mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1034 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1034 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2001-2003 The FFmpeg project
 | |
|  *
 | |
|  * first version by Francois Revol (revol@free.fr)
 | |
|  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
 | |
|  *   by Mike Melanson (melanson@pcisys.net)
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "config_components.h"
 | |
| 
 | |
| #include "libavutil/opt.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "put_bits.h"
 | |
| #include "bytestream.h"
 | |
| #include "adpcm.h"
 | |
| #include "adpcm_data.h"
 | |
| #include "codec_internal.h"
 | |
| #include "encode.h"
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * ADPCM encoders
 | |
|  * See ADPCM decoder reference documents for codec information.
 | |
|  */
 | |
| 
 | |
| #define CASE_0(codec_id, ...)
 | |
| #define CASE_1(codec_id, ...) \
 | |
|     case codec_id:            \
 | |
|     { __VA_ARGS__ }           \
 | |
|     break;
 | |
| #define CASE_2(enabled, codec_id, ...) \
 | |
|         CASE_ ## enabled(codec_id, __VA_ARGS__)
 | |
| #define CASE_3(config, codec_id, ...) \
 | |
|         CASE_2(config, codec_id, __VA_ARGS__)
 | |
| #define CASE(codec, ...) \
 | |
|         CASE_3(CONFIG_ ## codec ## _ENCODER, AV_CODEC_ID_ ## codec, __VA_ARGS__)
 | |
| 
 | |
| typedef struct TrellisPath {
 | |
|     int nibble;
 | |
|     int prev;
 | |
| } TrellisPath;
 | |
| 
 | |
| typedef struct TrellisNode {
 | |
|     uint32_t ssd;
 | |
|     int path;
 | |
|     int sample1;
 | |
|     int sample2;
 | |
|     int step;
 | |
| } TrellisNode;
 | |
| 
 | |
| typedef struct ADPCMEncodeContext {
 | |
|     AVClass *class;
 | |
|     int block_size;
 | |
| 
 | |
|     ADPCMChannelStatus status[6];
 | |
|     TrellisPath *paths;
 | |
|     TrellisNode *node_buf;
 | |
|     TrellisNode **nodep_buf;
 | |
|     uint8_t *trellis_hash;
 | |
| } ADPCMEncodeContext;
 | |
| 
 | |
| #define FREEZE_INTERVAL 128
 | |
| 
 | |
| static av_cold int adpcm_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     ADPCMEncodeContext *s = avctx->priv_data;
 | |
|     int channels = avctx->ch_layout.nb_channels;
 | |
| 
 | |
|     /*
 | |
|      * AMV's block size has to match that of the corresponding video
 | |
|      * stream. Relax the POT requirement.
 | |
|      */
 | |
|     if (avctx->codec->id != AV_CODEC_ID_ADPCM_IMA_AMV &&
 | |
|         (s->block_size & (s->block_size - 1))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "block size must be power of 2\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (avctx->trellis) {
 | |
|         int frontier, max_paths;
 | |
| 
 | |
|         if ((unsigned)avctx->trellis > 16U) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_SSI ||
 | |
|             avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_APM ||
 | |
|             avctx->codec->id == AV_CODEC_ID_ADPCM_ARGO    ||
 | |
|             avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_WS) {
 | |
|             /*
 | |
|              * The current trellis implementation doesn't work for extended
 | |
|              * runs of samples without periodic resets. Disallow it.
 | |
|              */
 | |
|             av_log(avctx, AV_LOG_ERROR, "trellis not supported\n");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         frontier  = 1 << avctx->trellis;
 | |
|         max_paths =  frontier * FREEZE_INTERVAL;
 | |
|         if (!FF_ALLOC_TYPED_ARRAY(s->paths,        max_paths)    ||
 | |
|             !FF_ALLOC_TYPED_ARRAY(s->node_buf,     2 * frontier) ||
 | |
|             !FF_ALLOC_TYPED_ARRAY(s->nodep_buf,    2 * frontier) ||
 | |
|             !FF_ALLOC_TYPED_ARRAY(s->trellis_hash, 65536))
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
 | |
| 
 | |
|     switch (avctx->codec->id) {
 | |
|     CASE(ADPCM_IMA_WAV,
 | |
|         /* each 16 bits sample gives one nibble
 | |
|            and we have 4 bytes per channel overhead */
 | |
|         avctx->frame_size = (s->block_size - 4 * channels) * 8 /
 | |
|                             (4 * channels) + 1;
 | |
|         /* seems frame_size isn't taken into account...
 | |
|            have to buffer the samples :-( */
 | |
|         avctx->block_align = s->block_size;
 | |
|         avctx->bits_per_coded_sample = 4;
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_QT,
 | |
|         avctx->frame_size  = 64;
 | |
|         avctx->block_align = 34 * channels;
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_MS,
 | |
|         uint8_t *extradata;
 | |
|         /* each 16 bits sample gives one nibble
 | |
|            and we have 7 bytes per channel overhead */
 | |
|         avctx->frame_size = (s->block_size - 7 * channels) * 2 / channels + 2;
 | |
|         avctx->bits_per_coded_sample = 4;
 | |
|         avctx->block_align     = s->block_size;
 | |
|         if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE)))
 | |
|             return AVERROR(ENOMEM);
 | |
|         avctx->extradata_size = 32;
 | |
|         extradata = avctx->extradata;
 | |
|         bytestream_put_le16(&extradata, avctx->frame_size);
 | |
|         bytestream_put_le16(&extradata, 7); /* wNumCoef */
 | |
|         for (int i = 0; i < 7; i++) {
 | |
|             bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
 | |
|             bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
 | |
|         }
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_YAMAHA,
 | |
|         avctx->frame_size  = s->block_size * 2 / channels;
 | |
|         avctx->block_align = s->block_size;
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_SWF,
 | |
|         if (avctx->sample_rate != 11025 &&
 | |
|             avctx->sample_rate != 22050 &&
 | |
|             avctx->sample_rate != 44100) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
 | |
|                    "22050 or 44100\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
|         avctx->frame_size  = 4096; /* Hardcoded according to the SWF spec. */
 | |
|         avctx->block_align = (2 + channels * (22 + 4 * (avctx->frame_size - 1)) + 7) / 8;
 | |
|         ) /* End of CASE */
 | |
|     case AV_CODEC_ID_ADPCM_IMA_SSI:
 | |
|     case AV_CODEC_ID_ADPCM_IMA_ALP:
 | |
|         avctx->frame_size  = s->block_size * 2 / channels;
 | |
|         avctx->block_align = s->block_size;
 | |
|         break;
 | |
|     CASE(ADPCM_IMA_AMV,
 | |
|         if (avctx->sample_rate != 22050) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Sample rate must be 22050\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         if (channels != 1) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         avctx->frame_size  = s->block_size;
 | |
|         avctx->block_align = 8 + (FFALIGN(avctx->frame_size, 2) / 2);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_APM,
 | |
|         avctx->frame_size  = s->block_size * 2 / channels;
 | |
|         avctx->block_align = s->block_size;
 | |
| 
 | |
|         if (!(avctx->extradata = av_mallocz(28 + AV_INPUT_BUFFER_PADDING_SIZE)))
 | |
|             return AVERROR(ENOMEM);
 | |
|         avctx->extradata_size = 28;
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_ARGO,
 | |
|         avctx->frame_size = 32;
 | |
|         avctx->block_align = 17 * channels;
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_WS,
 | |
|         /* each 16 bits sample gives one nibble */
 | |
|         avctx->frame_size = s->block_size * 2 / channels;
 | |
|         avctx->block_align = s->block_size;
 | |
|         ) /* End of CASE */
 | |
|     default:
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int adpcm_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     ADPCMEncodeContext *s = avctx->priv_data;
 | |
|     av_freep(&s->paths);
 | |
|     av_freep(&s->node_buf);
 | |
|     av_freep(&s->nodep_buf);
 | |
|     av_freep(&s->trellis_hash);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
 | |
|                                                 int16_t sample)
 | |
| {
 | |
|     int delta  = sample - c->prev_sample;
 | |
|     int nibble = FFMIN(7, abs(delta) * 4 /
 | |
|                        ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
 | |
|     c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
 | |
|                         ff_adpcm_yamaha_difflookup[nibble]) / 8);
 | |
|     c->prev_sample = av_clip_int16(c->prev_sample);
 | |
|     c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static inline uint8_t adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample)
 | |
| {
 | |
|     const int delta  = sample - c->prev_sample;
 | |
|     const int step   = ff_adpcm_step_table[c->step_index];
 | |
|     const int sign   = (delta < 0) * 8;
 | |
| 
 | |
|     int nibble = FFMIN(abs(delta) * 4 / step, 7);
 | |
|     int diff   = (step * nibble) >> 2;
 | |
|     if (sign)
 | |
|         diff = -diff;
 | |
| 
 | |
|     nibble = sign | nibble;
 | |
| 
 | |
|     c->prev_sample += diff;
 | |
|     c->prev_sample  = av_clip_int16(c->prev_sample);
 | |
|     c->step_index   = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
 | |
|                                                    int16_t sample)
 | |
| {
 | |
|     int delta  = sample - c->prev_sample;
 | |
|     int diff, step = ff_adpcm_step_table[c->step_index];
 | |
|     int nibble = 8*(delta < 0);
 | |
| 
 | |
|     delta= abs(delta);
 | |
|     diff = delta + (step >> 3);
 | |
| 
 | |
|     if (delta >= step) {
 | |
|         nibble |= 4;
 | |
|         delta  -= step;
 | |
|     }
 | |
|     step >>= 1;
 | |
|     if (delta >= step) {
 | |
|         nibble |= 2;
 | |
|         delta  -= step;
 | |
|     }
 | |
|     step >>= 1;
 | |
|     if (delta >= step) {
 | |
|         nibble |= 1;
 | |
|         delta  -= step;
 | |
|     }
 | |
|     diff -= delta;
 | |
| 
 | |
|     if (nibble & 8)
 | |
|         c->prev_sample -= diff;
 | |
|     else
 | |
|         c->prev_sample += diff;
 | |
| 
 | |
|     c->prev_sample = av_clip_int16(c->prev_sample);
 | |
|     c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
 | |
| 
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
 | |
|                                                int16_t sample)
 | |
| {
 | |
|     int predictor, nibble, bias;
 | |
| 
 | |
|     predictor = (((c->sample1) * (c->coeff1)) +
 | |
|                 (( c->sample2) * (c->coeff2))) / 64;
 | |
| 
 | |
|     nibble = sample - predictor;
 | |
|     if (nibble >= 0)
 | |
|         bias =  c->idelta / 2;
 | |
|     else
 | |
|         bias = -c->idelta / 2;
 | |
| 
 | |
|     nibble = (nibble + bias) / c->idelta;
 | |
|     nibble = av_clip_intp2(nibble, 3) & 0x0F;
 | |
| 
 | |
|     predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
 | |
| 
 | |
|     c->sample2 = c->sample1;
 | |
|     c->sample1 = av_clip_int16(predictor);
 | |
| 
 | |
|     c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
 | |
|     if (c->idelta < 16)
 | |
|         c->idelta = 16;
 | |
| 
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
 | |
|                                                    int16_t sample)
 | |
| {
 | |
|     int nibble, delta;
 | |
| 
 | |
|     if (!c->step) {
 | |
|         c->predictor = 0;
 | |
|         c->step      = 127;
 | |
|     }
 | |
| 
 | |
|     delta = sample - c->predictor;
 | |
| 
 | |
|     nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
 | |
| 
 | |
|     c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
 | |
|     c->predictor = av_clip_int16(c->predictor);
 | |
|     c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
 | |
|     c->step = av_clip(c->step, 127, 24576);
 | |
| 
 | |
|     return nibble;
 | |
| }
 | |
| 
 | |
| static void adpcm_compress_trellis(AVCodecContext *avctx,
 | |
|                                    const int16_t *samples, uint8_t *dst,
 | |
|                                    ADPCMChannelStatus *c, int n, int stride)
 | |
| {
 | |
|     //FIXME 6% faster if frontier is a compile-time constant
 | |
|     ADPCMEncodeContext *s = avctx->priv_data;
 | |
|     const int frontier = 1 << avctx->trellis;
 | |
|     const int version  = avctx->codec->id;
 | |
|     TrellisPath *paths       = s->paths, *p;
 | |
|     TrellisNode *node_buf    = s->node_buf;
 | |
|     TrellisNode **nodep_buf  = s->nodep_buf;
 | |
|     TrellisNode **nodes      = nodep_buf; // nodes[] is always sorted by .ssd
 | |
|     TrellisNode **nodes_next = nodep_buf + frontier;
 | |
|     int pathn = 0, froze = -1, i, j, k, generation = 0;
 | |
|     uint8_t *hash = s->trellis_hash;
 | |
|     memset(hash, 0xff, 65536 * sizeof(*hash));
 | |
| 
 | |
|     memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
 | |
|     nodes[0]          = node_buf + frontier;
 | |
|     nodes[0]->ssd     = 0;
 | |
|     nodes[0]->path    = 0;
 | |
|     nodes[0]->step    = c->step_index;
 | |
|     nodes[0]->sample1 = c->sample1;
 | |
|     nodes[0]->sample2 = c->sample2;
 | |
|     if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
 | |
|         version == AV_CODEC_ID_ADPCM_IMA_QT  ||
 | |
|         version == AV_CODEC_ID_ADPCM_IMA_AMV ||
 | |
|         version == AV_CODEC_ID_ADPCM_SWF)
 | |
|         nodes[0]->sample1 = c->prev_sample;
 | |
|     if (version == AV_CODEC_ID_ADPCM_MS)
 | |
|         nodes[0]->step = c->idelta;
 | |
|     if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
 | |
|         if (c->step == 0) {
 | |
|             nodes[0]->step    = 127;
 | |
|             nodes[0]->sample1 = 0;
 | |
|         } else {
 | |
|             nodes[0]->step    = c->step;
 | |
|             nodes[0]->sample1 = c->predictor;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         TrellisNode *t = node_buf + frontier*(i&1);
 | |
|         TrellisNode **u;
 | |
|         int sample   = samples[i * stride];
 | |
|         int heap_pos = 0;
 | |
|         memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
 | |
|         for (j = 0; j < frontier && nodes[j]; j++) {
 | |
|             // higher j have higher ssd already, so they're likely
 | |
|             // to yield a suboptimal next sample too
 | |
|             const int range = (j < frontier / 2) ? 1 : 0;
 | |
|             const int step  = nodes[j]->step;
 | |
|             int nidx;
 | |
|             if (version == AV_CODEC_ID_ADPCM_MS) {
 | |
|                 const int predictor = ((nodes[j]->sample1 * c->coeff1) +
 | |
|                                        (nodes[j]->sample2 * c->coeff2)) / 64;
 | |
|                 const int div  = (sample - predictor) / step;
 | |
|                 const int nmin = av_clip(div-range, -8, 6);
 | |
|                 const int nmax = av_clip(div+range, -7, 7);
 | |
|                 for (nidx = nmin; nidx <= nmax; nidx++) {
 | |
|                     const int nibble = nidx & 0xf;
 | |
|                     int dec_sample   = predictor + nidx * step;
 | |
| #define STORE_NODE(NAME, STEP_INDEX)\
 | |
|                     int d;\
 | |
|                     uint32_t ssd;\
 | |
|                     int pos;\
 | |
|                     TrellisNode *u;\
 | |
|                     uint8_t *h;\
 | |
|                     dec_sample = av_clip_int16(dec_sample);\
 | |
|                     d = sample - dec_sample;\
 | |
|                     ssd = nodes[j]->ssd + d*(unsigned)d;\
 | |
|                     /* Check for wraparound, skip such samples completely. \
 | |
|                      * Note, changing ssd to a 64 bit variable would be \
 | |
|                      * simpler, avoiding this check, but it's slower on \
 | |
|                      * x86 32 bit at the moment. */\
 | |
|                     if (ssd < nodes[j]->ssd)\
 | |
|                         goto next_##NAME;\
 | |
|                     /* Collapse any two states with the same previous sample value. \
 | |
|                      * One could also distinguish states by step and by 2nd to last
 | |
|                      * sample, but the effects of that are negligible.
 | |
|                      * Since nodes in the previous generation are iterated
 | |
|                      * through a heap, they're roughly ordered from better to
 | |
|                      * worse, but not strictly ordered. Therefore, an earlier
 | |
|                      * node with the same sample value is better in most cases
 | |
|                      * (and thus the current is skipped), but not strictly
 | |
|                      * in all cases. Only skipping samples where ssd >=
 | |
|                      * ssd of the earlier node with the same sample gives
 | |
|                      * slightly worse quality, though, for some reason. */ \
 | |
|                     h = &hash[(uint16_t) dec_sample];\
 | |
|                     if (*h == generation)\
 | |
|                         goto next_##NAME;\
 | |
|                     if (heap_pos < frontier) {\
 | |
|                         pos = heap_pos++;\
 | |
|                     } else {\
 | |
|                         /* Try to replace one of the leaf nodes with the new \
 | |
|                          * one, but try a different slot each time. */\
 | |
|                         pos = (frontier >> 1) +\
 | |
|                               (heap_pos & ((frontier >> 1) - 1));\
 | |
|                         if (ssd > nodes_next[pos]->ssd)\
 | |
|                             goto next_##NAME;\
 | |
|                         heap_pos++;\
 | |
|                     }\
 | |
|                     *h = generation;\
 | |
|                     u  = nodes_next[pos];\
 | |
|                     if (!u) {\
 | |
|                         av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
 | |
|                         u = t++;\
 | |
|                         nodes_next[pos] = u;\
 | |
|                         u->path = pathn++;\
 | |
|                     }\
 | |
|                     u->ssd  = ssd;\
 | |
|                     u->step = STEP_INDEX;\
 | |
|                     u->sample2 = nodes[j]->sample1;\
 | |
|                     u->sample1 = dec_sample;\
 | |
|                     paths[u->path].nibble = nibble;\
 | |
|                     paths[u->path].prev   = nodes[j]->path;\
 | |
|                     /* Sift the newly inserted node up in the heap to \
 | |
|                      * restore the heap property. */\
 | |
|                     while (pos > 0) {\
 | |
|                         int parent = (pos - 1) >> 1;\
 | |
|                         if (nodes_next[parent]->ssd <= ssd)\
 | |
|                             break;\
 | |
|                         FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
 | |
|                         pos = parent;\
 | |
|                     }\
 | |
|                     next_##NAME:;
 | |
|                     STORE_NODE(ms, FFMAX(16,
 | |
|                                (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
 | |
|                 }
 | |
|             } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
 | |
|                        version == AV_CODEC_ID_ADPCM_IMA_QT  ||
 | |
|                        version == AV_CODEC_ID_ADPCM_IMA_AMV ||
 | |
|                        version == AV_CODEC_ID_ADPCM_SWF) {
 | |
| #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
 | |
|                 const int predictor = nodes[j]->sample1;\
 | |
|                 const int div = (sample - predictor) * 4 / STEP_TABLE;\
 | |
|                 int nmin = av_clip(div - range, -7, 6);\
 | |
|                 int nmax = av_clip(div + range, -6, 7);\
 | |
|                 if (nmin <= 0)\
 | |
|                     nmin--; /* distinguish -0 from +0 */\
 | |
|                 if (nmax < 0)\
 | |
|                     nmax--;\
 | |
|                 for (nidx = nmin; nidx <= nmax; nidx++) {\
 | |
|                     const int nibble = nidx < 0 ? 7 - nidx : nidx;\
 | |
|                     int dec_sample = predictor +\
 | |
|                                     (STEP_TABLE *\
 | |
|                                      ff_adpcm_yamaha_difflookup[nibble]) / 8;\
 | |
|                     STORE_NODE(NAME, STEP_INDEX);\
 | |
|                 }
 | |
|                 LOOP_NODES(ima, ff_adpcm_step_table[step],
 | |
|                            av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
 | |
|             } else { //AV_CODEC_ID_ADPCM_YAMAHA
 | |
|                 LOOP_NODES(yamaha, step,
 | |
|                            av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
 | |
|                                    127, 24576));
 | |
| #undef LOOP_NODES
 | |
| #undef STORE_NODE
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         u = nodes;
 | |
|         nodes = nodes_next;
 | |
|         nodes_next = u;
 | |
| 
 | |
|         generation++;
 | |
|         if (generation == 255) {
 | |
|             memset(hash, 0xff, 65536 * sizeof(*hash));
 | |
|             generation = 0;
 | |
|         }
 | |
| 
 | |
|         // prevent overflow
 | |
|         if (nodes[0]->ssd > (1 << 28)) {
 | |
|             for (j = 1; j < frontier && nodes[j]; j++)
 | |
|                 nodes[j]->ssd -= nodes[0]->ssd;
 | |
|             nodes[0]->ssd = 0;
 | |
|         }
 | |
| 
 | |
|         // merge old paths to save memory
 | |
|         if (i == froze + FREEZE_INTERVAL) {
 | |
|             p = &paths[nodes[0]->path];
 | |
|             for (k = i; k > froze; k--) {
 | |
|                 dst[k] = p->nibble;
 | |
|                 p = &paths[p->prev];
 | |
|             }
 | |
|             froze = i;
 | |
|             pathn = 0;
 | |
|             // other nodes might use paths that don't coincide with the frozen one.
 | |
|             // checking which nodes do so is too slow, so just kill them all.
 | |
|             // this also slightly improves quality, but I don't know why.
 | |
|             memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     p = &paths[nodes[0]->path];
 | |
|     for (i = n - 1; i > froze; i--) {
 | |
|         dst[i] = p->nibble;
 | |
|         p = &paths[p->prev];
 | |
|     }
 | |
| 
 | |
|     c->predictor  = nodes[0]->sample1;
 | |
|     c->sample1    = nodes[0]->sample1;
 | |
|     c->sample2    = nodes[0]->sample2;
 | |
|     c->step_index = nodes[0]->step;
 | |
|     c->step       = nodes[0]->step;
 | |
|     c->idelta     = nodes[0]->step;
 | |
| }
 | |
| 
 | |
| #if CONFIG_ADPCM_ARGO_ENCODER
 | |
| static inline int adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s,
 | |
|                                              int shift, int flag)
 | |
| {
 | |
|     int nibble;
 | |
| 
 | |
|     if (flag)
 | |
|         nibble = 4 * s - 8 * cs->sample1 + 4 * cs->sample2;
 | |
|     else
 | |
|         nibble = 4 * s - 4 * cs->sample1;
 | |
| 
 | |
|     return (nibble >> shift) & 0x0F;
 | |
| }
 | |
| 
 | |
| static int64_t adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb,
 | |
|                                          const int16_t *samples, int nsamples,
 | |
|                                          int shift, int flag)
 | |
| {
 | |
|     int64_t error = 0;
 | |
| 
 | |
|     if (pb) {
 | |
|         put_bits(pb, 4, shift - 2);
 | |
|         put_bits(pb, 1, 0);
 | |
|         put_bits(pb, 1, !!flag);
 | |
|         put_bits(pb, 2, 0);
 | |
|     }
 | |
| 
 | |
|     for (int n = 0; n < nsamples; n++) {
 | |
|         /* Compress the nibble, then expand it to see how much precision we've lost. */
 | |
|         int nibble = adpcm_argo_compress_nibble(cs, samples[n], shift, flag);
 | |
|         int16_t sample = ff_adpcm_argo_expand_nibble(cs, nibble, shift, flag);
 | |
| 
 | |
|         error += abs(samples[n] - sample);
 | |
| 
 | |
|         if (pb)
 | |
|             put_bits(pb, 4, nibble);
 | |
|     }
 | |
| 
 | |
|     return error;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                               const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     int st, pkt_size, ret;
 | |
|     const int16_t *samples;
 | |
|     const int16_t *const *samples_p;
 | |
|     uint8_t *dst;
 | |
|     ADPCMEncodeContext *c = avctx->priv_data;
 | |
|     int channels = avctx->ch_layout.nb_channels;
 | |
| 
 | |
|     samples = (const int16_t *)frame->data[0];
 | |
|     samples_p = (const int16_t *const *)frame->extended_data;
 | |
|     st = channels == 2;
 | |
| 
 | |
|     if (avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_SSI ||
 | |
|         avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_ALP ||
 | |
|         avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_APM ||
 | |
|         avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_WS)
 | |
|         pkt_size = (frame->nb_samples * channels + 1) / 2;
 | |
|     else
 | |
|         pkt_size = avctx->block_align;
 | |
|     if ((ret = ff_get_encode_buffer(avctx, avpkt, pkt_size, 0)) < 0)
 | |
|         return ret;
 | |
|     dst = avpkt->data;
 | |
| 
 | |
|     switch(avctx->codec->id) {
 | |
|     CASE(ADPCM_IMA_WAV,
 | |
|         int blocks = (frame->nb_samples - 1) / 8;
 | |
| 
 | |
|         for (int ch = 0; ch < channels; ch++) {
 | |
|             ADPCMChannelStatus *status = &c->status[ch];
 | |
|             status->prev_sample = samples_p[ch][0];
 | |
|             /* status->step_index = 0;
 | |
|                XXX: not sure how to init the state machine */
 | |
|             bytestream_put_le16(&dst, status->prev_sample);
 | |
|             *dst++ = status->step_index;
 | |
|             *dst++ = 0; /* unknown */
 | |
|         }
 | |
| 
 | |
|         /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
 | |
|         if (avctx->trellis > 0) {
 | |
|             uint8_t *buf;
 | |
|             if (!FF_ALLOC_TYPED_ARRAY(buf, channels * blocks * 8))
 | |
|                 return AVERROR(ENOMEM);
 | |
|             for (int ch = 0; ch < channels; ch++) {
 | |
|                 adpcm_compress_trellis(avctx, &samples_p[ch][1],
 | |
|                                        buf + ch * blocks * 8, &c->status[ch],
 | |
|                                        blocks * 8, 1);
 | |
|             }
 | |
|             for (int i = 0; i < blocks; i++) {
 | |
|                 for (int ch = 0; ch < channels; ch++) {
 | |
|                     uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
 | |
|                     for (int j = 0; j < 8; j += 2)
 | |
|                         *dst++ = buf1[j] | (buf1[j + 1] << 4);
 | |
|                 }
 | |
|             }
 | |
|             av_free(buf);
 | |
|         } else {
 | |
|             for (int i = 0; i < blocks; i++) {
 | |
|                 for (int ch = 0; ch < channels; ch++) {
 | |
|                     ADPCMChannelStatus *status = &c->status[ch];
 | |
|                     const int16_t *smp = &samples_p[ch][1 + i * 8];
 | |
|                     for (int j = 0; j < 8; j += 2) {
 | |
|                         uint8_t v = adpcm_ima_compress_sample(status, smp[j    ]);
 | |
|                         v        |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
 | |
|                         *dst++ = v;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_QT,
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         for (int ch = 0; ch < channels; ch++) {
 | |
|             ADPCMChannelStatus *status = &c->status[ch];
 | |
|             put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
 | |
|             put_bits(&pb, 7,  status->step_index);
 | |
|             if (avctx->trellis > 0) {
 | |
|                 uint8_t buf[64];
 | |
|                 adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
 | |
|                                        64, 1);
 | |
|                 for (int i = 0; i < 64; i++)
 | |
|                     put_bits(&pb, 4, buf[i ^ 1]);
 | |
|                 status->prev_sample = status->predictor;
 | |
|             } else {
 | |
|                 for (int i = 0; i < 64; i += 2) {
 | |
|                     int t1, t2;
 | |
|                     t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i    ]);
 | |
|                     t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
 | |
|                     put_bits(&pb, 4, t2);
 | |
|                     put_bits(&pb, 4, t1);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_SSI,
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         av_assert0(avctx->trellis == 0);
 | |
| 
 | |
|         for (int i = 0; i < frame->nb_samples; i++) {
 | |
|             for (int ch = 0; ch < channels; ch++) {
 | |
|                 put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_ALP,
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         av_assert0(avctx->trellis == 0);
 | |
| 
 | |
|         for (int n = frame->nb_samples / 2; n > 0; n--) {
 | |
|             for (int ch = 0; ch < channels; ch++) {
 | |
|                 put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, *samples++));
 | |
|                 put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, samples[st]));
 | |
|             }
 | |
|             samples += channels;
 | |
|         }
 | |
| 
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_SWF,
 | |
|         const int n = frame->nb_samples - 1;
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         /* NB: This is safe as we don't have AV_CODEC_CAP_SMALL_LAST_FRAME. */
 | |
|         av_assert0(n == 4095);
 | |
| 
 | |
|         // store AdpcmCodeSize
 | |
|         put_bits(&pb, 2, 2);    // set 4-bit flash adpcm format
 | |
| 
 | |
|         // init the encoder state
 | |
|         for (int i = 0; i < channels; i++) {
 | |
|             // clip step so it fits 6 bits
 | |
|             c->status[i].step_index = av_clip_uintp2(c->status[i].step_index, 6);
 | |
|             put_sbits(&pb, 16, samples[i]);
 | |
|             put_bits(&pb, 6, c->status[i].step_index);
 | |
|             c->status[i].prev_sample = samples[i];
 | |
|         }
 | |
| 
 | |
|         if (avctx->trellis > 0) {
 | |
|             uint8_t buf[8190 /* = 2 * n */];
 | |
|             adpcm_compress_trellis(avctx, samples + channels, buf,
 | |
|                                    &c->status[0], n, channels);
 | |
|             if (channels == 2)
 | |
|                 adpcm_compress_trellis(avctx, samples + channels + 1,
 | |
|                                        buf + n, &c->status[1], n,
 | |
|                                        channels);
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 put_bits(&pb, 4, buf[i]);
 | |
|                 if (channels == 2)
 | |
|                     put_bits(&pb, 4, buf[n + i]);
 | |
|             }
 | |
|         } else {
 | |
|             for (int i = 1; i < frame->nb_samples; i++) {
 | |
|                 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
 | |
|                          samples[channels * i]));
 | |
|                 if (channels == 2)
 | |
|                     put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
 | |
|                              samples[2 * i + 1]));
 | |
|             }
 | |
|         }
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_MS,
 | |
|         for (int i = 0; i < channels; i++) {
 | |
|             int predictor = 0;
 | |
|             *dst++ = predictor;
 | |
|             c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
 | |
|             c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
 | |
|         }
 | |
|         for (int i = 0; i < channels; i++) {
 | |
|             if (c->status[i].idelta < 16)
 | |
|                 c->status[i].idelta = 16;
 | |
|             bytestream_put_le16(&dst, c->status[i].idelta);
 | |
|         }
 | |
|         for (int i = 0; i < channels; i++)
 | |
|             c->status[i].sample2= *samples++;
 | |
|         for (int i = 0; i < channels; i++) {
 | |
|             c->status[i].sample1 = *samples++;
 | |
|             bytestream_put_le16(&dst, c->status[i].sample1);
 | |
|         }
 | |
|         for (int i = 0; i < channels; i++)
 | |
|             bytestream_put_le16(&dst, c->status[i].sample2);
 | |
| 
 | |
|         if (avctx->trellis > 0) {
 | |
|             const int n  = avctx->block_align - 7 * channels;
 | |
|             uint8_t *buf = av_malloc(2 * n);
 | |
|             if (!buf)
 | |
|                 return AVERROR(ENOMEM);
 | |
|             if (channels == 1) {
 | |
|                 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
 | |
|                                        channels);
 | |
|                 for (int i = 0; i < n; i += 2)
 | |
|                     *dst++ = (buf[i] << 4) | buf[i + 1];
 | |
|             } else {
 | |
|                 adpcm_compress_trellis(avctx, samples,     buf,
 | |
|                                        &c->status[0], n, channels);
 | |
|                 adpcm_compress_trellis(avctx, samples + 1, buf + n,
 | |
|                                        &c->status[1], n, channels);
 | |
|                 for (int i = 0; i < n; i++)
 | |
|                     *dst++ = (buf[i] << 4) | buf[n + i];
 | |
|             }
 | |
|             av_free(buf);
 | |
|         } else {
 | |
|             for (int i = 7 * channels; i < avctx->block_align; i++) {
 | |
|                 int nibble;
 | |
|                 nibble  = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
 | |
|                 nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
 | |
|                 *dst++  = nibble;
 | |
|             }
 | |
|         }
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_YAMAHA,
 | |
|         int n = frame->nb_samples / 2;
 | |
|         if (avctx->trellis > 0) {
 | |
|             uint8_t *buf = av_malloc(2 * n * 2);
 | |
|             if (!buf)
 | |
|                 return AVERROR(ENOMEM);
 | |
|             n *= 2;
 | |
|             if (channels == 1) {
 | |
|                 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
 | |
|                                        channels);
 | |
|                 for (int i = 0; i < n; i += 2)
 | |
|                     *dst++ = buf[i] | (buf[i + 1] << 4);
 | |
|             } else {
 | |
|                 adpcm_compress_trellis(avctx, samples,     buf,
 | |
|                                        &c->status[0], n, channels);
 | |
|                 adpcm_compress_trellis(avctx, samples + 1, buf + n,
 | |
|                                        &c->status[1], n, channels);
 | |
|                 for (int i = 0; i < n; i++)
 | |
|                     *dst++ = buf[i] | (buf[n + i] << 4);
 | |
|             }
 | |
|             av_free(buf);
 | |
|         } else
 | |
|             for (n *= channels; n > 0; n--) {
 | |
|                 int nibble;
 | |
|                 nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
 | |
|                 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
 | |
|                 *dst++  = nibble;
 | |
|             }
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_APM,
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         av_assert0(avctx->trellis == 0);
 | |
| 
 | |
|         for (int n = frame->nb_samples / 2; n > 0; n--) {
 | |
|             for (int ch = 0; ch < channels; ch++) {
 | |
|                 put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++));
 | |
|                 put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, samples[st]));
 | |
|             }
 | |
|             samples += channels;
 | |
|         }
 | |
| 
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_AMV,
 | |
|         av_assert0(channels == 1);
 | |
| 
 | |
|         c->status[0].prev_sample = *samples;
 | |
|         bytestream_put_le16(&dst, c->status[0].prev_sample);
 | |
|         bytestream_put_byte(&dst, c->status[0].step_index);
 | |
|         bytestream_put_byte(&dst, 0);
 | |
|         bytestream_put_le32(&dst, avctx->frame_size);
 | |
| 
 | |
|         if (avctx->trellis > 0) {
 | |
|             const int n  = frame->nb_samples >> 1;
 | |
|             uint8_t *buf = av_malloc(2 * n);
 | |
| 
 | |
|             if (!buf)
 | |
|                 return AVERROR(ENOMEM);
 | |
| 
 | |
|             adpcm_compress_trellis(avctx, samples, buf, &c->status[0], 2 * n, channels);
 | |
|             for (int i = 0; i < n; i++)
 | |
|                 bytestream_put_byte(&dst, (buf[2 * i] << 4) | buf[2 * i + 1]);
 | |
| 
 | |
|             samples += 2 * n;
 | |
|             av_free(buf);
 | |
|         } else for (int n = frame->nb_samples >> 1; n > 0; n--) {
 | |
|             int nibble;
 | |
|             nibble  = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4;
 | |
|             nibble |= adpcm_ima_compress_sample(&c->status[0], *samples++) & 0x0F;
 | |
|             bytestream_put_byte(&dst, nibble);
 | |
|         }
 | |
| 
 | |
|         if (avctx->frame_size & 1) {
 | |
|             int nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4;
 | |
|             bytestream_put_byte(&dst, nibble);
 | |
|         }
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_ARGO,
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         av_assert0(frame->nb_samples == 32);
 | |
| 
 | |
|         for (int ch = 0; ch < channels; ch++) {
 | |
|             int64_t error  = INT64_MAX, tmperr = INT64_MAX;
 | |
|             int     shift  = 2, flag = 0;
 | |
|             int     saved1 = c->status[ch].sample1;
 | |
|             int     saved2 = c->status[ch].sample2;
 | |
| 
 | |
|             /* Find the optimal coefficients, bail early if we find a perfect result. */
 | |
|             for (int s = 2; s < 18 && tmperr != 0; s++) {
 | |
|                 for (int f = 0; f < 2 && tmperr != 0; f++) {
 | |
|                     c->status[ch].sample1 = saved1;
 | |
|                     c->status[ch].sample2 = saved2;
 | |
|                     tmperr = adpcm_argo_compress_block(c->status + ch, NULL, samples_p[ch],
 | |
|                                                        frame->nb_samples, s, f);
 | |
|                     if (tmperr < error) {
 | |
|                         shift = s;
 | |
|                         flag  = f;
 | |
|                         error = tmperr;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* Now actually do the encode. */
 | |
|             c->status[ch].sample1 = saved1;
 | |
|             c->status[ch].sample2 = saved2;
 | |
|             adpcm_argo_compress_block(c->status + ch, &pb, samples_p[ch],
 | |
|                                       frame->nb_samples, shift, flag);
 | |
|         }
 | |
| 
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     CASE(ADPCM_IMA_WS,
 | |
|         PutBitContext pb;
 | |
|         init_put_bits(&pb, dst, pkt_size);
 | |
| 
 | |
|         av_assert0(avctx->trellis == 0);
 | |
|         for (int n = frame->nb_samples / 2; n > 0; n--) {
 | |
|             /* stereo: 1 byte (2 samples) for left, 1 byte for right */
 | |
|             for (int ch = 0; ch < channels; ch++) {
 | |
|                 int t1, t2;
 | |
|                 t1 = adpcm_ima_compress_sample(&c->status[ch], *samples++);
 | |
|                 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[st]);
 | |
|                 put_bits(&pb, 4, t2);
 | |
|                 put_bits(&pb, 4, t1);
 | |
|             }
 | |
|             samples += channels;
 | |
|         }
 | |
|         flush_put_bits(&pb);
 | |
|         ) /* End of CASE */
 | |
|     default:
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const enum AVSampleFormat sample_fmts[] = {
 | |
|     AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
 | |
| };
 | |
| 
 | |
| static const enum AVSampleFormat sample_fmts_p[] = {
 | |
|     AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
 | |
| };
 | |
| 
 | |
| static const AVChannelLayout ch_layouts[] = {
 | |
|     AV_CHANNEL_LAYOUT_MONO,
 | |
|     AV_CHANNEL_LAYOUT_STEREO,
 | |
|     { 0 },
 | |
| };
 | |
| 
 | |
| static const AVOption options[] = {
 | |
|     {
 | |
|         .name        = "block_size",
 | |
|         .help        = "set the block size",
 | |
|         .offset      = offsetof(ADPCMEncodeContext, block_size),
 | |
|         .type        = AV_OPT_TYPE_INT,
 | |
|         .default_val = {.i64 = 1024},
 | |
|         .min         = 32,
 | |
|         .max         = 8192, /* Is this a reasonable upper limit? */
 | |
|         .flags       = AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVClass adpcm_encoder_class = {
 | |
|     .class_name = "ADPCM encoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| #define ADPCM_ENCODER_0(id_, name_, sample_fmts_, capabilities_, long_name_)
 | |
| #define ADPCM_ENCODER_1(id_, name_, sample_fmts_, capabilities_, long_name_) \
 | |
| const FFCodec ff_ ## name_ ## _encoder = {                                 \
 | |
|     .p.name         = #name_,                                              \
 | |
|     CODEC_LONG_NAME(long_name_),                                           \
 | |
|     .p.type         = AVMEDIA_TYPE_AUDIO,                                  \
 | |
|     .p.id           = id_,                                                 \
 | |
|     .p.sample_fmts  = sample_fmts_,                                        \
 | |
|     .p.ch_layouts   = ch_layouts,                                          \
 | |
|     .p.capabilities = capabilities_ | AV_CODEC_CAP_DR1 |                   \
 | |
|                       AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,               \
 | |
|     .p.priv_class   = &adpcm_encoder_class,                                \
 | |
|     .priv_data_size = sizeof(ADPCMEncodeContext),                          \
 | |
|     .init           = adpcm_encode_init,                                   \
 | |
|     FF_CODEC_ENCODE_CB(adpcm_encode_frame),                                \
 | |
|     .close          = adpcm_encode_close,                                  \
 | |
|     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,                           \
 | |
| };
 | |
| #define ADPCM_ENCODER_2(enabled, codec_id, name, sample_fmts, capabilities, long_name) \
 | |
|     ADPCM_ENCODER_ ## enabled(codec_id, name, sample_fmts, capabilities, long_name)
 | |
| #define ADPCM_ENCODER_3(config, codec_id, name, sample_fmts, capabilities, long_name) \
 | |
|     ADPCM_ENCODER_2(config, codec_id, name, sample_fmts, capabilities, long_name)
 | |
| #define ADPCM_ENCODER(codec, name, sample_fmts, capabilities, long_name) \
 | |
|     ADPCM_ENCODER_3(CONFIG_ ## codec ## _ENCODER, AV_CODEC_ID_ ## codec, \
 | |
|                     name, sample_fmts, capabilities, long_name)
 | |
| 
 | |
| ADPCM_ENCODER(ADPCM_ARGO,    adpcm_argo,    sample_fmts_p, 0,                             "ADPCM Argonaut Games")
 | |
| ADPCM_ENCODER(ADPCM_IMA_AMV, adpcm_ima_amv, sample_fmts,   0,                             "ADPCM IMA AMV")
 | |
| ADPCM_ENCODER(ADPCM_IMA_APM, adpcm_ima_apm, sample_fmts,   AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Ubisoft APM")
 | |
| ADPCM_ENCODER(ADPCM_IMA_ALP, adpcm_ima_alp, sample_fmts,   AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA High Voltage Software ALP")
 | |
| ADPCM_ENCODER(ADPCM_IMA_QT,  adpcm_ima_qt,  sample_fmts_p, 0,                             "ADPCM IMA QuickTime")
 | |
| ADPCM_ENCODER(ADPCM_IMA_SSI, adpcm_ima_ssi, sample_fmts,   AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Simon & Schuster Interactive")
 | |
| ADPCM_ENCODER(ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, 0,                             "ADPCM IMA WAV")
 | |
| ADPCM_ENCODER(ADPCM_IMA_WS,  adpcm_ima_ws,  sample_fmts,   AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Westwood")
 | |
| ADPCM_ENCODER(ADPCM_MS,      adpcm_ms,      sample_fmts,   0,                             "ADPCM Microsoft")
 | |
| ADPCM_ENCODER(ADPCM_SWF,     adpcm_swf,     sample_fmts,   0,                             "ADPCM Shockwave Flash")
 | |
| ADPCM_ENCODER(ADPCM_YAMAHA,  adpcm_yamaha,  sample_fmts,   0,                             "ADPCM Yamaha")
 | 
