mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 12:36:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			583 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * G.722 ADPCM audio encoder/decoder
 | |
|  *
 | |
|  * Copyright (c) CMU 1993 Computer Science, Speech Group
 | |
|  *                        Chengxiang Lu and Alex Hauptmann
 | |
|  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
 | |
|  * Copyright (c) 2009 Kenan Gillet
 | |
|  * Copyright (c) 2010 Martin Storsjo
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * G.722 ADPCM audio codec
 | |
|  *
 | |
|  * This G.722 decoder is a bit-exact implementation of the ITU G.722
 | |
|  * specification for all three specified bitrates - 64000bps, 56000bps
 | |
|  * and 48000bps. It passes the ITU tests.
 | |
|  *
 | |
|  * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
 | |
|  *       respectively of each byte are ignored.
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "mathops.h"
 | |
| #include "get_bits.h"
 | |
| 
 | |
| #define PREV_SAMPLES_BUF_SIZE 1024
 | |
| 
 | |
| #define FREEZE_INTERVAL 128
 | |
| 
 | |
| typedef struct {
 | |
|     int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples
 | |
|     int     prev_samples_pos;        ///< the number of values in prev_samples
 | |
| 
 | |
|     /**
 | |
|      * The band[0] and band[1] correspond respectively to the lower band and higher band.
 | |
|      */
 | |
|     struct G722Band {
 | |
|         int16_t s_predictor;         ///< predictor output value
 | |
|         int32_t s_zero;              ///< previous output signal from zero predictor
 | |
|         int8_t  part_reconst_mem[2]; ///< signs of previous partially reconstructed signals
 | |
|         int16_t prev_qtzd_reconst;   ///< previous quantized reconstructed signal (internal value, using low_inv_quant4)
 | |
|         int16_t pole_mem[2];         ///< second-order pole section coefficient buffer
 | |
|         int32_t diff_mem[6];         ///< quantizer difference signal memory
 | |
|         int16_t zero_mem[6];         ///< Seventh-order zero section coefficient buffer
 | |
|         int16_t log_factor;          ///< delayed 2-logarithmic quantizer factor
 | |
|         int16_t scale_factor;        ///< delayed quantizer scale factor
 | |
|     } band[2];
 | |
| 
 | |
|     struct TrellisNode {
 | |
|         struct G722Band state;
 | |
|         uint32_t ssd;
 | |
|         int path;
 | |
|     } *node_buf[2], **nodep_buf[2];
 | |
| 
 | |
|     struct TrellisPath {
 | |
|         int value;
 | |
|         int prev;
 | |
|     } *paths[2];
 | |
| } G722Context;
 | |
| 
 | |
| 
 | |
| static const int8_t sign_lookup[2] = { -1, 1 };
 | |
| 
 | |
| static const int16_t inv_log2_table[32] = {
 | |
|     2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
 | |
|     2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
 | |
|     2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
 | |
|     3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
 | |
| };
 | |
| static const int16_t high_log_factor_step[2] = { 798, -214 };
 | |
| static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 };
 | |
| /**
 | |
|  * low_log_factor_step[index] == wl[rl42[index]]
 | |
|  */
 | |
| static const int16_t low_log_factor_step[16] = {
 | |
|      -60, 3042, 1198, 538, 334, 172,  58, -30,
 | |
|     3042, 1198,  538, 334, 172,  58, -30, -60
 | |
| };
 | |
| static const int16_t low_inv_quant4[16] = {
 | |
|        0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
 | |
|     2557,  1612,  1121,   786,   530,   323,   150,     0
 | |
| };
 | |
| static const int16_t low_inv_quant6[64] = {
 | |
|      -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
 | |
|    -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
 | |
|     -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
 | |
|     -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
 | |
|     3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
 | |
|     1279,  1170,  1072,   982,   899,   822,   750,   682,
 | |
|      618,   558,   501,   447,   396,   347,   300,   254,
 | |
|      211,   170,   130,    91,    54,    17,   -54,   -17
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * quadrature mirror filter (QMF) coefficients
 | |
|  *
 | |
|  * ITU-T G.722 Table 11
 | |
|  */
 | |
| static const int16_t qmf_coeffs[12] = {
 | |
|     3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * adaptive predictor
 | |
|  *
 | |
|  * @param cur_diff the dequantized and scaled delta calculated from the
 | |
|  *                 current codeword
 | |
|  */
 | |
| static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
 | |
| {
 | |
|     int sg[2], limit, i, cur_qtzd_reconst;
 | |
| 
 | |
|     const int cur_part_reconst = band->s_zero + cur_diff < 0;
 | |
| 
 | |
|     sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
 | |
|     sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
 | |
|     band->part_reconst_mem[1] = band->part_reconst_mem[0];
 | |
|     band->part_reconst_mem[0] = cur_part_reconst;
 | |
| 
 | |
|     band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
 | |
|                                 (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
 | |
| 
 | |
|     limit = 15360 - band->pole_mem[1];
 | |
|     band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
 | |
| 
 | |
| 
 | |
|     if (cur_diff) {
 | |
|         for (i = 0; i < 6; i++)
 | |
|             band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
 | |
|                                 ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
 | |
|     } else
 | |
|         for (i = 0; i < 6; i++)
 | |
|             band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
 | |
| 
 | |
|     for (i = 5; i > 0; i--)
 | |
|         band->diff_mem[i] = band->diff_mem[i-1];
 | |
|     band->diff_mem[0] = av_clip_int16(cur_diff << 1);
 | |
| 
 | |
|     band->s_zero = 0;
 | |
|     for (i = 5; i >= 0; i--)
 | |
|         band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
 | |
| 
 | |
| 
 | |
|     cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
 | |
|     band->s_predictor = av_clip_int16(band->s_zero +
 | |
|                                       (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
 | |
|                                       (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
 | |
|     band->prev_qtzd_reconst = cur_qtzd_reconst;
 | |
| }
 | |
| 
 | |
| static int inline linear_scale_factor(const int log_factor)
 | |
| {
 | |
|     const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
 | |
|     const int shift = log_factor >> 11;
 | |
|     return shift < 0 ? wd1 >> -shift : wd1 << shift;
 | |
| }
 | |
| 
 | |
| static void update_low_predictor(struct G722Band *band, const int ilow)
 | |
| {
 | |
|     do_adaptive_prediction(band,
 | |
|                            band->scale_factor * low_inv_quant4[ilow] >> 10);
 | |
| 
 | |
|     // quantizer adaptation
 | |
|     band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
 | |
|                                  low_log_factor_step[ilow], 0, 18432);
 | |
|     band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
 | |
| }
 | |
| 
 | |
| static void update_high_predictor(struct G722Band *band, const int dhigh,
 | |
|                                   const int ihigh)
 | |
| {
 | |
|     do_adaptive_prediction(band, dhigh);
 | |
| 
 | |
|     // quantizer adaptation
 | |
|     band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
 | |
|                                  high_log_factor_step[ihigh&1], 0, 22528);
 | |
|     band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
 | |
| }
 | |
| 
 | |
| static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     *xout1 = 0;
 | |
|     *xout2 = 0;
 | |
|     for (i = 0; i < 12; i++) {
 | |
|         MAC16(*xout2, prev_samples[2*i  ], qmf_coeffs[i   ]);
 | |
|         MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_cold int g722_init(AVCodecContext * avctx)
 | |
| {
 | |
|     G722Context *c = avctx->priv_data;
 | |
| 
 | |
|     if (avctx->channels != 1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | |
| 
 | |
|     switch (avctx->bits_per_coded_sample) {
 | |
|     case 8:
 | |
|     case 7:
 | |
|     case 6:
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], "
 | |
|                                       "assuming 8\n",
 | |
|                                       avctx->bits_per_coded_sample);
 | |
|     case 0:
 | |
|         avctx->bits_per_coded_sample = 8;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     c->band[0].scale_factor = 8;
 | |
|     c->band[1].scale_factor = 2;
 | |
|     c->prev_samples_pos = 22;
 | |
| 
 | |
|     if (avctx->lowres)
 | |
|         avctx->sample_rate /= 2;
 | |
| 
 | |
|     if (avctx->trellis) {
 | |
|         int frontier = 1 << avctx->trellis;
 | |
|         int max_paths = frontier * FREEZE_INTERVAL;
 | |
|         int i;
 | |
|         for (i = 0; i < 2; i++) {
 | |
|             c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths));
 | |
|             c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf));
 | |
|             c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int g722_close(AVCodecContext *avctx)
 | |
| {
 | |
|     G722Context *c = avctx->priv_data;
 | |
|     int i;
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         av_freep(&c->paths[i]);
 | |
|         av_freep(&c->node_buf[i]);
 | |
|         av_freep(&c->nodep_buf[i]);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_ADPCM_G722_DECODER
 | |
| static const int16_t low_inv_quant5[32] = {
 | |
|      -35,   -35, -2919, -2195, -1765, -1458, -1219, -1023,
 | |
|     -858,  -714,  -587,  -473,  -370,  -276,  -190,  -110,
 | |
|     2919,  2195,  1765,  1458,  1219,  1023,   858,   714,
 | |
|      587,   473,   370,   276,   190,   110,    35,   -35
 | |
| };
 | |
| 
 | |
| static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5,
 | |
|                                  low_inv_quant4 };
 | |
| 
 | |
| static int g722_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                              int *data_size, AVPacket *avpkt)
 | |
| {
 | |
|     G722Context *c = avctx->priv_data;
 | |
|     int16_t *out_buf = data;
 | |
|     int j, out_len = 0;
 | |
|     const int skip = 8 - avctx->bits_per_coded_sample;
 | |
|     const int16_t *quantizer_table = low_inv_quants[skip];
 | |
|     GetBitContext gb;
 | |
| 
 | |
|     init_get_bits(&gb, avpkt->data, avpkt->size * 8);
 | |
| 
 | |
|     for (j = 0; j < avpkt->size; j++) {
 | |
|         int ilow, ihigh, rlow;
 | |
| 
 | |
|         ihigh = get_bits(&gb, 2);
 | |
|         ilow = get_bits(&gb, 6 - skip);
 | |
|         skip_bits(&gb, skip);
 | |
| 
 | |
|         rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10)
 | |
|                       + c->band[0].s_predictor, -16384, 16383);
 | |
| 
 | |
|         update_low_predictor(&c->band[0], ilow >> (2 - skip));
 | |
| 
 | |
|         if (!avctx->lowres) {
 | |
|             const int dhigh = c->band[1].scale_factor *
 | |
|                               high_inv_quant[ihigh] >> 10;
 | |
|             const int rhigh = av_clip(dhigh + c->band[1].s_predictor,
 | |
|                                       -16384, 16383);
 | |
|             int xout1, xout2;
 | |
| 
 | |
|             update_high_predictor(&c->band[1], dhigh, ihigh);
 | |
| 
 | |
|             c->prev_samples[c->prev_samples_pos++] = rlow + rhigh;
 | |
|             c->prev_samples[c->prev_samples_pos++] = rlow - rhigh;
 | |
|             apply_qmf(c->prev_samples + c->prev_samples_pos - 24,
 | |
|                       &xout1, &xout2);
 | |
|             out_buf[out_len++] = av_clip_int16(xout1 >> 12);
 | |
|             out_buf[out_len++] = av_clip_int16(xout2 >> 12);
 | |
|             if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
 | |
|                 memmove(c->prev_samples,
 | |
|                         c->prev_samples + c->prev_samples_pos - 22,
 | |
|                         22 * sizeof(c->prev_samples[0]));
 | |
|                 c->prev_samples_pos = 22;
 | |
|             }
 | |
|         } else
 | |
|             out_buf[out_len++] = rlow;
 | |
|     }
 | |
|     *data_size = out_len << 1;
 | |
|     return avpkt->size;
 | |
| }
 | |
| 
 | |
| AVCodec ff_adpcm_g722_decoder = {
 | |
|     .name           = "g722",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = CODEC_ID_ADPCM_G722,
 | |
|     .priv_data_size = sizeof(G722Context),
 | |
|     .init           = g722_init,
 | |
|     .decode         = g722_decode_frame,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
 | |
|     .max_lowres     = 1,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_ADPCM_G722_ENCODER
 | |
| static const int16_t low_quant[33] = {
 | |
|       35,   72,  110,  150,  190,  233,  276,  323,
 | |
|      370,  422,  473,  530,  587,  650,  714,  786,
 | |
|      858,  940, 1023, 1121, 1219, 1339, 1458, 1612,
 | |
|     1765, 1980, 2195, 2557, 2919
 | |
| };
 | |
| 
 | |
| static inline void filter_samples(G722Context *c, const int16_t *samples,
 | |
|                                   int *xlow, int *xhigh)
 | |
| {
 | |
|     int xout1, xout2;
 | |
|     c->prev_samples[c->prev_samples_pos++] = samples[0];
 | |
|     c->prev_samples[c->prev_samples_pos++] = samples[1];
 | |
|     apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
 | |
|     *xlow  = xout1 + xout2 >> 13;
 | |
|     *xhigh = xout1 - xout2 >> 13;
 | |
|     if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
 | |
|         memmove(c->prev_samples,
 | |
|                 c->prev_samples + c->prev_samples_pos - 22,
 | |
|                 22 * sizeof(c->prev_samples[0]));
 | |
|         c->prev_samples_pos = 22;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int encode_high(const struct G722Band *state, int xhigh)
 | |
| {
 | |
|     int diff = av_clip_int16(xhigh - state->s_predictor);
 | |
|     int pred = 141 * state->scale_factor >> 8;
 | |
|            /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
 | |
|     return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
 | |
| }
 | |
| 
 | |
| static inline int encode_low(const struct G722Band* state, int xlow)
 | |
| {
 | |
|     int diff  = av_clip_int16(xlow - state->s_predictor);
 | |
|            /* = diff >= 0 ? diff : -(diff + 1) */
 | |
|     int limit = diff ^ (diff >> (sizeof(diff)*8-1));
 | |
|     int i = 0;
 | |
|     limit = limit + 1 << 10;
 | |
|     if (limit > low_quant[8] * state->scale_factor)
 | |
|         i = 9;
 | |
|     while (i < 29 && limit > low_quant[i] * state->scale_factor)
 | |
|         i++;
 | |
|     return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
 | |
| }
 | |
| 
 | |
| static int g722_encode_trellis(AVCodecContext *avctx,
 | |
|                                uint8_t *dst, int buf_size, void *data)
 | |
| {
 | |
|     G722Context *c = avctx->priv_data;
 | |
|     const int16_t *samples = data;
 | |
|     int i, j, k;
 | |
|     int frontier = 1 << avctx->trellis;
 | |
|     struct TrellisNode **nodes[2];
 | |
|     struct TrellisNode **nodes_next[2];
 | |
|     int pathn[2] = {0, 0}, froze = -1;
 | |
|     struct TrellisPath *p[2];
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         nodes[i] = c->nodep_buf[i];
 | |
|         nodes_next[i] = c->nodep_buf[i] + frontier;
 | |
|         memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf));
 | |
|         nodes[i][0] = c->node_buf[i] + frontier;
 | |
|         nodes[i][0]->ssd = 0;
 | |
|         nodes[i][0]->path = 0;
 | |
|         nodes[i][0]->state = c->band[i];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < buf_size >> 1; i++) {
 | |
|         int xlow, xhigh;
 | |
|         struct TrellisNode *next[2];
 | |
|         int heap_pos[2] = {0, 0};
 | |
| 
 | |
|         for (j = 0; j < 2; j++) {
 | |
|             next[j] = c->node_buf[j] + frontier*(i & 1);
 | |
|             memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
 | |
|         }
 | |
| 
 | |
|         filter_samples(c, &samples[2*i], &xlow, &xhigh);
 | |
| 
 | |
|         for (j = 0; j < frontier && nodes[0][j]; j++) {
 | |
|             /* Only k >> 2 affects the future adaptive state, therefore testing
 | |
|              * small steps that don't change k >> 2 is useless, the orignal
 | |
|              * value from encode_low is better than them. Since we step k
 | |
|              * in steps of 4, make sure range is a multiple of 4, so that
 | |
|              * we don't miss the original value from encode_low. */
 | |
|             int range = j < frontier/2 ? 4 : 0;
 | |
|             struct TrellisNode *cur_node = nodes[0][j];
 | |
| 
 | |
|             int ilow = encode_low(&cur_node->state, xlow);
 | |
| 
 | |
|             for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
 | |
|                 int decoded, dec_diff, pos;
 | |
|                 uint32_t ssd;
 | |
|                 struct TrellisNode* node;
 | |
| 
 | |
|                 if (k < 0)
 | |
|                     continue;
 | |
| 
 | |
|                 decoded = av_clip((cur_node->state.scale_factor *
 | |
|                                   low_inv_quant6[k] >> 10)
 | |
|                                 + cur_node->state.s_predictor, -16384, 16383);
 | |
|                 dec_diff = xlow - decoded;
 | |
| 
 | |
| #define STORE_NODE(index, UPDATE, VALUE)\
 | |
|                 ssd = cur_node->ssd + dec_diff*dec_diff;\
 | |
|                 /* Check for wraparound. Using 64 bit ssd counters would \
 | |
|                  * be simpler, but is slower on x86 32 bit. */\
 | |
|                 if (ssd < cur_node->ssd)\
 | |
|                     continue;\
 | |
|                 if (heap_pos[index] < frontier) {\
 | |
|                     pos = heap_pos[index]++;\
 | |
|                     assert(pathn[index] < FREEZE_INTERVAL * frontier);\
 | |
|                     node = nodes_next[index][pos] = next[index]++;\
 | |
|                     node->path = pathn[index]++;\
 | |
|                 } else {\
 | |
|                     /* Try to replace one of the leaf nodes with the new \
 | |
|                      * one, but not always testing the same leaf position */\
 | |
|                     pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
 | |
|                     if (ssd >= nodes_next[index][pos]->ssd)\
 | |
|                         continue;\
 | |
|                     heap_pos[index]++;\
 | |
|                     node = nodes_next[index][pos];\
 | |
|                 }\
 | |
|                 node->ssd = ssd;\
 | |
|                 node->state = cur_node->state;\
 | |
|                 UPDATE;\
 | |
|                 c->paths[index][node->path].value = VALUE;\
 | |
|                 c->paths[index][node->path].prev = cur_node->path;\
 | |
|                 /* Sift the newly inserted node up in the heap to restore \
 | |
|                  * the heap property */\
 | |
|                 while (pos > 0) {\
 | |
|                     int parent = (pos - 1) >> 1;\
 | |
|                     if (nodes_next[index][parent]->ssd <= ssd)\
 | |
|                         break;\
 | |
|                     FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
 | |
|                                                 nodes_next[index][pos]);\
 | |
|                     pos = parent;\
 | |
|                 }
 | |
|                 STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < frontier && nodes[1][j]; j++) {
 | |
|             int ihigh;
 | |
|             struct TrellisNode *cur_node = nodes[1][j];
 | |
| 
 | |
|             /* We don't try to get any initial guess for ihigh via
 | |
|              * encode_high - since there's only 4 possible values, test
 | |
|              * them all. Testing all of these gives a much, much larger
 | |
|              * gain than testing a larger range around ilow. */
 | |
|             for (ihigh = 0; ihigh < 4; ihigh++) {
 | |
|                 int dhigh, decoded, dec_diff, pos;
 | |
|                 uint32_t ssd;
 | |
|                 struct TrellisNode* node;
 | |
| 
 | |
|                 dhigh = cur_node->state.scale_factor *
 | |
|                         high_inv_quant[ihigh] >> 10;
 | |
|                 decoded = av_clip(dhigh + cur_node->state.s_predictor,
 | |
|                                   -16384, 16383);
 | |
|                 dec_diff = xhigh - decoded;
 | |
| 
 | |
|                 STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < 2; j++) {
 | |
|             FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
 | |
| 
 | |
|             if (nodes[j][0]->ssd > (1 << 16)) {
 | |
|                 for (k = 1; k < frontier && nodes[j][k]; k++)
 | |
|                     nodes[j][k]->ssd -= nodes[j][0]->ssd;
 | |
|                 nodes[j][0]->ssd = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (i == froze + FREEZE_INTERVAL) {
 | |
|             p[0] = &c->paths[0][nodes[0][0]->path];
 | |
|             p[1] = &c->paths[1][nodes[1][0]->path];
 | |
|             for (j = i; j > froze; j--) {
 | |
|                 dst[j] = p[1]->value << 6 | p[0]->value;
 | |
|                 p[0] = &c->paths[0][p[0]->prev];
 | |
|                 p[1] = &c->paths[1][p[1]->prev];
 | |
|             }
 | |
|             froze = i;
 | |
|             pathn[0] = pathn[1] = 0;
 | |
|             memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
 | |
|             memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     p[0] = &c->paths[0][nodes[0][0]->path];
 | |
|     p[1] = &c->paths[1][nodes[1][0]->path];
 | |
|     for (j = i; j > froze; j--) {
 | |
|         dst[j] = p[1]->value << 6 | p[0]->value;
 | |
|         p[0] = &c->paths[0][p[0]->prev];
 | |
|         p[1] = &c->paths[1][p[1]->prev];
 | |
|     }
 | |
|     c->band[0] = nodes[0][0]->state;
 | |
|     c->band[1] = nodes[1][0]->state;
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static int g722_encode_frame(AVCodecContext *avctx,
 | |
|                              uint8_t *dst, int buf_size, void *data)
 | |
| {
 | |
|     G722Context *c = avctx->priv_data;
 | |
|     const int16_t *samples = data;
 | |
|     int i;
 | |
| 
 | |
|     if (avctx->trellis)
 | |
|         return g722_encode_trellis(avctx, dst, buf_size, data);
 | |
| 
 | |
|     for (i = 0; i < buf_size >> 1; i++) {
 | |
|         int xlow, xhigh, ihigh, ilow;
 | |
|         filter_samples(c, &samples[2*i], &xlow, &xhigh);
 | |
|         ihigh = encode_high(&c->band[1], xhigh);
 | |
|         ilow  = encode_low(&c->band[0], xlow);
 | |
|         update_high_predictor(&c->band[1], c->band[1].scale_factor *
 | |
|                               high_inv_quant[ihigh] >> 10, ihigh);
 | |
|         update_low_predictor(&c->band[0], ilow >> 2);
 | |
|         *dst++ = ihigh << 6 | ilow;
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| AVCodec ff_adpcm_g722_encoder = {
 | |
|     .name           = "g722",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = CODEC_ID_ADPCM_G722,
 | |
|     .priv_data_size = sizeof(G722Context),
 | |
|     .init           = g722_init,
 | |
|     .close          = g722_close,
 | |
|     .encode         = g722_encode_frame,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
 | |
| };
 | |
| #endif
 | |
| 
 | 
