |
|     static int vlcs_initialized = 0;
 | |
|     int i, j, c = 14;
 | |
|     static VLC_TYPE dca_table[23622][2];
 | |
| 
 | |
|     if (vlcs_initialized)
 | |
|         return;
 | |
| 
 | |
|     dca_bitalloc_index.offset = 1;
 | |
|     dca_bitalloc_index.wrap = 2;
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
 | |
|         dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
 | |
|         init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
 | |
|                  bitalloc_12_bits[i], 1, 1,
 | |
|                  bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
|     dca_scalefactor.offset = -64;
 | |
|     dca_scalefactor.wrap = 2;
 | |
|     for (i = 0; i < 5; i++) {
 | |
|         dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
 | |
|         dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
 | |
|         init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
 | |
|                  scales_bits[i], 1, 1,
 | |
|                  scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
|     dca_tmode.offset = 0;
 | |
|     dca_tmode.wrap = 1;
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
 | |
|         dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
 | |
|         init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
 | |
|                  tmode_bits[i], 1, 1,
 | |
|                  tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 10; i++)
 | |
|         for (j = 0; j < 7; j++) {
 | |
|             if (!bitalloc_codes[i][j])
 | |
|                 break;
 | |
|             dca_smpl_bitalloc[i + 1].offset                 = bitalloc_offsets[i];
 | |
|             dca_smpl_bitalloc[i + 1].wrap                   = 1 + (j > 4);
 | |
|             dca_smpl_bitalloc[i + 1].vlc[j].table           = &dca_table[dca_vlc_offs[c]];
 | |
|             dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
 | |
| 
 | |
|             init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
 | |
|                      bitalloc_sizes[i],
 | |
|                      bitalloc_bits[i][j], 1, 1,
 | |
|                      bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|             c++;
 | |
|         }
 | |
|     vlcs_initialized = 1;
 | |
| }
 | |
| 
 | |
| static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
 | |
| {
 | |
|     while (len--)
 | |
|         *dst++ = get_bits(gb, bits);
 | |
| }
 | |
| 
 | |
| static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
 | |
| {
 | |
|     int i, j;
 | |
|     static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
 | |
|     static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
 | |
|     static const int thr[11]    = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
 | |
| 
 | |
|     s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
 | |
|     s->prim_channels  = s->total_channels;
 | |
| 
 | |
|     if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
 | |
|         s->prim_channels = DCA_PRIM_CHANNELS_MAX;
 | |
| 
 | |
| 
 | |
|     for (i = base_channel; i < s->prim_channels; i++) {
 | |
|         s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
 | |
|         if (s->subband_activity[i] > DCA_SUBBANDS)
 | |
|             s->subband_activity[i] = DCA_SUBBANDS;
 | |
|     }
 | |
|     for (i = base_channel; i < s->prim_channels; i++) {
 | |
|         s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
 | |
|         if (s->vq_start_subband[i] > DCA_SUBBANDS)
 | |
|             s->vq_start_subband[i] = DCA_SUBBANDS;
 | |
|     }
 | |
|     get_array(&s->gb, s->joint_intensity + base_channel,     s->prim_channels - base_channel, 3);
 | |
|     get_array(&s->gb, s->transient_huffman + base_channel,   s->prim_channels - base_channel, 2);
 | |
|     get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
 | |
|     get_array(&s->gb, s->bitalloc_huffman + base_channel,    s->prim_channels - base_channel, 3);
 | |
| 
 | |
|     /* Get codebooks quantization indexes */
 | |
|     if (!base_channel)
 | |
|         memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
 | |
|     for (j = 1; j < 11; j++)
 | |
|         for (i = base_channel; i < s->prim_channels; i++)
 | |
|             s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
 | |
| 
 | |
|     /* Get scale factor adjustment */
 | |
|     for (j = 0; j < 11; j++)
 | |
|         for (i = base_channel; i < s->prim_channels; i++)
 | |
|             s->scalefactor_adj[i][j] = 1;
 | |
| 
 | |
|     for (j = 1; j < 11; j++)
 | |
|         for (i = base_channel; i < s->prim_channels; i++)
 | |
|             if (s->quant_index_huffman[i][j] < thr[j])
 | |
|                 s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
 | |
| 
 | |
|     if (s->crc_present) {
 | |
|         /* Audio header CRC check */
 | |
|         get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     s->current_subframe    = 0;
 | |
|     s->current_subsubframe = 0;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
 | |
|     for (i = base_channel; i < s->prim_channels; i++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
 | |
|                s->subband_activity[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
 | |
|                s->vq_start_subband[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
 | |
|                s->joint_intensity[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
 | |
|                s->transient_huffman[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
 | |
|                s->scalefactor_huffman[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
 | |
|                s->bitalloc_huffman[i]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
 | |
|         for (j = 0; j < 11; j++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
 | |
|         for (j = 0; j < 11; j++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dca_parse_frame_header(DCAContext *s)
 | |
| {
 | |
|     init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
 | |
| 
 | |
|     /* Sync code */
 | |
|     skip_bits_long(&s->gb, 32);
 | |
| 
 | |
|     /* Frame header */
 | |
|     s->frame_type        = get_bits(&s->gb, 1);
 | |
|     s->samples_deficit   = get_bits(&s->gb, 5) + 1;
 | |
|     s->crc_present       = get_bits(&s->gb, 1);
 | |
|     s->sample_blocks     = get_bits(&s->gb, 7) + 1;
 | |
|     s->frame_size        = get_bits(&s->gb, 14) + 1;
 | |
|     if (s->frame_size < 95)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     s->amode             = get_bits(&s->gb, 6);
 | |
|     s->sample_rate       = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
 | |
|     if (!s->sample_rate)
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     s->bit_rate_index    = get_bits(&s->gb, 5);
 | |
|     s->bit_rate          = dca_bit_rates[s->bit_rate_index];
 | |
|     if (!s->bit_rate)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     s->downmix           = get_bits(&s->gb, 1);
 | |
|     s->dynrange          = get_bits(&s->gb, 1);
 | |
|     s->timestamp         = get_bits(&s->gb, 1);
 | |
|     s->aux_data          = get_bits(&s->gb, 1);
 | |
|     s->hdcd              = get_bits(&s->gb, 1);
 | |
|     s->ext_descr         = get_bits(&s->gb, 3);
 | |
|     s->ext_coding        = get_bits(&s->gb, 1);
 | |
|     s->aspf              = get_bits(&s->gb, 1);
 | |
|     s->lfe               = get_bits(&s->gb, 2);
 | |
|     s->predictor_history = get_bits(&s->gb, 1);
 | |
| 
 | |
|     /* TODO: check CRC */
 | |
|     if (s->crc_present)
 | |
|         s->header_crc    = get_bits(&s->gb, 16);
 | |
| 
 | |
|     s->multirate_inter   = get_bits(&s->gb, 1);
 | |
|     s->version           = get_bits(&s->gb, 4);
 | |
|     s->copy_history      = get_bits(&s->gb, 2);
 | |
|     s->source_pcm_res    = get_bits(&s->gb, 3);
 | |
|     s->front_sum         = get_bits(&s->gb, 1);
 | |
|     s->surround_sum      = get_bits(&s->gb, 1);
 | |
|     s->dialog_norm       = get_bits(&s->gb, 4);
 | |
| 
 | |
|     /* FIXME: channels mixing levels */
 | |
|     s->output = s->amode;
 | |
|     if (s->lfe)
 | |
|         s->output |= DCA_LFE;
 | |
| 
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
 | |
|            s->sample_blocks, s->sample_blocks * 32);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
 | |
|            s->amode, dca_channels[s->amode]);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
 | |
|            s->sample_rate);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
 | |
|            s->bit_rate);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
 | |
|            s->predictor_history);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
 | |
|            s->multirate_inter);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|            "source pcm resolution: %i (%i bits/sample)\n",
 | |
|            s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
| #endif
 | |
| 
 | |
|     /* Primary audio coding header */
 | |
|     s->subframes         = get_bits(&s->gb, 4) + 1;
 | |
| 
 | |
|     return dca_parse_audio_coding_header(s, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
 | |
| {
 | |
|     if (level < 5) {
 | |
|         /* huffman encoded */
 | |
|         value += get_bitalloc(gb, &dca_scalefactor, level);
 | |
|         value = av_clip(value, 0, (1 << log2range) - 1);
 | |
|     } else if (level < 8) {
 | |
|         if (level + 1 > log2range) {
 | |
|             skip_bits(gb, level + 1 - log2range);
 | |
|             value = get_bits(gb, log2range);
 | |
|         } else {
 | |
|             value = get_bits(gb, level + 1);
 | |
|         }
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
 | |
| {
 | |
|     /* Primary audio coding side information */
 | |
|     int j, k;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (!base_channel) {
 | |
|         s->subsubframes[s->current_subframe]    = get_bits(&s->gb, 2) + 1;
 | |
|         s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
 | |
|     }
 | |
| 
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             s->prediction_mode[j][k] = get_bits(&s->gb, 1);
 | |
|     }
 | |
| 
 | |
|     /* Get prediction codebook */
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             if (s->prediction_mode[j][k] > 0) {
 | |
|                 /* (Prediction coefficient VQ address) */
 | |
|                 s->prediction_vq[j][k] = get_bits(&s->gb, 12);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Bit allocation index */
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->vq_start_subband[j]; k++) {
 | |
|             if (s->bitalloc_huffman[j] == 6)
 | |
|                 s->bitalloc[j][k] = get_bits(&s->gb, 5);
 | |
|             else if (s->bitalloc_huffman[j] == 5)
 | |
|                 s->bitalloc[j][k] = get_bits(&s->gb, 4);
 | |
|             else if (s->bitalloc_huffman[j] == 7) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid bit allocation index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             } else {
 | |
|                 s->bitalloc[j][k] =
 | |
|                     get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
 | |
|             }
 | |
| 
 | |
|             if (s->bitalloc[j][k] > 26) {
 | |
|                 // av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index [%i][%i] too big (%i)\n",
 | |
|                 //        j, k, s->bitalloc[j][k]);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Transition mode */
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             s->transition_mode[j][k] = 0;
 | |
|             if (s->subsubframes[s->current_subframe] > 1 &&
 | |
|                 k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
 | |
|                 s->transition_mode[j][k] =
 | |
|                     get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         const uint32_t *scale_table;
 | |
|         int scale_sum, log_size;
 | |
| 
 | |
|         memset(s->scale_factor[j], 0,
 | |
|                s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
 | |
| 
 | |
|         if (s->scalefactor_huffman[j] == 6) {
 | |
|             scale_table = scale_factor_quant7;
 | |
|             log_size = 7;
 | |
|         } else {
 | |
|             scale_table = scale_factor_quant6;
 | |
|             log_size = 6;
 | |
|         }
 | |
| 
 | |
|         /* When huffman coded, only the difference is encoded */
 | |
|         scale_sum = 0;
 | |
| 
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
 | |
|                 scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
 | |
|                 s->scale_factor[j][k][0] = scale_table[scale_sum];
 | |
|             }
 | |
| 
 | |
|             if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
 | |
|                 /* Get second scale factor */
 | |
|                 scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
 | |
|                 s->scale_factor[j][k][1] = scale_table[scale_sum];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Joint subband scale factor codebook select */
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         /* Transmitted only if joint subband coding enabled */
 | |
|         if (s->joint_intensity[j] > 0)
 | |
|             s->joint_huff[j] = get_bits(&s->gb, 3);
 | |
|     }
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     /* Scale factors for joint subband coding */
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         int source_channel;
 | |
| 
 | |
|         /* Transmitted only if joint subband coding enabled */
 | |
|         if (s->joint_intensity[j] > 0) {
 | |
|             int scale = 0;
 | |
|             source_channel = s->joint_intensity[j] - 1;
 | |
| 
 | |
|             /* When huffman coded, only the difference is encoded
 | |
|              * (is this valid as well for joint scales ???) */
 | |
| 
 | |
|             for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
 | |
|                 scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
 | |
|                 s->joint_scale_factor[j][k] = scale;    /*joint_scale_table[scale]; */
 | |
|             }
 | |
| 
 | |
|             if (!(s->debug_flag & 0x02)) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Joint stereo coding not supported\n");
 | |
|                 s->debug_flag |= 0x02;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Stereo downmix coefficients */
 | |
|     if (!base_channel && s->prim_channels > 2) {
 | |
|         if (s->downmix) {
 | |
|             for (j = base_channel; j < s->prim_channels; j++) {
 | |
|                 s->downmix_coef[j][0] = get_bits(&s->gb, 7);
 | |
|                 s->downmix_coef[j][1] = get_bits(&s->gb, 7);
 | |
|             }
 | |
|         } else {
 | |
|             int am = s->amode & DCA_CHANNEL_MASK;
 | |
|             if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR,
 | |
|                        "Invalid channel mode %d\n", am);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             for (j = base_channel; j < s->prim_channels; j++) {
 | |
|                 s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
 | |
|                 s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Dynamic range coefficient */
 | |
|     if (!base_channel && s->dynrange)
 | |
|         s->dynrange_coef = get_bits(&s->gb, 8);
 | |
| 
 | |
|     /* Side information CRC check word */
 | |
|     if (s->crc_present) {
 | |
|         get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Primary audio data arrays
 | |
|      */
 | |
| 
 | |
|     /* VQ encoded high frequency subbands */
 | |
|     for (j = base_channel; j < s->prim_channels; j++)
 | |
|         for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
 | |
|             /* 1 vector -> 32 samples */
 | |
|             s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
 | |
| 
 | |
|     /* Low frequency effect data */
 | |
|     if (!base_channel && s->lfe) {
 | |
|         /* LFE samples */
 | |
|         int lfe_samples = 2 * s->lfe * (4 + block_index);
 | |
|         int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
 | |
|         float lfe_scale;
 | |
| 
 | |
|         for (j = lfe_samples; j < lfe_end_sample; j++) {
 | |
|             /* Signed 8 bits int */
 | |
|             s->lfe_data[j] = get_sbits(&s->gb, 8);
 | |
|         }
 | |
| 
 | |
|         /* Scale factor index */
 | |
|         skip_bits(&s->gb, 1);
 | |
|         s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 7)];
 | |
| 
 | |
|         /* Quantization step size * scale factor */
 | |
|         lfe_scale = 0.035 * s->lfe_scale_factor;
 | |
| 
 | |
|         for (j = lfe_samples; j < lfe_end_sample; j++)
 | |
|             s->lfe_data[j] *= lfe_scale;
 | |
|     }
 | |
| 
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
 | |
|            s->subsubframes[s->current_subframe]);
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
 | |
|            s->partial_samples[s->current_subframe]);
 | |
| 
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                    "prediction coefs: %f, %f, %f, %f\n",
 | |
|                    (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
 | |
|                    (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
 | |
|                    (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
 | |
|                    (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
 | |
|     }
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
 | |
|         for (k = 0; k < s->vq_start_subband[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
 | |
|         for (k = 0; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
 | |
|         for (k = 0; k < s->subband_activity[j]; k++) {
 | |
|             if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
 | |
|             if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
 | |
|         }
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = base_channel; j < s->prim_channels; j++) {
 | |
|         if (s->joint_intensity[j] > 0) {
 | |
|             int source_channel = s->joint_intensity[j] - 1;
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
 | |
|             for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|         }
 | |
|     }
 | |
|     if (!base_channel && s->prim_channels > 2 && s->downmix) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
 | |
|         for (j = 0; j < s->prim_channels; j++) {
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Channel 0, %d = %f\n", j,
 | |
|                    dca_downmix_coeffs[s->downmix_coef[j][0]]);
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Channel 1, %d = %f\n", j,
 | |
|                    dca_downmix_coeffs[s->downmix_coef[j][1]]);
 | |
|         }
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     for (j = base_channel; j < s->prim_channels; j++)
 | |
|         for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
 | |
|     if (!base_channel && s->lfe) {
 | |
|         int lfe_samples = 2 * s->lfe * (4 + block_index);
 | |
|         int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
 | |
| 
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
 | |
|         for (j = lfe_samples; j < lfe_end_sample; j++)
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void qmf_32_subbands(DCAContext *s, int chans,
 | |
|                             float samples_in[32][8], float *samples_out,
 | |
|                             float scale)
 | |
| {
 | |
|     const float *prCoeff;
 | |
|     int i;
 | |
| 
 | |
|     int sb_act = s->subband_activity[chans];
 | |
|     int subindex;
 | |
| 
 | |
|     scale *= sqrt(1 / 8.0);
 | |
| 
 | |
|     /* Select filter */
 | |
|     if (!s->multirate_inter)    /* Non-perfect reconstruction */
 | |
|         prCoeff = fir_32bands_nonperfect;
 | |
|     else                        /* Perfect reconstruction */
 | |
|         prCoeff = fir_32bands_perfect;
 | |
| 
 | |
|     for (i = sb_act; i < 32; i++)
 | |
|         s->raXin[i] = 0.0;
 | |
| 
 | |
|     /* Reconstructed channel sample index */
 | |
|     for (subindex = 0; subindex < 8; subindex++) {
 | |
|         /* Load in one sample from each subband and clear inactive subbands */
 | |
|         for (i = 0; i < sb_act; i++) {
 | |
|             unsigned sign = (i - 1) & 2;
 | |
|             uint32_t v    = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
 | |
|             AV_WN32A(&s->raXin[i], v);
 | |
|         }
 | |
| 
 | |
|         s->synth.synth_filter_float(&s->imdct,
 | |
|                                     s->subband_fir_hist[chans],
 | |
|                                     &s->hist_index[chans],
 | |
|                                     s->subband_fir_noidea[chans], prCoeff,
 | |
|                                     samples_out, s->raXin, scale);
 | |
|         samples_out += 32;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
 | |
|                                   int num_deci_sample, float *samples_in,
 | |
|                                   float *samples_out, float scale)
 | |
| {
 | |
|     /* samples_in: An array holding decimated samples.
 | |
|      *   Samples in current subframe starts from samples_in[0],
 | |
|      *   while samples_in[-1], samples_in[-2], ..., stores samples
 | |
|      *   from last subframe as history.
 | |
|      *
 | |
|      * samples_out: An array holding interpolated samples
 | |
|      */
 | |
| 
 | |
|     int decifactor;
 | |
|     const float *prCoeff;
 | |
|     int deciindex;
 | |
| 
 | |
|     /* Select decimation filter */
 | |
|     if (decimation_select == 1) {
 | |
|         decifactor = 64;
 | |
|         prCoeff = lfe_fir_128;
 | |
|     } else {
 | |
|         decifactor = 32;
 | |
|         prCoeff = lfe_fir_64;
 | |
|     }
 | |
|     /* Interpolation */
 | |
|     for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
 | |
|         s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, scale);
 | |
|         samples_in++;
 | |
|         samples_out += 2 * decifactor;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* downmixing routines */
 | |
| #define MIX_REAR1(samples, si1, rs, coef)           \
 | |
|     samples[i]     += samples[si1] * coef[rs][0];   \
 | |
|     samples[i+256] += samples[si1] * coef[rs][1];
 | |
| 
 | |
| #define MIX_REAR2(samples, si1, si2, rs, coef)                                     \
 | |
|     samples[i]     += samples[si1] * coef[rs][0] + samples[si2] * coef[rs + 1][0]; \
 | |
|     samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs + 1][1];
 | |
| 
 | |
| #define MIX_FRONT3(samples, coef)                                      \
 | |
|     t = samples[i + c];                                                \
 | |
|     u = samples[i + l];                                                \
 | |
|     v = samples[i + r];                                                \
 | |
|     samples[i]     = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
 | |
|     samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
 | |
| 
 | |
| #define DOWNMIX_TO_STEREO(op1, op2)             \
 | |
|     for (i = 0; i < 256; i++) {                 \
 | |
|         op1                                     \
 | |
|         op2                                     \
 | |
|     }
 | |
| 
 | |
| static void dca_downmix(float *samples, int srcfmt,
 | |
|                         int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
 | |
|                         const int8_t *channel_mapping)
 | |
| {
 | |
|     int c, l, r, sl, sr, s;
 | |
|     int i;
 | |
|     float t, u, v;
 | |
|     float coef[DCA_PRIM_CHANNELS_MAX][2];
 | |
| 
 | |
|     for (i = 0; i < DCA_PRIM_CHANNELS_MAX; i++) {
 | |
|         coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
 | |
|         coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
 | |
|     }
 | |
| 
 | |
|     switch (srcfmt) {
 | |
|     case DCA_MONO:
 | |
|     case DCA_CHANNEL:
 | |
|     case DCA_STEREO_TOTAL:
 | |
|     case DCA_STEREO_SUMDIFF:
 | |
|     case DCA_4F2R:
 | |
|         av_log(NULL, 0, "Not implemented!\n");
 | |
|         break;
 | |
|     case DCA_STEREO:
 | |
|         break;
 | |
|     case DCA_3F:
 | |
|         c = channel_mapping[0] * 256;
 | |
|         l = channel_mapping[1] * 256;
 | |
|         r = channel_mapping[2] * 256;
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
 | |
|         break;
 | |
|     case DCA_2F1R:
 | |
|         s = channel_mapping[2] * 256;
 | |
|         DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + s, 2, coef), );
 | |
|         break;
 | |
|     case DCA_3F1R:
 | |
|         c = channel_mapping[0] * 256;
 | |
|         l = channel_mapping[1] * 256;
 | |
|         r = channel_mapping[2] * 256;
 | |
|         s = channel_mapping[3] * 256;
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
 | |
|                           MIX_REAR1(samples, i + s, 3, coef));
 | |
|         break;
 | |
|     case DCA_2F2R:
 | |
|         sl = channel_mapping[2] * 256;
 | |
|         sr = channel_mapping[3] * 256;
 | |
|         DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + sl, i + sr, 2, coef), );
 | |
|         break;
 | |
|     case DCA_3F2R:
 | |
|         c  = channel_mapping[0] * 256;
 | |
|         l  = channel_mapping[1] * 256;
 | |
|         r  = channel_mapping[2] * 256;
 | |
|         sl = channel_mapping[3] * 256;
 | |
|         sr = channel_mapping[4] * 256;
 | |
|         DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
 | |
|                           MIX_REAR2(samples, i + sl, i + sr, 3, coef));
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef decode_blockcodes
 | |
| /* Very compact version of the block code decoder that does not use table
 | |
|  * look-up but is slightly slower */
 | |
| static int decode_blockcode(int code, int levels, int *values)
 | |
| {
 | |
|     int i;
 | |
|     int offset = (levels - 1) >> 1;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         int div = FASTDIV(code, levels);
 | |
|         values[i] = code - offset - div * levels;
 | |
|         code = div;
 | |
|     }
 | |
| 
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| static int decode_blockcodes(int code1, int code2, int levels, int *values)
 | |
| {
 | |
|     return decode_blockcode(code1, levels, values) |
 | |
|            decode_blockcode(code2, levels, values + 4);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const uint8_t abits_sizes[7]  = { 7, 10, 12, 13, 15, 17, 19 };
 | |
| static const uint8_t abits_levels[7] = { 3,  5,  7,  9, 13, 17, 25 };
 | |
| 
 | |
| #ifndef int8x8_fmul_int32
 | |
| static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
 | |
| {
 | |
|     float fscale = scale / 16.0;
 | |
|     int i;
 | |
|     for (i = 0; i < 8; i++)
 | |
|         dst[i] = src[i] * fscale;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
 | |
| {
 | |
|     int k, l;
 | |
|     int subsubframe = s->current_subsubframe;
 | |
| 
 | |
|     const float *quant_step_table;
 | |
| 
 | |
|     /* FIXME */
 | |
|     float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
 | |
|     LOCAL_ALIGNED_16(int, block, [8]);
 | |
| 
 | |
|     /*
 | |
|      * Audio data
 | |
|      */
 | |
| 
 | |
|     /* Select quantization step size table */
 | |
|     if (s->bit_rate_index == 0x1f)
 | |
|         quant_step_table = lossless_quant_d;
 | |
|     else
 | |
|         quant_step_table = lossy_quant_d;
 | |
| 
 | |
|     for (k = base_channel; k < s->prim_channels; k++) {
 | |
|         if (get_bits_left(&s->gb) < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         for (l = 0; l < s->vq_start_subband[k]; l++) {
 | |
|             int m;
 | |
| 
 | |
|             /* Select the mid-tread linear quantizer */
 | |
|             int abits = s->bitalloc[k][l];
 | |
| 
 | |
|             float quant_step_size = quant_step_table[abits];
 | |
| 
 | |
|             /*
 | |
|              * Determine quantization index code book and its type
 | |
|              */
 | |
| 
 | |
|             /* Select quantization index code book */
 | |
|             int sel = s->quant_index_huffman[k][abits];
 | |
| 
 | |
|             /*
 | |
|              * Extract bits from the bit stream
 | |
|              */
 | |
|             if (!abits) {
 | |
|                 memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
 | |
|             } else {
 | |
|                 /* Deal with transients */
 | |
|                 int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
 | |
|                 float rscale = quant_step_size * s->scale_factor[k][l][sfi] *
 | |
|                                s->scalefactor_adj[k][sel];
 | |
| 
 | |
|                 if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
 | |
|                     if (abits <= 7) {
 | |
|                         /* Block code */
 | |
|                         int block_code1, block_code2, size, levels, err;
 | |
| 
 | |
|                         size   = abits_sizes[abits - 1];
 | |
|                         levels = abits_levels[abits - 1];
 | |
| 
 | |
|                         block_code1 = get_bits(&s->gb, size);
 | |
|                         block_code2 = get_bits(&s->gb, size);
 | |
|                         err = decode_blockcodes(block_code1, block_code2,
 | |
|                                                 levels, block);
 | |
|                         if (err) {
 | |
|                             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                    "ERROR: block code look-up failed\n");
 | |
|                             return AVERROR_INVALIDDATA;
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* no coding */
 | |
|                         for (m = 0; m < 8; m++)
 | |
|                             block[m] = get_sbits(&s->gb, abits - 3);
 | |
|                     }
 | |
|                 } else {
 | |
|                     /* Huffman coded */
 | |
|                     for (m = 0; m < 8; m++)
 | |
|                         block[m] = get_bitalloc(&s->gb,
 | |
|                                                 &dca_smpl_bitalloc[abits], sel);
 | |
|                 }
 | |
| 
 | |
|                 s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
 | |
|                                                        block, rscale, 8);
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Inverse ADPCM if in prediction mode
 | |
|              */
 | |
|             if (s->prediction_mode[k][l]) {
 | |
|                 int n;
 | |
|                 for (m = 0; m < 8; m++) {
 | |
|                     for (n = 1; n <= 4; n++)
 | |
|                         if (m >= n)
 | |
|                             subband_samples[k][l][m] +=
 | |
|                                 (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
 | |
|                                  subband_samples[k][l][m - n] / 8192);
 | |
|                         else if (s->predictor_history)
 | |
|                             subband_samples[k][l][m] +=
 | |
|                                 (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
 | |
|                                  s->subband_samples_hist[k][l][m - n + 4] / 8192);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Decode VQ encoded high frequencies
 | |
|          */
 | |
|         for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
 | |
|             /* 1 vector -> 32 samples but we only need the 8 samples
 | |
|              * for this subsubframe. */
 | |
|             int hfvq = s->high_freq_vq[k][l];
 | |
| 
 | |
|             if (!s->debug_flag & 0x01) {
 | |
|                 av_log(s->avctx, AV_LOG_DEBUG,
 | |
|                        "Stream with high frequencies VQ coding\n");
 | |
|                 s->debug_flag |= 0x01;
 | |
|             }
 | |
| 
 | |
|             int8x8_fmul_int32(subband_samples[k][l],
 | |
|                               &high_freq_vq[hfvq][subsubframe * 8],
 | |
|                               s->scale_factor[k][l][0]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check for DSYNC after subsubframe */
 | |
|     if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
 | |
|         if (0xFFFF == get_bits(&s->gb, 16)) {   /* 0xFFFF */
 | |
| #ifdef TRACE
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
 | |
| #endif
 | |
|         } else {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Backup predictor history for adpcm */
 | |
|     for (k = base_channel; k < s->prim_channels; k++)
 | |
|         for (l = 0; l < s->vq_start_subband[k]; l++)
 | |
|             memcpy(s->subband_samples_hist[k][l],
 | |
|                    &subband_samples[k][l][4],
 | |
|                    4 * sizeof(subband_samples[0][0][0]));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dca_filter_channels(DCAContext *s, int block_index)
 | |
| {
 | |
|     float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
 | |
|     int k;
 | |
| 
 | |
|     /* 32 subbands QMF */
 | |
|     for (k = 0; k < s->prim_channels; k++) {
 | |
| /*        static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
 | |
|                                             0, 8388608.0, 8388608.0 };*/
 | |
|         qmf_32_subbands(s, k, subband_samples[k],
 | |
|                         &s->samples[256 * s->channel_order_tab[k]],
 | |
|                         M_SQRT1_2 * s->scale_bias /* pcm_to_double[s->source_pcm_res] */);
 | |
|     }
 | |
| 
 | |
|     /* Down mixing */
 | |
|     if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
 | |
|         dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab);
 | |
|     }
 | |
| 
 | |
|     /* Generate LFE samples for this subsubframe FIXME!!! */
 | |
|     if (s->output & DCA_LFE) {
 | |
|         lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
 | |
|                               s->lfe_data + 2 * s->lfe * (block_index + 4),
 | |
|                               &s->samples[256 * dca_lfe_index[s->amode]],
 | |
|                               (1.0 / 256.0) * s->scale_bias);
 | |
|         /* Outputs 20bits pcm samples */
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int dca_subframe_footer(DCAContext *s, int base_channel)
 | |
| {
 | |
|     int aux_data_count = 0, i;
 | |
| 
 | |
|     /*
 | |
|      * Unpack optional information
 | |
|      */
 | |
| 
 | |
|     /* presumably optional information only appears in the core? */
 | |
|     if (!base_channel) {
 | |
|         if (s->timestamp)
 | |
|             skip_bits_long(&s->gb, 32);
 | |
| 
 | |
|         if (s->aux_data)
 | |
|             aux_data_count = get_bits(&s->gb, 6);
 | |
| 
 | |
|         for (i = 0; i < aux_data_count; i++)
 | |
|             get_bits(&s->gb, 8);
 | |
| 
 | |
|         if (s->crc_present && (s->downmix || s->dynrange))
 | |
|             get_bits(&s->gb, 16);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a dca frame block
 | |
|  *
 | |
|  * @param s     pointer to the DCAContext
 | |
|  */
 | |
| 
 | |
| static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Sanity check */
 | |
|     if (s->current_subframe >= s->subframes) {
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
 | |
|                s->current_subframe, s->subframes);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!s->current_subsubframe) {
 | |
| #ifdef TRACE
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
 | |
| #endif
 | |
|         /* Read subframe header */
 | |
|         if ((ret = dca_subframe_header(s, base_channel, block_index)))
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     /* Read subsubframe */
 | |
| #ifdef TRACE
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
 | |
| #endif
 | |
|     if ((ret = dca_subsubframe(s, base_channel, block_index)))
 | |
|         return ret;
 | |
| 
 | |
|     /* Update state */
 | |
|     s->current_subsubframe++;
 | |
|     if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
 | |
|         s->current_subsubframe = 0;
 | |
|         s->current_subframe++;
 | |
|     }
 | |
|     if (s->current_subframe >= s->subframes) {
 | |
| #ifdef TRACE
 | |
|         av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
 | |
| #endif
 | |
|         /* Read subframe footer */
 | |
|         if ((ret = dca_subframe_footer(s, base_channel)))
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Return the number of channels in an ExSS speaker mask (HD)
 | |
|  */
 | |
| static int dca_exss_mask2count(int mask)
 | |
| {
 | |
|     /* count bits that mean speaker pairs twice */
 | |
|     return av_popcount(mask) +
 | |
|            av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT      |
 | |
|                                DCA_EXSS_FRONT_LEFT_RIGHT       |
 | |
|                                DCA_EXSS_FRONT_HIGH_LEFT_RIGHT  |
 | |
|                                DCA_EXSS_WIDE_LEFT_RIGHT        |
 | |
|                                DCA_EXSS_SIDE_LEFT_RIGHT        |
 | |
|                                DCA_EXSS_SIDE_HIGH_LEFT_RIGHT   |
 | |
|                                DCA_EXSS_SIDE_REAR_LEFT_RIGHT   |
 | |
|                                DCA_EXSS_REAR_LEFT_RIGHT        |
 | |
|                                DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Skip mixing coefficients of a single mix out configuration (HD)
 | |
|  */
 | |
| static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < channels; i++) {
 | |
|         int mix_map_mask = get_bits(gb, out_ch);
 | |
|         int num_coeffs = av_popcount(mix_map_mask);
 | |
|         skip_bits_long(gb, num_coeffs * 6);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse extension substream asset header (HD)
 | |
|  */
 | |
| static int dca_exss_parse_asset_header(DCAContext *s)
 | |
| {
 | |
|     int header_pos = get_bits_count(&s->gb);
 | |
|     int header_size;
 | |
|     int channels;
 | |
|     int embedded_stereo = 0;
 | |
|     int embedded_6ch    = 0;
 | |
|     int drc_code_present;
 | |
|     int extensions_mask;
 | |
|     int i, j;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 16)
 | |
|         return -1;
 | |
| 
 | |
|     /* We will parse just enough to get to the extensions bitmask with which
 | |
|      * we can set the profile value. */
 | |
| 
 | |
|     header_size = get_bits(&s->gb, 9) + 1;
 | |
|     skip_bits(&s->gb, 3); // asset index
 | |
| 
 | |
|     if (s->static_fields) {
 | |
|         if (get_bits1(&s->gb))
 | |
|             skip_bits(&s->gb, 4); // asset type descriptor
 | |
|         if (get_bits1(&s->gb))
 | |
|             skip_bits_long(&s->gb, 24); // language descriptor
 | |
| 
 | |
|         if (get_bits1(&s->gb)) {
 | |
|             /* How can one fit 1024 bytes of text here if the maximum value
 | |
|              * for the asset header size field above was 512 bytes? */
 | |
|             int text_length = get_bits(&s->gb, 10) + 1;
 | |
|             if (get_bits_left(&s->gb) < text_length * 8)
 | |
|                 return -1;
 | |
|             skip_bits_long(&s->gb, text_length * 8); // info text
 | |
|         }
 | |
| 
 | |
|         skip_bits(&s->gb, 5); // bit resolution - 1
 | |
|         skip_bits(&s->gb, 4); // max sample rate code
 | |
|         channels = get_bits(&s->gb, 8) + 1;
 | |
| 
 | |
|         if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
 | |
|             int spkr_remap_sets;
 | |
|             int spkr_mask_size = 16;
 | |
|             int num_spkrs[7];
 | |
| 
 | |
|             if (channels > 2)
 | |
|                 embedded_stereo = get_bits1(&s->gb);
 | |
|             if (channels > 6)
 | |
|                 embedded_6ch = get_bits1(&s->gb);
 | |
| 
 | |
|             if (get_bits1(&s->gb)) {
 | |
|                 spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
 | |
|                 skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
 | |
|             }
 | |
| 
 | |
|             spkr_remap_sets = get_bits(&s->gb, 3);
 | |
| 
 | |
|             for (i = 0; i < spkr_remap_sets; i++) {
 | |
|                 /* std layout mask for each remap set */
 | |
|                 num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
 | |
|             }
 | |
| 
 | |
|             for (i = 0; i < spkr_remap_sets; i++) {
 | |
|                 int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
 | |
|                 if (get_bits_left(&s->gb) < 0)
 | |
|                     return -1;
 | |
| 
 | |
|                 for (j = 0; j < num_spkrs[i]; j++) {
 | |
|                     int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
 | |
|                     int num_dec_ch = av_popcount(remap_dec_ch_mask);
 | |
|                     skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             skip_bits(&s->gb, 3); // representation type
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     drc_code_present = get_bits1(&s->gb);
 | |
|     if (drc_code_present)
 | |
|         get_bits(&s->gb, 8); // drc code
 | |
| 
 | |
|     if (get_bits1(&s->gb))
 | |
|         skip_bits(&s->gb, 5); // dialog normalization code
 | |
| 
 | |
|     if (drc_code_present && embedded_stereo)
 | |
|         get_bits(&s->gb, 8); // drc stereo code
 | |
| 
 | |
|     if (s->mix_metadata && get_bits1(&s->gb)) {
 | |
|         skip_bits(&s->gb, 1); // external mix
 | |
|         skip_bits(&s->gb, 6); // post mix gain code
 | |
| 
 | |
|         if (get_bits(&s->gb, 2) != 3) // mixer drc code
 | |
|             skip_bits(&s->gb, 3); // drc limit
 | |
|         else
 | |
|             skip_bits(&s->gb, 8); // custom drc code
 | |
| 
 | |
|         if (get_bits1(&s->gb)) // channel specific scaling
 | |
|             for (i = 0; i < s->num_mix_configs; i++)
 | |
|                 skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
 | |
|         else
 | |
|             skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
 | |
| 
 | |
|         for (i = 0; i < s->num_mix_configs; i++) {
 | |
|             if (get_bits_left(&s->gb) < 0)
 | |
|                 return -1;
 | |
|             dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
 | |
|             if (embedded_6ch)
 | |
|                 dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
 | |
|             if (embedded_stereo)
 | |
|                 dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (get_bits(&s->gb, 2)) {
 | |
|     case 0: extensions_mask = get_bits(&s->gb, 12); break;
 | |
|     case 1: extensions_mask = DCA_EXT_EXSS_XLL;     break;
 | |
|     case 2: extensions_mask = DCA_EXT_EXSS_LBR;     break;
 | |
|     case 3: extensions_mask = 0; /* aux coding */   break;
 | |
|     }
 | |
| 
 | |
|     /* not parsed further, we were only interested in the extensions mask */
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
 | |
|         av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
 | |
|         return -1;
 | |
|     }
 | |
|     skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
 | |
| 
 | |
|     if (extensions_mask & DCA_EXT_EXSS_XLL)
 | |
|         s->profile = FF_PROFILE_DTS_HD_MA;
 | |
|     else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
 | |
|                                 DCA_EXT_EXSS_XXCH))
 | |
|         s->profile = FF_PROFILE_DTS_HD_HRA;
 | |
| 
 | |
|     if (!(extensions_mask & DCA_EXT_CORE))
 | |
|         av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
 | |
|     if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
 | |
|         av_log(s->avctx, AV_LOG_WARNING,
 | |
|                "DTS extensions detection mismatch (%d, %d)\n",
 | |
|                extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse extension substream header (HD)
 | |
|  */
 | |
| static void dca_exss_parse_header(DCAContext *s)
 | |
| {
 | |
|     int ss_index;
 | |
|     int blownup;
 | |
|     int num_audiop = 1;
 | |
|     int num_assets = 1;
 | |
|     int active_ss_mask[8];
 | |
|     int i, j;
 | |
| 
 | |
|     if (get_bits_left(&s->gb) < 52)
 | |
|         return;
 | |
| 
 | |
|     skip_bits(&s->gb, 8); // user data
 | |
|     ss_index = get_bits(&s->gb, 2);
 | |
| 
 | |
|     blownup = get_bits1(&s->gb);
 | |
|     skip_bits(&s->gb,  8 + 4 * blownup); // header_size
 | |
|     skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
 | |
| 
 | |
|     s->static_fields = get_bits1(&s->gb);
 | |
|     if (s->static_fields) {
 | |
|         skip_bits(&s->gb, 2); // reference clock code
 | |
|         skip_bits(&s->gb, 3); // frame duration code
 | |
| 
 | |
|         if (get_bits1(&s->gb))
 | |
|             skip_bits_long(&s->gb, 36); // timestamp
 | |
| 
 | |
|         /* a single stream can contain multiple audio assets that can be
 | |
|          * combined to form multiple audio presentations */
 | |
| 
 | |
|         num_audiop = get_bits(&s->gb, 3) + 1;
 | |
|         if (num_audiop > 1) {
 | |
|             av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
 | |
|             /* ignore such streams for now */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         num_assets = get_bits(&s->gb, 3) + 1;
 | |
|         if (num_assets > 1) {
 | |
|             av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
 | |
|             /* ignore such streams for now */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < num_audiop; i++)
 | |
|             active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
 | |
| 
 | |
|         for (i = 0; i < num_audiop; i++)
 | |
|             for (j = 0; j <= ss_index; j++)
 | |
|                 if (active_ss_mask[i] & (1 << j))
 | |
|                     skip_bits(&s->gb, 8); // active asset mask
 | |
| 
 | |
|         s->mix_metadata = get_bits1(&s->gb);
 | |
|         if (s->mix_metadata) {
 | |
|             int mix_out_mask_size;
 | |
| 
 | |
|             skip_bits(&s->gb, 2); // adjustment level
 | |
|             mix_out_mask_size  = (get_bits(&s->gb, 2) + 1) << 2;
 | |
|             s->num_mix_configs =  get_bits(&s->gb, 2) + 1;
 | |
| 
 | |
|             for (i = 0; i < s->num_mix_configs; i++) {
 | |
|                 int mix_out_mask        = get_bits(&s->gb, mix_out_mask_size);
 | |
|                 s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num_assets; i++)
 | |
|         skip_bits_long(&s->gb, 16 + 4 * blownup);  // asset size
 | |
| 
 | |
|     for (i = 0; i < num_assets; i++) {
 | |
|         if (dca_exss_parse_asset_header(s))
 | |
|             return;
 | |
|     }
 | |
| 
 | |
|     /* not parsed further, we were only interested in the extensions mask
 | |
|      * from the asset header */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Main frame decoding function
 | |
|  * FIXME add arguments
 | |
|  */
 | |
| static int dca_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                             int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
| 
 | |
|     int lfe_samples;
 | |
|     int num_core_channels = 0;
 | |
|     int i, ret;
 | |
|     float   *samples_flt;
 | |
|     int16_t *samples_s16;
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int channels;
 | |
|     int core_ss_end;
 | |
| 
 | |
| 
 | |
|     s->xch_present = 0;
 | |
| 
 | |
|     s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
 | |
|                                                   DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
 | |
|     if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
 | |
|     if ((ret = dca_parse_frame_header(s)) < 0) {
 | |
|         //seems like the frame is corrupt, try with the next one
 | |
|         return ret;
 | |
|     }
 | |
|     //set AVCodec values with parsed data
 | |
|     avctx->sample_rate = s->sample_rate;
 | |
|     avctx->bit_rate    = s->bit_rate;
 | |
| 
 | |
|     s->profile = FF_PROFILE_DTS;
 | |
| 
 | |
|     for (i = 0; i < (s->sample_blocks / 8); i++) {
 | |
|         if ((ret = dca_decode_block(s, 0, i))) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* record number of core channels incase less than max channels are requested */
 | |
|     num_core_channels = s->prim_channels;
 | |
| 
 | |
|     if (s->ext_coding)
 | |
|         s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
 | |
|     else
 | |
|         s->core_ext_mask = 0;
 | |
| 
 | |
|     core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
 | |
| 
 | |
|     /* only scan for extensions if ext_descr was unknown or indicated a
 | |
|      * supported XCh extension */
 | |
|     if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
 | |
| 
 | |
|         /* if ext_descr was unknown, clear s->core_ext_mask so that the
 | |
|          * extensions scan can fill it up */
 | |
|         s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
 | |
| 
 | |
|         /* extensions start at 32-bit boundaries into bitstream */
 | |
|         skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
 | |
| 
 | |
|         while (core_ss_end - get_bits_count(&s->gb) >= 32) {
 | |
|             uint32_t bits = get_bits_long(&s->gb, 32);
 | |
| 
 | |
|             switch (bits) {
 | |
|             case 0x5a5a5a5a: {
 | |
|                 int ext_amode, xch_fsize;
 | |
| 
 | |
|                 s->xch_base_channel = s->prim_channels;
 | |
| 
 | |
|                 /* validate sync word using XCHFSIZE field */
 | |
|                 xch_fsize = show_bits(&s->gb, 10);
 | |
|                 if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
 | |
|                     (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
 | |
|                     continue;
 | |
| 
 | |
|                 /* skip length-to-end-of-frame field for the moment */
 | |
|                 skip_bits(&s->gb, 10);
 | |
| 
 | |
|                 s->core_ext_mask |= DCA_EXT_XCH;
 | |
| 
 | |
|                 /* extension amode(number of channels in extension) should be 1 */
 | |
|                 /* AFAIK XCh is not used for more channels */
 | |
|                 if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
 | |
|                            " supported!\n", ext_amode);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 /* much like core primary audio coding header */
 | |
|                 dca_parse_audio_coding_header(s, s->xch_base_channel);
 | |
| 
 | |
|                 for (i = 0; i < (s->sample_blocks / 8); i++)
 | |
|                     if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
 | |
|                         av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                 s->xch_present = 1;
 | |
|                 break;
 | |
|             }
 | |
|             case 0x47004a03:
 | |
|                 /* XXCh: extended channels */
 | |
|                 /* usually found either in core or HD part in DTS-HD HRA streams,
 | |
|                  * but not in DTS-ES which contains XCh extensions instead */
 | |
|                 s->core_ext_mask |= DCA_EXT_XXCH;
 | |
|                 break;
 | |
| 
 | |
|             case 0x1d95f262: {
 | |
|                 int fsize96 = show_bits(&s->gb, 12) + 1;
 | |
|                 if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
 | |
|                     continue;
 | |
| 
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
 | |
|                        get_bits_count(&s->gb));
 | |
|                 skip_bits(&s->gb, 12);
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
 | |
|                 av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
 | |
| 
 | |
|                 s->core_ext_mask |= DCA_EXT_X96;
 | |
|                 break;
 | |
|             }
 | |
|             }
 | |
| 
 | |
|             skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
 | |
|         }
 | |
|     } else {
 | |
|         /* no supported extensions, skip the rest of the core substream */
 | |
|         skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
 | |
|     }
 | |
| 
 | |
|     if (s->core_ext_mask & DCA_EXT_X96)
 | |
|         s->profile = FF_PROFILE_DTS_96_24;
 | |
|     else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
 | |
|         s->profile = FF_PROFILE_DTS_ES;
 | |
| 
 | |
|     /* check for ExSS (HD part) */
 | |
|     if (s->dca_buffer_size - s->frame_size > 32 &&
 | |
|         get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
 | |
|         dca_exss_parse_header(s);
 | |
| 
 | |
|     avctx->profile = s->profile;
 | |
| 
 | |
|     channels = s->prim_channels + !!s->lfe;
 | |
| 
 | |
|     if (s->amode < 16) {
 | |
|         avctx->channel_layout = dca_core_channel_layout[s->amode];
 | |
| 
 | |
|         if (s->xch_present && (!avctx->request_channels ||
 | |
|                                avctx->request_channels > num_core_channels + !!s->lfe)) {
 | |
|             avctx->channel_layout |= AV_CH_BACK_CENTER;
 | |
|             if (s->lfe) {
 | |
|                 avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
 | |
|                 s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
 | |
|             } else {
 | |
|                 s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
 | |
|             }
 | |
|         } else {
 | |
|             channels = num_core_channels + !!s->lfe;
 | |
|             s->xch_present = 0; /* disable further xch processing */
 | |
|             if (s->lfe) {
 | |
|                 avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
 | |
|                 s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
 | |
|             } else
 | |
|                 s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
 | |
|         }
 | |
| 
 | |
|         if (channels > !!s->lfe &&
 | |
|             s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         if (avctx->request_channels == 2 && s->prim_channels > 2) {
 | |
|             channels = 2;
 | |
|             s->output = DCA_STEREO;
 | |
|             avctx->channel_layout = AV_CH_LAYOUT_STEREO;
 | |
|         }
 | |
|     } else {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* There is nothing that prevents a dts frame to change channel configuration
 | |
|        but Libav doesn't support that so only set the channels if it is previously
 | |
|        unset. Ideally during the first probe for channels the crc should be checked
 | |
|        and only set avctx->channels when the crc is ok. Right now the decoder could
 | |
|        set the channels based on a broken first frame.*/
 | |
|     if (s->is_channels_set == 0) {
 | |
|         s->is_channels_set = 1;
 | |
|         avctx->channels = channels;
 | |
|     }
 | |
|     if (avctx->channels != channels) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "DCA decoder does not support number of "
 | |
|                "channels changing in stream. Skipping frame.\n");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     s->frame.nb_samples = 256 * (s->sample_blocks / 8);
 | |
|     if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         return ret;
 | |
|     }
 | |
|     samples_flt = (float *)   s->frame.data[0];
 | |
|     samples_s16 = (int16_t *) s->frame.data[0];
 | |
| 
 | |
|     /* filter to get final output */
 | |
|     for (i = 0; i < (s->sample_blocks / 8); i++) {
 | |
|         dca_filter_channels(s, i);
 | |
| 
 | |
|         /* If this was marked as a DTS-ES stream we need to subtract back- */
 | |
|         /* channel from SL & SR to remove matrixed back-channel signal */
 | |
|         if ((s->source_pcm_res & 1) && s->xch_present) {
 | |
|             float *back_chan = s->samples + s->channel_order_tab[s->xch_base_channel]     * 256;
 | |
|             float *lt_chan   = s->samples + s->channel_order_tab[s->xch_base_channel - 2] * 256;
 | |
|             float *rt_chan   = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
 | |
|             s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
 | |
|             s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
 | |
|         }
 | |
| 
 | |
|         if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
 | |
|             s->fmt_conv.float_interleave(samples_flt, s->samples_chanptr, 256,
 | |
|                                          channels);
 | |
|             samples_flt += 256 * channels;
 | |
|         } else {
 | |
|             s->fmt_conv.float_to_int16_interleave(samples_s16,
 | |
|                                                   s->samples_chanptr, 256,
 | |
|                                                   channels);
 | |
|             samples_s16 += 256 * channels;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* update lfe history */
 | |
|     lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
 | |
|     for (i = 0; i < 2 * s->lfe * 4; i++)
 | |
|         s->lfe_data[i] = s->lfe_data[i + lfe_samples];
 | |
| 
 | |
|     *got_frame_ptr    = 1;
 | |
|     *(AVFrame *) data = s->frame;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * DCA initialization
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static av_cold int dca_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     dca_init_vlcs();
 | |
| 
 | |
|     avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
|     ff_mdct_init(&s->imdct, 6, 1, 1.0);
 | |
|     ff_synth_filter_init(&s->synth);
 | |
|     ff_dcadsp_init(&s->dcadsp);
 | |
|     ff_fmt_convert_init(&s->fmt_conv, avctx);
 | |
| 
 | |
|     for (i = 0; i < DCA_PRIM_CHANNELS_MAX + 1; i++)
 | |
|         s->samples_chanptr[i] = s->samples + i * 256;
 | |
| 
 | |
|     if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
 | |
|         avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
 | |
|         s->scale_bias     = 1.0 / 32768.0;
 | |
|     } else {
 | |
|         avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | |
|         s->scale_bias     = 1.0;
 | |
|     }
 | |
| 
 | |
|     /* allow downmixing to stereo */
 | |
|     if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
 | |
|         avctx->request_channels == 2) {
 | |
|         avctx->channels = avctx->request_channels;
 | |
|     }
 | |
| 
 | |
|     avcodec_get_frame_defaults(&s->frame);
 | |
|     avctx->coded_frame = &s->frame;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dca_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     DCAContext *s = avctx->priv_data;
 | |
|     ff_mdct_end(&s->imdct);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const AVProfile profiles[] = {
 | |
|     { FF_PROFILE_DTS,        "DTS"        },
 | |
|     { FF_PROFILE_DTS_ES,     "DTS-ES"     },
 | |
|     { FF_PROFILE_DTS_96_24,  "DTS 96/24"  },
 | |
|     { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
 | |
|     { FF_PROFILE_DTS_HD_MA,  "DTS-HD MA"  },
 | |
|     { FF_PROFILE_UNKNOWN },
 | |
| };
 | |
| 
 | |
| AVCodec ff_dca_decoder = {
 | |
|     .name            = "dca",
 | |
|     .type            = AVMEDIA_TYPE_AUDIO,
 | |
|     .id              = AV_CODEC_ID_DTS,
 | |
|     .priv_data_size  = sizeof(DCAContext),
 | |
|     .init            = dca_decode_init,
 | |
|     .decode          = dca_decode_frame,
 | |
|     .close           = dca_decode_end,
 | |
|     .long_name       = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
 | |
|     .capabilities    = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
 | |
|     .sample_fmts     = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
 | |
|                                                        AV_SAMPLE_FMT_S16,
 | |
|                                                        AV_SAMPLE_FMT_NONE },
 | |
|     .profiles        = NULL_IF_CONFIG_SMALL(profiles),
 | |
| };
 | 
