mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	 8320e236c1
			
		
	
	8320e236c1
	
	
	
		
			
			Since commit 4fc2531fff opus.c
contains only the celt stuff shared between decoder and encoder.
meanwhile, opus_celt.c is decoder-only. So the new names
reflect the actual content better than the current ones.
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
		
	
		
			
				
	
	
		
			485 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			485 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2012 Andrew D'Addesio
 | |
|  * Copyright (c) 2013-2014 Mozilla Corporation
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include "opus_celt.h"
 | |
| #include "opus_pvq.h"
 | |
| #include "opustab.h"
 | |
| 
 | |
| void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     float lowband_scratch[8 * 22];
 | |
|     float norm1[2 * 8 * 100];
 | |
|     float *norm2 = norm1 + 8 * 100;
 | |
| 
 | |
|     int totalbits = (f->framebits << 3) - f->anticollapse_needed;
 | |
| 
 | |
|     int update_lowband = 1;
 | |
|     int lowband_offset = 0;
 | |
| 
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
 | |
|         int band_offset = ff_celt_freq_bands[i] << f->size;
 | |
|         int band_size   = ff_celt_freq_range[i] << f->size;
 | |
|         float *X = f->block[0].coeffs + band_offset;
 | |
|         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
 | |
|         float *norm_loc1, *norm_loc2;
 | |
| 
 | |
|         int consumed = opus_rc_tell_frac(rc);
 | |
|         int effective_lowband = -1;
 | |
|         int b = 0;
 | |
| 
 | |
|         /* Compute how many bits we want to allocate to this band */
 | |
|         if (i != f->start_band)
 | |
|             f->remaining -= consumed;
 | |
|         f->remaining2 = totalbits - consumed - 1;
 | |
|         if (i <= f->coded_bands - 1) {
 | |
|             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
 | |
|             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
 | |
|         }
 | |
| 
 | |
|         if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
 | |
|             i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
 | |
|             lowband_offset = i;
 | |
| 
 | |
|         if (i == f->start_band + 1) {
 | |
|             /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
 | |
|             the second to ensure the second band never has to use the LCG. */
 | |
|             int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
 | |
| 
 | |
|             memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
 | |
| 
 | |
|             if (f->channels == 2)
 | |
|                 memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
 | |
|         }
 | |
| 
 | |
|         /* Get a conservative estimate of the collapse_mask's for the bands we're
 | |
|            going to be folding from. */
 | |
|         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
 | |
|                                     f->blocks > 1 || f->tf_change[i] < 0)) {
 | |
|             int foldstart, foldend;
 | |
| 
 | |
|             /* This ensures we never repeat spectral content within one band */
 | |
|             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
 | |
|                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
 | |
|             foldstart = lowband_offset;
 | |
|             while (ff_celt_freq_bands[--foldstart] > effective_lowband);
 | |
|             foldend = lowband_offset - 1;
 | |
|             while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
 | |
| 
 | |
|             cm[0] = cm[1] = 0;
 | |
|             for (j = foldstart; j < foldend; j++) {
 | |
|                 cm[0] |= f->block[0].collapse_masks[j];
 | |
|                 cm[1] |= f->block[f->channels - 1].collapse_masks[j];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (f->dual_stereo && i == f->intensity_stereo) {
 | |
|             /* Switch off dual stereo to do intensity */
 | |
|             f->dual_stereo = 0;
 | |
|             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
 | |
|                 norm1[j] = (norm1[j] + norm2[j]) / 2;
 | |
|         }
 | |
| 
 | |
|         norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
 | |
|         norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
 | |
| 
 | |
|         if (f->dual_stereo) {
 | |
|             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
 | |
|                                        f->blocks, norm_loc1, f->size,
 | |
|                                        norm1 + band_offset, 0, 1.0f,
 | |
|                                        lowband_scratch, cm[0]);
 | |
| 
 | |
|             cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
 | |
|                                        f->blocks, norm_loc2, f->size,
 | |
|                                        norm2 + band_offset, 0, 1.0f,
 | |
|                                        lowband_scratch, cm[1]);
 | |
|         } else {
 | |
|             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
 | |
|                                        f->blocks, norm_loc1, f->size,
 | |
|                                        norm1 + band_offset, 0, 1.0f,
 | |
|                                        lowband_scratch, cm[0] | cm[1]);
 | |
|             cm[1] = cm[0];
 | |
|         }
 | |
| 
 | |
|         f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
 | |
|         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
 | |
|         f->remaining += f->pulses[i] + consumed;
 | |
| 
 | |
|         /* Update the folding position only as long as we have 1 bit/sample depth */
 | |
|         update_lowband = (b > band_size << 3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
 | |
| 
 | |
| void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
 | |
| {
 | |
|     int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
 | |
|     int skip_startband      = f->start_band;
 | |
|     int skip_bit            = 0;
 | |
|     int intensitystereo_bit = 0;
 | |
|     int dualstereo_bit      = 0;
 | |
|     int dynalloc            = 6;
 | |
|     int extrabits           = 0;
 | |
| 
 | |
|     int boost[CELT_MAX_BANDS] = { 0 };
 | |
|     int trim_offset[CELT_MAX_BANDS];
 | |
|     int threshold[CELT_MAX_BANDS];
 | |
|     int bits1[CELT_MAX_BANDS];
 | |
|     int bits2[CELT_MAX_BANDS];
 | |
| 
 | |
|     /* Spread */
 | |
|     if (opus_rc_tell(rc) + 4 <= f->framebits) {
 | |
|         if (encode)
 | |
|             ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
 | |
|         else
 | |
|             f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
 | |
|     } else {
 | |
|         f->spread = CELT_SPREAD_NORMAL;
 | |
|     }
 | |
| 
 | |
|     /* Initialize static allocation caps */
 | |
|     for (i = 0; i < CELT_MAX_BANDS; i++)
 | |
|         f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
 | |
| 
 | |
|     /* Band boosts */
 | |
|     tbits_8ths = f->framebits << 3;
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
 | |
|         int b_dynalloc = dynalloc;
 | |
|         int boost_amount = f->alloc_boost[i];
 | |
|         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
 | |
| 
 | |
|         while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
 | |
|             int is_boost;
 | |
|             if (encode) {
 | |
|                 is_boost = boost_amount--;
 | |
|                 ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
 | |
|             } else {
 | |
|                 is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
 | |
|             }
 | |
| 
 | |
|             if (!is_boost)
 | |
|                 break;
 | |
| 
 | |
|             boost[i]   += quanta;
 | |
|             tbits_8ths -= quanta;
 | |
| 
 | |
|             b_dynalloc = 1;
 | |
|         }
 | |
| 
 | |
|         if (boost[i])
 | |
|             dynalloc = FFMAX(dynalloc - 1, 2);
 | |
|     }
 | |
| 
 | |
|     /* Allocation trim */
 | |
|     if (!encode)
 | |
|         f->alloc_trim = 5;
 | |
|     if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
 | |
|         if (encode)
 | |
|             ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
 | |
|         else
 | |
|             f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
 | |
| 
 | |
|     /* Anti-collapse bit reservation */
 | |
|     tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
 | |
|     f->anticollapse_needed = 0;
 | |
|     if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
 | |
|         f->anticollapse_needed = 1 << 3;
 | |
|     tbits_8ths -= f->anticollapse_needed;
 | |
| 
 | |
|     /* Band skip bit reservation */
 | |
|     if (tbits_8ths >= 1 << 3)
 | |
|         skip_bit = 1 << 3;
 | |
|     tbits_8ths -= skip_bit;
 | |
| 
 | |
|     /* Intensity/dual stereo bit reservation */
 | |
|     if (f->channels == 2) {
 | |
|         intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
 | |
|         if (intensitystereo_bit <= tbits_8ths) {
 | |
|             tbits_8ths -= intensitystereo_bit;
 | |
|             if (tbits_8ths >= 1 << 3) {
 | |
|                 dualstereo_bit = 1 << 3;
 | |
|                 tbits_8ths -= 1 << 3;
 | |
|             }
 | |
|         } else {
 | |
|             intensitystereo_bit = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Trim offsets */
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int trim     = f->alloc_trim - 5 - f->size;
 | |
|         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
 | |
|         int duration = f->size + 3;
 | |
|         int scale    = duration + f->channels - 1;
 | |
| 
 | |
|         /* PVQ minimum allocation threshold, below this value the band is
 | |
|          * skipped */
 | |
|         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
 | |
|                              f->channels << 3);
 | |
| 
 | |
|         trim_offset[i] = trim * (band << scale) >> 6;
 | |
| 
 | |
|         if (ff_celt_freq_range[i] << f->size == 1)
 | |
|             trim_offset[i] -= f->channels << 3;
 | |
|     }
 | |
| 
 | |
|     /* Bisection */
 | |
|     low  = 1;
 | |
|     high = CELT_VECTORS - 1;
 | |
|     while (low <= high) {
 | |
|         int center = (low + high) >> 1;
 | |
|         done = total = 0;
 | |
| 
 | |
|         for (i = f->end_band - 1; i >= f->start_band; i--) {
 | |
|             bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
 | |
| 
 | |
|             if (bandbits)
 | |
|                 bandbits = FFMAX(bandbits + trim_offset[i], 0);
 | |
|             bandbits += boost[i];
 | |
| 
 | |
|             if (bandbits >= threshold[i] || done) {
 | |
|                 done = 1;
 | |
|                 total += FFMIN(bandbits, f->caps[i]);
 | |
|             } else if (bandbits >= f->channels << 3) {
 | |
|                 total += f->channels << 3;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (total > tbits_8ths)
 | |
|             high = center - 1;
 | |
|         else
 | |
|             low = center + 1;
 | |
|     }
 | |
|     high = low--;
 | |
| 
 | |
|     /* Bisection */
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
 | |
|         bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
 | |
|                    NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
 | |
| 
 | |
|         if (bits1[i])
 | |
|             bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
 | |
|         if (bits2[i])
 | |
|             bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
 | |
| 
 | |
|         if (low)
 | |
|             bits1[i] += boost[i];
 | |
|         bits2[i] += boost[i];
 | |
| 
 | |
|         if (boost[i])
 | |
|             skip_startband = i;
 | |
|         bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
 | |
|     }
 | |
| 
 | |
|     /* Bisection */
 | |
|     low  = 0;
 | |
|     high = 1 << CELT_ALLOC_STEPS;
 | |
|     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
 | |
|         int center = (low + high) >> 1;
 | |
|         done = total = 0;
 | |
| 
 | |
|         for (j = f->end_band - 1; j >= f->start_band; j--) {
 | |
|             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
 | |
| 
 | |
|             if (bandbits >= threshold[j] || done) {
 | |
|                 done = 1;
 | |
|                 total += FFMIN(bandbits, f->caps[j]);
 | |
|             } else if (bandbits >= f->channels << 3)
 | |
|                 total += f->channels << 3;
 | |
|         }
 | |
|         if (total > tbits_8ths)
 | |
|             high = center;
 | |
|         else
 | |
|             low = center;
 | |
|     }
 | |
| 
 | |
|     /* Bisection */
 | |
|     done = total = 0;
 | |
|     for (i = f->end_band - 1; i >= f->start_band; i--) {
 | |
|         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
 | |
| 
 | |
|         if (bandbits >= threshold[i] || done)
 | |
|             done = 1;
 | |
|         else
 | |
|             bandbits = (bandbits >= f->channels << 3) ?
 | |
|             f->channels << 3 : 0;
 | |
| 
 | |
|         bandbits     = FFMIN(bandbits, f->caps[i]);
 | |
|         f->pulses[i] = bandbits;
 | |
|         total      += bandbits;
 | |
|     }
 | |
| 
 | |
|     /* Band skipping */
 | |
|     for (f->coded_bands = f->end_band; ; f->coded_bands--) {
 | |
|         int allocation;
 | |
|         j = f->coded_bands - 1;
 | |
| 
 | |
|         if (j == skip_startband) {
 | |
|             /* all remaining bands are not skipped */
 | |
|             tbits_8ths += skip_bit;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* determine the number of bits available for coding "do not skip" markers */
 | |
|         remaining   = tbits_8ths - total;
 | |
|         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | |
|         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | |
|         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
 | |
|         allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
 | |
| 
 | |
|         /* a "do not skip" marker is only coded if the allocation is
 | |
|          * above the chosen threshold */
 | |
|         if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
 | |
|             int do_not_skip;
 | |
|             if (encode) {
 | |
|                 do_not_skip = f->coded_bands <= f->skip_band_floor;
 | |
|                 ff_opus_rc_enc_log(rc, do_not_skip, 1);
 | |
|             } else {
 | |
|                 do_not_skip = ff_opus_rc_dec_log(rc, 1);
 | |
|             }
 | |
| 
 | |
|             if (do_not_skip)
 | |
|                 break;
 | |
| 
 | |
|             total      += 1 << 3;
 | |
|             allocation -= 1 << 3;
 | |
|         }
 | |
| 
 | |
|         /* the band is skipped, so reclaim its bits */
 | |
|         total -= f->pulses[j];
 | |
|         if (intensitystereo_bit) {
 | |
|             total -= intensitystereo_bit;
 | |
|             intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
 | |
|             total += intensitystereo_bit;
 | |
|         }
 | |
| 
 | |
|         total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
 | |
|     }
 | |
| 
 | |
|     /* IS start band */
 | |
|     if (encode) {
 | |
|         if (intensitystereo_bit) {
 | |
|             f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
 | |
|             ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
 | |
|         }
 | |
|     } else {
 | |
|         f->intensity_stereo = f->dual_stereo = 0;
 | |
|         if (intensitystereo_bit)
 | |
|             f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
 | |
|     }
 | |
| 
 | |
|     /* DS flag */
 | |
|     if (f->intensity_stereo <= f->start_band)
 | |
|         tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
 | |
|     else if (dualstereo_bit)
 | |
|         if (encode)
 | |
|             ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
 | |
|         else
 | |
|             f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
 | |
| 
 | |
|     /* Supply the remaining bits in this frame to lower bands */
 | |
|     remaining = tbits_8ths - total;
 | |
|     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | |
|     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | |
|     for (i = f->start_band; i < f->coded_bands; i++) {
 | |
|         const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
 | |
|         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
 | |
|         remaining    -= bits;
 | |
|     }
 | |
| 
 | |
|     /* Finally determine the allocation */
 | |
|     for (i = f->start_band; i < f->coded_bands; i++) {
 | |
|         int N = ff_celt_freq_range[i] << f->size;
 | |
|         int prev_extra = extrabits;
 | |
|         f->pulses[i] += extrabits;
 | |
| 
 | |
|         if (N > 1) {
 | |
|             int dof;        /* degrees of freedom */
 | |
|             int temp;       /* dof * channels * log(dof) */
 | |
|             int fine_bits;
 | |
|             int max_bits;
 | |
|             int offset;     /* fine energy quantization offset, i.e.
 | |
|                              * extra bits assigned over the standard
 | |
|                              * totalbits/dof */
 | |
| 
 | |
|             extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
 | |
|             f->pulses[i] -= extrabits;
 | |
| 
 | |
|             /* intensity stereo makes use of an extra degree of freedom */
 | |
|             dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
 | |
|             temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
 | |
|             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
 | |
|             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
 | |
|                 offset += dof << 1;
 | |
| 
 | |
|             /* grant an additional bias for the first and second pulses */
 | |
|             if (f->pulses[i] + offset < 2 * (dof << 3))
 | |
|                 offset += temp >> 2;
 | |
|             else if (f->pulses[i] + offset < 3 * (dof << 3))
 | |
|                 offset += temp >> 3;
 | |
| 
 | |
|             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
 | |
|             max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
 | |
|             max_bits  = FFMAX(max_bits, 0);
 | |
|             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
 | |
| 
 | |
|             /* If fine_bits was rounded down or capped,
 | |
|              * give priority for the final fine energy pass */
 | |
|             f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
 | |
| 
 | |
|             /* the remaining bits are assigned to PVQ */
 | |
|             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
 | |
|         } else {
 | |
|             /* all bits go to fine energy except for the sign bit */
 | |
|             extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
 | |
|             f->pulses[i] -= extrabits;
 | |
|             f->fine_bits[i] = 0;
 | |
|             f->fine_priority[i] = 1;
 | |
|         }
 | |
| 
 | |
|         /* hand back a limited number of extra fine energy bits to this band */
 | |
|         if (extrabits > 0) {
 | |
|             int fineextra = FFMIN(extrabits >> (f->channels + 2),
 | |
|                                   CELT_MAX_FINE_BITS - f->fine_bits[i]);
 | |
|             f->fine_bits[i] += fineextra;
 | |
| 
 | |
|             fineextra <<= f->channels + 2;
 | |
|             f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
 | |
|             extrabits -= fineextra;
 | |
|         }
 | |
|     }
 | |
|     f->remaining = extrabits;
 | |
| 
 | |
|     /* skipped bands dedicate all of their bits for fine energy */
 | |
|     for (; i < f->end_band; i++) {
 | |
|         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
 | |
|         f->pulses[i]        = 0;
 | |
|         f->fine_priority[i] = f->fine_bits[i] < 1;
 | |
|     }
 | |
| }
 |