mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 20:16:42 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			2176 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2176 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * VP8 compatible video decoder
 | |
|  *
 | |
|  * Copyright (C) 2010 David Conrad
 | |
|  * Copyright (C) 2010 Ronald S. Bultje
 | |
|  * Copyright (C) 2010 Jason Garrett-Glaser
 | |
|  * Copyright (C) 2012 Daniel Kang
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "vp8.h"
 | |
| #include "vp8data.h"
 | |
| #include "rectangle.h"
 | |
| #include "thread.h"
 | |
| 
 | |
| #if ARCH_ARM
 | |
| #   include "arm/vp8.h"
 | |
| #endif
 | |
| 
 | |
| static void free_buffers(VP8Context *s)
 | |
| {
 | |
|     int i;
 | |
|     if (s->thread_data)
 | |
|         for (i = 0; i < MAX_THREADS; i++) {
 | |
| #if HAVE_THREADS
 | |
|             pthread_cond_destroy(&s->thread_data[i].cond);
 | |
|             pthread_mutex_destroy(&s->thread_data[i].lock);
 | |
| #endif
 | |
|             av_freep(&s->thread_data[i].filter_strength);
 | |
|             av_freep(&s->thread_data[i].edge_emu_buffer);
 | |
|         }
 | |
|     av_freep(&s->thread_data);
 | |
|     av_freep(&s->macroblocks_base);
 | |
|     av_freep(&s->intra4x4_pred_mode_top);
 | |
|     av_freep(&s->top_nnz);
 | |
|     av_freep(&s->top_border);
 | |
| 
 | |
|     s->macroblocks = NULL;
 | |
| }
 | |
| 
 | |
| static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref)
 | |
| {
 | |
|     int ret;
 | |
|     if ((ret = ff_thread_get_buffer(s->avctx, &f->tf,
 | |
|                                     ref ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
 | |
|         return ret;
 | |
|     if (!(f->seg_map = av_buffer_allocz(s->mb_width * s->mb_height))) {
 | |
|         ff_thread_release_buffer(s->avctx, &f->tf);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void vp8_release_frame(VP8Context *s, VP8Frame *f)
 | |
| {
 | |
|     av_buffer_unref(&f->seg_map);
 | |
|     ff_thread_release_buffer(s->avctx, &f->tf);
 | |
| }
 | |
| 
 | |
| static int vp8_ref_frame(VP8Context *s, VP8Frame *dst, VP8Frame *src)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     vp8_release_frame(s, dst);
 | |
| 
 | |
|     if ((ret = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0)
 | |
|         return ret;
 | |
|     if (src->seg_map &&
 | |
|         !(dst->seg_map = av_buffer_ref(src->seg_map))) {
 | |
|         vp8_release_frame(s, dst);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
 | |
|         vp8_release_frame(s, &s->frames[i]);
 | |
|     memset(s->framep, 0, sizeof(s->framep));
 | |
| 
 | |
|     if (free_mem)
 | |
|         free_buffers(s);
 | |
| }
 | |
| 
 | |
| static void vp8_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     vp8_decode_flush_impl(avctx, 0);
 | |
| }
 | |
| 
 | |
| static int update_dimensions(VP8Context *s, int width, int height)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     int i;
 | |
| 
 | |
|     if (width  != s->avctx->width || ((width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) && s->macroblocks_base ||
 | |
|         height != s->avctx->height) {
 | |
|         if (av_image_check_size(width, height, 0, s->avctx))
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         vp8_decode_flush_impl(s->avctx, 1);
 | |
| 
 | |
|         avcodec_set_dimensions(s->avctx, width, height);
 | |
|     }
 | |
| 
 | |
|     s->mb_width  = (s->avctx->coded_width +15) / 16;
 | |
|     s->mb_height = (s->avctx->coded_height+15) / 16;
 | |
| 
 | |
|     s->mb_layout = (avctx->active_thread_type == FF_THREAD_SLICE) && (FFMIN(s->num_coeff_partitions, avctx->thread_count) > 1);
 | |
|     if (!s->mb_layout) { // Frame threading and one thread
 | |
|         s->macroblocks_base       = av_mallocz((s->mb_width+s->mb_height*2+1)*sizeof(*s->macroblocks));
 | |
|         s->intra4x4_pred_mode_top = av_mallocz(s->mb_width*4);
 | |
|     }
 | |
|     else // Sliced threading
 | |
|         s->macroblocks_base       = av_mallocz((s->mb_width+2)*(s->mb_height+2)*sizeof(*s->macroblocks));
 | |
|     s->top_nnz                    = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
 | |
|     s->top_border                 = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
 | |
|     s->thread_data                = av_mallocz(MAX_THREADS*sizeof(VP8ThreadData));
 | |
| 
 | |
|     for (i = 0; i < MAX_THREADS; i++) {
 | |
|         s->thread_data[i].filter_strength = av_mallocz(s->mb_width*sizeof(*s->thread_data[0].filter_strength));
 | |
| #if HAVE_THREADS
 | |
|         pthread_mutex_init(&s->thread_data[i].lock, NULL);
 | |
|         pthread_cond_init(&s->thread_data[i].cond, NULL);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (!s->macroblocks_base || !s->top_nnz || !s->top_border ||
 | |
|         (!s->intra4x4_pred_mode_top && !s->mb_layout))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->macroblocks        = s->macroblocks_base + 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void parse_segment_info(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int i;
 | |
| 
 | |
|     s->segmentation.update_map = vp8_rac_get(c);
 | |
| 
 | |
|     if (vp8_rac_get(c)) { // update segment feature data
 | |
|         s->segmentation.absolute_vals = vp8_rac_get(c);
 | |
| 
 | |
|         for (i = 0; i < 4; i++)
 | |
|             s->segmentation.base_quant[i]   = vp8_rac_get_sint(c, 7);
 | |
| 
 | |
|         for (i = 0; i < 4; i++)
 | |
|             s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
 | |
|     }
 | |
|     if (s->segmentation.update_map)
 | |
|         for (i = 0; i < 3; i++)
 | |
|             s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
 | |
| }
 | |
| 
 | |
| static void update_lf_deltas(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         if (vp8_rac_get(c)) {
 | |
|             s->lf_delta.ref[i] = vp8_rac_get_uint(c, 6);
 | |
| 
 | |
|             if (vp8_rac_get(c))
 | |
|                 s->lf_delta.ref[i] = -s->lf_delta.ref[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) {
 | |
|         if (vp8_rac_get(c)) {
 | |
|             s->lf_delta.mode[i] = vp8_rac_get_uint(c, 6);
 | |
| 
 | |
|             if (vp8_rac_get(c))
 | |
|                 s->lf_delta.mode[i] = -s->lf_delta.mode[i];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     const uint8_t *sizes = buf;
 | |
|     int i;
 | |
| 
 | |
|     s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
 | |
| 
 | |
|     buf      += 3*(s->num_coeff_partitions-1);
 | |
|     buf_size -= 3*(s->num_coeff_partitions-1);
 | |
|     if (buf_size < 0)
 | |
|         return -1;
 | |
| 
 | |
|     for (i = 0; i < s->num_coeff_partitions-1; i++) {
 | |
|         int size = AV_RL24(sizes + 3*i);
 | |
|         if (buf_size - size < 0)
 | |
|             return -1;
 | |
| 
 | |
|         ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
 | |
|         buf      += size;
 | |
|         buf_size -= size;
 | |
|     }
 | |
|     ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void get_quants(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int i, base_qi;
 | |
| 
 | |
|     int yac_qi     = vp8_rac_get_uint(c, 7);
 | |
|     int ydc_delta  = vp8_rac_get_sint(c, 4);
 | |
|     int y2dc_delta = vp8_rac_get_sint(c, 4);
 | |
|     int y2ac_delta = vp8_rac_get_sint(c, 4);
 | |
|     int uvdc_delta = vp8_rac_get_sint(c, 4);
 | |
|     int uvac_delta = vp8_rac_get_sint(c, 4);
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         if (s->segmentation.enabled) {
 | |
|             base_qi = s->segmentation.base_quant[i];
 | |
|             if (!s->segmentation.absolute_vals)
 | |
|                 base_qi += yac_qi;
 | |
|         } else
 | |
|             base_qi = yac_qi;
 | |
| 
 | |
|         s->qmat[i].luma_qmul[0]    =           vp8_dc_qlookup[av_clip_uintp2(base_qi + ydc_delta , 7)];
 | |
|         s->qmat[i].luma_qmul[1]    =           vp8_ac_qlookup[av_clip_uintp2(base_qi             , 7)];
 | |
|         s->qmat[i].luma_dc_qmul[0] =       2 * vp8_dc_qlookup[av_clip_uintp2(base_qi + y2dc_delta, 7)];
 | |
|         /* 101581>>16 is equivalent to 155/100 */
 | |
|         s->qmat[i].luma_dc_qmul[1] = (101581 * vp8_ac_qlookup[av_clip_uintp2(base_qi + y2ac_delta, 7)]) >> 16;
 | |
|         s->qmat[i].chroma_qmul[0]  =           vp8_dc_qlookup[av_clip_uintp2(base_qi + uvdc_delta, 7)];
 | |
|         s->qmat[i].chroma_qmul[1]  =           vp8_ac_qlookup[av_clip_uintp2(base_qi + uvac_delta, 7)];
 | |
| 
 | |
|         s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
 | |
|         s->qmat[i].chroma_qmul[0]  = FFMIN(s->qmat[i].chroma_qmul[0], 132);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Determine which buffers golden and altref should be updated with after this frame.
 | |
|  * The spec isn't clear here, so I'm going by my understanding of what libvpx does
 | |
|  *
 | |
|  * Intra frames update all 3 references
 | |
|  * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
 | |
|  * If the update (golden|altref) flag is set, it's updated with the current frame
 | |
|  *      if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
 | |
|  * If the flag is not set, the number read means:
 | |
|  *      0: no update
 | |
|  *      1: VP56_FRAME_PREVIOUS
 | |
|  *      2: update golden with altref, or update altref with golden
 | |
|  */
 | |
| static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     if (update)
 | |
|         return VP56_FRAME_CURRENT;
 | |
| 
 | |
|     switch (vp8_rac_get_uint(c, 2)) {
 | |
|     case 1:
 | |
|         return VP56_FRAME_PREVIOUS;
 | |
|     case 2:
 | |
|         return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
 | |
|     }
 | |
|     return VP56_FRAME_NONE;
 | |
| }
 | |
| 
 | |
| static void update_refs(VP8Context *s)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     int update_golden = vp8_rac_get(c);
 | |
|     int update_altref = vp8_rac_get(c);
 | |
| 
 | |
|     s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
 | |
|     s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
 | |
| }
 | |
| 
 | |
| static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
|     int header_size, hscale, vscale, i, j, k, l, m, ret;
 | |
|     int width  = s->avctx->width;
 | |
|     int height = s->avctx->height;
 | |
| 
 | |
|     s->keyframe  = !(buf[0] & 1);
 | |
|     s->profile   =  (buf[0]>>1) & 7;
 | |
|     s->invisible = !(buf[0] & 0x10);
 | |
|     header_size  = AV_RL24(buf) >> 5;
 | |
|     buf      += 3;
 | |
|     buf_size -= 3;
 | |
| 
 | |
|     if (s->profile > 3)
 | |
|         av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
 | |
| 
 | |
|     if (!s->profile)
 | |
|         memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
 | |
|     else    // profile 1-3 use bilinear, 4+ aren't defined so whatever
 | |
|         memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
 | |
| 
 | |
|     if (header_size > buf_size - 7*s->keyframe) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (AV_RL24(buf) != 0x2a019d) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         width  = AV_RL16(buf+3) & 0x3fff;
 | |
|         height = AV_RL16(buf+5) & 0x3fff;
 | |
|         hscale = buf[4] >> 6;
 | |
|         vscale = buf[6] >> 6;
 | |
|         buf      += 7;
 | |
|         buf_size -= 7;
 | |
| 
 | |
|         if (hscale || vscale)
 | |
|             avpriv_request_sample(s->avctx, "Upscaling");
 | |
| 
 | |
|         s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
 | |
|         for (i = 0; i < 4; i++)
 | |
|             for (j = 0; j < 16; j++)
 | |
|                 memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
 | |
|                        sizeof(s->prob->token[i][j]));
 | |
|         memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
 | |
|         memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
 | |
|         memcpy(s->prob->mvc      , vp8_mv_default_prob     , sizeof(s->prob->mvc));
 | |
|         memset(&s->segmentation, 0, sizeof(s->segmentation));
 | |
|         memset(&s->lf_delta, 0, sizeof(s->lf_delta));
 | |
|     }
 | |
| 
 | |
|     ff_vp56_init_range_decoder(c, buf, header_size);
 | |
|     buf      += header_size;
 | |
|     buf_size -= header_size;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         if (vp8_rac_get(c))
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
 | |
|         vp8_rac_get(c); // whether we can skip clamping in dsp functions
 | |
|     }
 | |
| 
 | |
|     if ((s->segmentation.enabled = vp8_rac_get(c)))
 | |
|         parse_segment_info(s);
 | |
|     else
 | |
|         s->segmentation.update_map = 0; // FIXME: move this to some init function?
 | |
| 
 | |
|     s->filter.simple    = vp8_rac_get(c);
 | |
|     s->filter.level     = vp8_rac_get_uint(c, 6);
 | |
|     s->filter.sharpness = vp8_rac_get_uint(c, 3);
 | |
| 
 | |
|     if ((s->lf_delta.enabled = vp8_rac_get(c)))
 | |
|         if (vp8_rac_get(c))
 | |
|             update_lf_deltas(s);
 | |
| 
 | |
|     if (setup_partitions(s, buf, buf_size)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!s->macroblocks_base || /* first frame */
 | |
|         width != s->avctx->width || height != s->avctx->height || (width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) {
 | |
|         if ((ret = update_dimensions(s, width, height)) < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     get_quants(s);
 | |
| 
 | |
|     if (!s->keyframe) {
 | |
|         update_refs(s);
 | |
|         s->sign_bias[VP56_FRAME_GOLDEN]               = vp8_rac_get(c);
 | |
|         s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
 | |
|     }
 | |
| 
 | |
|     // if we aren't saving this frame's probabilities for future frames,
 | |
|     // make a copy of the current probabilities
 | |
|     if (!(s->update_probabilities = vp8_rac_get(c)))
 | |
|         s->prob[1] = s->prob[0];
 | |
| 
 | |
|     s->update_last = s->keyframe || vp8_rac_get(c);
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         for (j = 0; j < 8; j++)
 | |
|             for (k = 0; k < 3; k++)
 | |
|                 for (l = 0; l < NUM_DCT_TOKENS-1; l++)
 | |
|                     if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
 | |
|                         int prob = vp8_rac_get_uint(c, 8);
 | |
|                         for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
 | |
|                             s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
 | |
|                     }
 | |
| 
 | |
|     if ((s->mbskip_enabled = vp8_rac_get(c)))
 | |
|         s->prob->mbskip = vp8_rac_get_uint(c, 8);
 | |
| 
 | |
|     if (!s->keyframe) {
 | |
|         s->prob->intra  = vp8_rac_get_uint(c, 8);
 | |
|         s->prob->last   = vp8_rac_get_uint(c, 8);
 | |
|         s->prob->golden = vp8_rac_get_uint(c, 8);
 | |
| 
 | |
|         if (vp8_rac_get(c))
 | |
|             for (i = 0; i < 4; i++)
 | |
|                 s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
 | |
|         if (vp8_rac_get(c))
 | |
|             for (i = 0; i < 3; i++)
 | |
|                 s->prob->pred8x8c[i]  = vp8_rac_get_uint(c, 8);
 | |
| 
 | |
|         // 17.2 MV probability update
 | |
|         for (i = 0; i < 2; i++)
 | |
|             for (j = 0; j < 19; j++)
 | |
|                 if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
 | |
|                     s->prob->mvc[i][j] = vp8_rac_get_nn(c);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_always_inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src)
 | |
| {
 | |
|     dst->x = av_clip(src->x, s->mv_min.x, s->mv_max.x);
 | |
|     dst->y = av_clip(src->y, s->mv_min.y, s->mv_max.y);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Motion vector coding, 17.1.
 | |
|  */
 | |
| static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
 | |
| {
 | |
|     int bit, x = 0;
 | |
| 
 | |
|     if (vp56_rac_get_prob_branchy(c, p[0])) {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < 3; i++)
 | |
|             x += vp56_rac_get_prob(c, p[9 + i]) << i;
 | |
|         for (i = 9; i > 3; i--)
 | |
|             x += vp56_rac_get_prob(c, p[9 + i]) << i;
 | |
|         if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
 | |
|             x += 8;
 | |
|     } else {
 | |
|         // small_mvtree
 | |
|         const uint8_t *ps = p+2;
 | |
|         bit = vp56_rac_get_prob(c, *ps);
 | |
|         ps += 1 + 3*bit;
 | |
|         x  += 4*bit;
 | |
|         bit = vp56_rac_get_prob(c, *ps);
 | |
|         ps += 1 + bit;
 | |
|         x  += 2*bit;
 | |
|         x  += vp56_rac_get_prob(c, *ps);
 | |
|     }
 | |
| 
 | |
|     return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
 | |
| {
 | |
|     if (left == top)
 | |
|         return vp8_submv_prob[4-!!left];
 | |
|     if (!top)
 | |
|         return vp8_submv_prob[2];
 | |
|     return vp8_submv_prob[1-!!left];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Split motion vector prediction, 16.4.
 | |
|  * @returns the number of motion vectors parsed (2, 4 or 16)
 | |
|  */
 | |
| static av_always_inline
 | |
| int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, int layout)
 | |
| {
 | |
|     int part_idx;
 | |
|     int n, num;
 | |
|     VP8Macroblock *top_mb;
 | |
|     VP8Macroblock *left_mb = &mb[-1];
 | |
|     const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
 | |
|                   *mbsplits_top,
 | |
|                   *mbsplits_cur, *firstidx;
 | |
|     VP56mv *top_mv;
 | |
|     VP56mv *left_mv = left_mb->bmv;
 | |
|     VP56mv *cur_mv  = mb->bmv;
 | |
| 
 | |
|     if (!layout) // layout is inlined, s->mb_layout is not
 | |
|         top_mb = &mb[2];
 | |
|     else
 | |
|         top_mb = &mb[-s->mb_width-1];
 | |
|     mbsplits_top = vp8_mbsplits[top_mb->partitioning];
 | |
|     top_mv = top_mb->bmv;
 | |
| 
 | |
|     if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
 | |
|         if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) {
 | |
|             part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
 | |
|         } else {
 | |
|             part_idx = VP8_SPLITMVMODE_8x8;
 | |
|         }
 | |
|     } else {
 | |
|         part_idx = VP8_SPLITMVMODE_4x4;
 | |
|     }
 | |
| 
 | |
|     num = vp8_mbsplit_count[part_idx];
 | |
|     mbsplits_cur = vp8_mbsplits[part_idx],
 | |
|     firstidx = vp8_mbfirstidx[part_idx];
 | |
|     mb->partitioning = part_idx;
 | |
| 
 | |
|     for (n = 0; n < num; n++) {
 | |
|         int k = firstidx[n];
 | |
|         uint32_t left, above;
 | |
|         const uint8_t *submv_prob;
 | |
| 
 | |
|         if (!(k & 3))
 | |
|             left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
 | |
|         else
 | |
|             left  = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
 | |
|         if (k <= 3)
 | |
|             above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
 | |
|         else
 | |
|             above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
 | |
| 
 | |
|         submv_prob = get_submv_prob(left, above);
 | |
| 
 | |
|         if (vp56_rac_get_prob_branchy(c, submv_prob[0])) {
 | |
|             if (vp56_rac_get_prob_branchy(c, submv_prob[1])) {
 | |
|                 if (vp56_rac_get_prob_branchy(c, submv_prob[2])) {
 | |
|                     mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
 | |
|                     mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
 | |
|                 } else {
 | |
|                     AV_ZERO32(&mb->bmv[n]);
 | |
|                 }
 | |
|             } else {
 | |
|                 AV_WN32A(&mb->bmv[n], above);
 | |
|             }
 | |
|         } else {
 | |
|             AV_WN32A(&mb->bmv[n], left);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
 | |
| {
 | |
|     VP8Macroblock *mb_edge[3] = { 0 /* top */,
 | |
|                                   mb - 1 /* left */,
 | |
|                                   0 /* top-left */ };
 | |
|     enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
 | |
|     enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
 | |
|     int idx = CNT_ZERO;
 | |
|     int cur_sign_bias = s->sign_bias[mb->ref_frame];
 | |
|     int8_t *sign_bias = s->sign_bias;
 | |
|     VP56mv near_mv[4];
 | |
|     uint8_t cnt[4] = { 0 };
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     if (!layout) { // layout is inlined (s->mb_layout is not)
 | |
|         mb_edge[0] = mb + 2;
 | |
|         mb_edge[2] = mb + 1;
 | |
|     }
 | |
|     else {
 | |
|         mb_edge[0] = mb - s->mb_width-1;
 | |
|         mb_edge[2] = mb - s->mb_width-2;
 | |
|     }
 | |
| 
 | |
|     AV_ZERO32(&near_mv[0]);
 | |
|     AV_ZERO32(&near_mv[1]);
 | |
|     AV_ZERO32(&near_mv[2]);
 | |
| 
 | |
|     /* Process MB on top, left and top-left */
 | |
|     #define MV_EDGE_CHECK(n)\
 | |
|     {\
 | |
|         VP8Macroblock *edge = mb_edge[n];\
 | |
|         int edge_ref = edge->ref_frame;\
 | |
|         if (edge_ref != VP56_FRAME_CURRENT) {\
 | |
|             uint32_t mv = AV_RN32A(&edge->mv);\
 | |
|             if (mv) {\
 | |
|                 if (cur_sign_bias != sign_bias[edge_ref]) {\
 | |
|                     /* SWAR negate of the values in mv. */\
 | |
|                     mv = ~mv;\
 | |
|                     mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\
 | |
|                 }\
 | |
|                 if (!n || mv != AV_RN32A(&near_mv[idx]))\
 | |
|                     AV_WN32A(&near_mv[++idx], mv);\
 | |
|                 cnt[idx]      += 1 + (n != 2);\
 | |
|             } else\
 | |
|                 cnt[CNT_ZERO] += 1 + (n != 2);\
 | |
|         }\
 | |
|     }
 | |
| 
 | |
|     MV_EDGE_CHECK(0)
 | |
|     MV_EDGE_CHECK(1)
 | |
|     MV_EDGE_CHECK(2)
 | |
| 
 | |
|     mb->partitioning = VP8_SPLITMVMODE_NONE;
 | |
|     if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) {
 | |
|         mb->mode = VP8_MVMODE_MV;
 | |
| 
 | |
|         /* If we have three distinct MVs, merge first and last if they're the same */
 | |
|         if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
 | |
|             cnt[CNT_NEAREST] += 1;
 | |
| 
 | |
|         /* Swap near and nearest if necessary */
 | |
|         if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
 | |
|             FFSWAP(uint8_t,     cnt[CNT_NEAREST],     cnt[CNT_NEAR]);
 | |
|             FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
 | |
|         }
 | |
| 
 | |
|         if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) {
 | |
|             if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) {
 | |
| 
 | |
|                 /* Choose the best mv out of 0,0 and the nearest mv */
 | |
|                 clamp_mv(s, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
 | |
|                 cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode    == VP8_MVMODE_SPLIT) +
 | |
|                                     (mb_edge[VP8_EDGE_TOP]->mode     == VP8_MVMODE_SPLIT)) * 2 +
 | |
|                                     (mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
 | |
| 
 | |
|                 if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) {
 | |
|                     mb->mode = VP8_MVMODE_SPLIT;
 | |
|                     mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout) - 1];
 | |
|                 } else {
 | |
|                     mb->mv.y += read_mv_component(c, s->prob->mvc[0]);
 | |
|                     mb->mv.x += read_mv_component(c, s->prob->mvc[1]);
 | |
|                     mb->bmv[0] = mb->mv;
 | |
|                 }
 | |
|             } else {
 | |
|                 clamp_mv(s, &mb->mv, &near_mv[CNT_NEAR]);
 | |
|                 mb->bmv[0] = mb->mv;
 | |
|             }
 | |
|         } else {
 | |
|             clamp_mv(s, &mb->mv, &near_mv[CNT_NEAREST]);
 | |
|             mb->bmv[0] = mb->mv;
 | |
|         }
 | |
|     } else {
 | |
|         mb->mode = VP8_MVMODE_ZERO;
 | |
|         AV_ZERO32(&mb->mv);
 | |
|         mb->bmv[0] = mb->mv;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
 | |
|                            int mb_x, int keyframe, int layout)
 | |
| {
 | |
|     uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
 | |
| 
 | |
|     if (layout == 1) {
 | |
|         VP8Macroblock *mb_top = mb - s->mb_width - 1;
 | |
|         memcpy(mb->intra4x4_pred_mode_top, mb_top->intra4x4_pred_mode_top, 4);
 | |
|     }
 | |
|     if (keyframe) {
 | |
|         int x, y;
 | |
|         uint8_t* top;
 | |
|         uint8_t* const left = s->intra4x4_pred_mode_left;
 | |
|         if (layout == 1)
 | |
|             top = mb->intra4x4_pred_mode_top;
 | |
|         else
 | |
|             top = s->intra4x4_pred_mode_top + 4 * mb_x;
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             for (x = 0; x < 4; x++) {
 | |
|                 const uint8_t *ctx;
 | |
|                 ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
 | |
|                 *intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
 | |
|                 left[y] = top[x] = *intra4x4;
 | |
|                 intra4x4++;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         int i;
 | |
|         for (i = 0; i < 16; i++)
 | |
|             intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
 | |
|                     uint8_t *segment, uint8_t *ref, int layout)
 | |
| {
 | |
|     VP56RangeCoder *c = &s->c;
 | |
| 
 | |
|     if (s->segmentation.update_map) {
 | |
|         int bit  = vp56_rac_get_prob(c, s->prob->segmentid[0]);
 | |
|         *segment = vp56_rac_get_prob(c, s->prob->segmentid[1+bit]) + 2*bit;
 | |
|     } else if (s->segmentation.enabled)
 | |
|         *segment = ref ? *ref : *segment;
 | |
|     mb->segment = *segment;
 | |
| 
 | |
|     mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
 | |
| 
 | |
|         if (mb->mode == MODE_I4x4) {
 | |
|             decode_intra4x4_modes(s, c, mb, mb_x, 1, layout);
 | |
|         } else {
 | |
|             const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u;
 | |
|             if (s->mb_layout == 1)
 | |
|                 AV_WN32A(mb->intra4x4_pred_mode_top, modes);
 | |
|             else
 | |
|                 AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
 | |
|             AV_WN32A( s->intra4x4_pred_mode_left, modes);
 | |
|         }
 | |
| 
 | |
|         mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
 | |
|         mb->ref_frame = VP56_FRAME_CURRENT;
 | |
|     } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
 | |
|         // inter MB, 16.2
 | |
|         if (vp56_rac_get_prob_branchy(c, s->prob->last))
 | |
|             mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
 | |
|                 VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
 | |
|         else
 | |
|             mb->ref_frame = VP56_FRAME_PREVIOUS;
 | |
|         s->ref_count[mb->ref_frame-1]++;
 | |
| 
 | |
|         // motion vectors, 16.3
 | |
|         decode_mvs(s, mb, mb_x, mb_y, layout);
 | |
|     } else {
 | |
|         // intra MB, 16.1
 | |
|         mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
 | |
| 
 | |
|         if (mb->mode == MODE_I4x4)
 | |
|             decode_intra4x4_modes(s, c, mb, mb_x, 0, layout);
 | |
| 
 | |
|         mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
 | |
|         mb->ref_frame = VP56_FRAME_CURRENT;
 | |
|         mb->partitioning = VP8_SPLITMVMODE_NONE;
 | |
|         AV_ZERO32(&mb->bmv[0]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef decode_block_coeffs_internal
 | |
| /**
 | |
|  * @param r arithmetic bitstream reader context
 | |
|  * @param block destination for block coefficients
 | |
|  * @param probs probabilities to use when reading trees from the bitstream
 | |
|  * @param i initial coeff index, 0 unless a separate DC block is coded
 | |
|  * @param qmul array holding the dc/ac dequant factor at position 0/1
 | |
|  * @return 0 if no coeffs were decoded
 | |
|  *         otherwise, the index of the last coeff decoded plus one
 | |
|  */
 | |
| static int decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16],
 | |
|                                         uint8_t probs[16][3][NUM_DCT_TOKENS-1],
 | |
|                                         int i, uint8_t *token_prob, int16_t qmul[2])
 | |
| {
 | |
|     VP56RangeCoder c = *r;
 | |
|     goto skip_eob;
 | |
|     do {
 | |
|         int coeff;
 | |
|         if (!vp56_rac_get_prob_branchy(&c, token_prob[0]))   // DCT_EOB
 | |
|             break;
 | |
| 
 | |
| skip_eob:
 | |
|         if (!vp56_rac_get_prob_branchy(&c, token_prob[1])) { // DCT_0
 | |
|             if (++i == 16)
 | |
|                 break; // invalid input; blocks should end with EOB
 | |
|             token_prob = probs[i][0];
 | |
|             goto skip_eob;
 | |
|         }
 | |
| 
 | |
|         if (!vp56_rac_get_prob_branchy(&c, token_prob[2])) { // DCT_1
 | |
|             coeff = 1;
 | |
|             token_prob = probs[i+1][1];
 | |
|         } else {
 | |
|             if (!vp56_rac_get_prob_branchy(&c, token_prob[3])) { // DCT 2,3,4
 | |
|                 coeff = vp56_rac_get_prob_branchy(&c, token_prob[4]);
 | |
|                 if (coeff)
 | |
|                     coeff += vp56_rac_get_prob(&c, token_prob[5]);
 | |
|                 coeff += 2;
 | |
|             } else {
 | |
|                 // DCT_CAT*
 | |
|                 if (!vp56_rac_get_prob_branchy(&c, token_prob[6])) {
 | |
|                     if (!vp56_rac_get_prob_branchy(&c, token_prob[7])) { // DCT_CAT1
 | |
|                         coeff  = 5 + vp56_rac_get_prob(&c, vp8_dct_cat1_prob[0]);
 | |
|                     } else {                                    // DCT_CAT2
 | |
|                         coeff  = 7;
 | |
|                         coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[0]) << 1;
 | |
|                         coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[1]);
 | |
|                     }
 | |
|                 } else {    // DCT_CAT3 and up
 | |
|                     int a = vp56_rac_get_prob(&c, token_prob[8]);
 | |
|                     int b = vp56_rac_get_prob(&c, token_prob[9+a]);
 | |
|                     int cat = (a<<1) + b;
 | |
|                     coeff  = 3 + (8<<cat);
 | |
|                     coeff += vp8_rac_get_coeff(&c, ff_vp8_dct_cat_prob[cat]);
 | |
|                 }
 | |
|             }
 | |
|             token_prob = probs[i+1][2];
 | |
|         }
 | |
|         block[zigzag_scan[i]] = (vp8_rac_get(&c) ? -coeff : coeff) * qmul[!!i];
 | |
|     } while (++i < 16);
 | |
| 
 | |
|     *r = c;
 | |
|     return i;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @param c arithmetic bitstream reader context
 | |
|  * @param block destination for block coefficients
 | |
|  * @param probs probabilities to use when reading trees from the bitstream
 | |
|  * @param i initial coeff index, 0 unless a separate DC block is coded
 | |
|  * @param zero_nhood the initial prediction context for number of surrounding
 | |
|  *                   all-zero blocks (only left/top, so 0-2)
 | |
|  * @param qmul array holding the dc/ac dequant factor at position 0/1
 | |
|  * @return 0 if no coeffs were decoded
 | |
|  *         otherwise, the index of the last coeff decoded plus one
 | |
|  */
 | |
| static av_always_inline
 | |
| int decode_block_coeffs(VP56RangeCoder *c, int16_t block[16],
 | |
|                         uint8_t probs[16][3][NUM_DCT_TOKENS-1],
 | |
|                         int i, int zero_nhood, int16_t qmul[2])
 | |
| {
 | |
|     uint8_t *token_prob = probs[i][zero_nhood];
 | |
|     if (!vp56_rac_get_prob_branchy(c, token_prob[0]))   // DCT_EOB
 | |
|         return 0;
 | |
|     return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul);
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VP56RangeCoder *c, VP8Macroblock *mb,
 | |
|                       uint8_t t_nnz[9], uint8_t l_nnz[9])
 | |
| {
 | |
|     int i, x, y, luma_start = 0, luma_ctx = 3;
 | |
|     int nnz_pred, nnz, nnz_total = 0;
 | |
|     int segment = mb->segment;
 | |
|     int block_dc = 0;
 | |
| 
 | |
|     if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
 | |
|         nnz_pred = t_nnz[8] + l_nnz[8];
 | |
| 
 | |
|         // decode DC values and do hadamard
 | |
|         nnz = decode_block_coeffs(c, td->block_dc, s->prob->token[1], 0, nnz_pred,
 | |
|                                   s->qmat[segment].luma_dc_qmul);
 | |
|         l_nnz[8] = t_nnz[8] = !!nnz;
 | |
|         if (nnz) {
 | |
|             nnz_total += nnz;
 | |
|             block_dc = 1;
 | |
|             if (nnz == 1)
 | |
|                 s->vp8dsp.vp8_luma_dc_wht_dc(td->block, td->block_dc);
 | |
|             else
 | |
|                 s->vp8dsp.vp8_luma_dc_wht(td->block, td->block_dc);
 | |
|         }
 | |
|         luma_start = 1;
 | |
|         luma_ctx = 0;
 | |
|     }
 | |
| 
 | |
|     // luma blocks
 | |
|     for (y = 0; y < 4; y++)
 | |
|         for (x = 0; x < 4; x++) {
 | |
|             nnz_pred = l_nnz[y] + t_nnz[x];
 | |
|             nnz = decode_block_coeffs(c, td->block[y][x], s->prob->token[luma_ctx], luma_start,
 | |
|                                       nnz_pred, s->qmat[segment].luma_qmul);
 | |
|             // nnz+block_dc may be one more than the actual last index, but we don't care
 | |
|             td->non_zero_count_cache[y][x] = nnz + block_dc;
 | |
|             t_nnz[x] = l_nnz[y] = !!nnz;
 | |
|             nnz_total += nnz;
 | |
|         }
 | |
| 
 | |
|     // chroma blocks
 | |
|     // TODO: what to do about dimensions? 2nd dim for luma is x,
 | |
|     // but for chroma it's (y<<1)|x
 | |
|     for (i = 4; i < 6; i++)
 | |
|         for (y = 0; y < 2; y++)
 | |
|             for (x = 0; x < 2; x++) {
 | |
|                 nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
 | |
|                 nnz = decode_block_coeffs(c, td->block[i][(y<<1)+x], s->prob->token[2], 0,
 | |
|                                           nnz_pred, s->qmat[segment].chroma_qmul);
 | |
|                 td->non_zero_count_cache[i][(y<<1)+x] = nnz;
 | |
|                 t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
 | |
|                 nnz_total += nnz;
 | |
|             }
 | |
| 
 | |
|     // if there were no coded coeffs despite the macroblock not being marked skip,
 | |
|     // we MUST not do the inner loop filter and should not do IDCT
 | |
|     // Since skip isn't used for bitstream prediction, just manually set it.
 | |
|     if (!nnz_total)
 | |
|         mb->skip = 1;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
 | |
|                       int linesize, int uvlinesize, int simple)
 | |
| {
 | |
|     AV_COPY128(top_border, src_y + 15*linesize);
 | |
|     if (!simple) {
 | |
|         AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
 | |
|         AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
 | |
|                     int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
 | |
|                     int simple, int xchg)
 | |
| {
 | |
|     uint8_t *top_border_m1 = top_border-32;     // for TL prediction
 | |
|     src_y  -=   linesize;
 | |
|     src_cb -= uvlinesize;
 | |
|     src_cr -= uvlinesize;
 | |
| 
 | |
| #define XCHG(a,b,xchg) do {                     \
 | |
|         if (xchg) AV_SWAP64(b,a);               \
 | |
|         else      AV_COPY64(b,a);               \
 | |
|     } while (0)
 | |
| 
 | |
|     XCHG(top_border_m1+8, src_y-8, xchg);
 | |
|     XCHG(top_border,      src_y,   xchg);
 | |
|     XCHG(top_border+8,    src_y+8, 1);
 | |
|     if (mb_x < mb_width-1)
 | |
|         XCHG(top_border+32, src_y+16, 1);
 | |
| 
 | |
|     // only copy chroma for normal loop filter
 | |
|     // or to initialize the top row to 127
 | |
|     if (!simple || !mb_y) {
 | |
|         XCHG(top_border_m1+16, src_cb-8, xchg);
 | |
|         XCHG(top_border_m1+24, src_cr-8, xchg);
 | |
|         XCHG(top_border+16,    src_cb, 1);
 | |
|         XCHG(top_border+24,    src_cr, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
 | |
| {
 | |
|     if (!mb_x) {
 | |
|         return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
 | |
|     } else {
 | |
|         return mb_y ? mode : LEFT_DC_PRED8x8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y)
 | |
| {
 | |
|     if (!mb_x) {
 | |
|         return mb_y ? VERT_PRED8x8 : DC_129_PRED8x8;
 | |
|     } else {
 | |
|         return mb_y ? mode : HOR_PRED8x8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_intra_pred8x8_mode(int mode, int mb_x, int mb_y)
 | |
| {
 | |
|     if (mode == DC_PRED8x8) {
 | |
|         return check_dc_pred8x8_mode(mode, mb_x, mb_y);
 | |
|     } else {
 | |
|         return mode;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y)
 | |
| {
 | |
|     switch (mode) {
 | |
|     case DC_PRED8x8:
 | |
|         return check_dc_pred8x8_mode(mode, mb_x, mb_y);
 | |
|     case VERT_PRED8x8:
 | |
|         return !mb_y ? DC_127_PRED8x8 : mode;
 | |
|     case HOR_PRED8x8:
 | |
|         return !mb_x ? DC_129_PRED8x8 : mode;
 | |
|     case PLANE_PRED8x8 /*TM*/:
 | |
|         return check_tm_pred8x8_mode(mode, mb_x, mb_y);
 | |
|     }
 | |
|     return mode;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y)
 | |
| {
 | |
|     if (!mb_x) {
 | |
|         return mb_y ? VERT_VP8_PRED : DC_129_PRED;
 | |
|     } else {
 | |
|         return mb_y ? mode : HOR_VP8_PRED;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf)
 | |
| {
 | |
|     switch (mode) {
 | |
|     case VERT_PRED:
 | |
|         if (!mb_x && mb_y) {
 | |
|             *copy_buf = 1;
 | |
|             return mode;
 | |
|         }
 | |
|         /* fall-through */
 | |
|     case DIAG_DOWN_LEFT_PRED:
 | |
|     case VERT_LEFT_PRED:
 | |
|         return !mb_y ? DC_127_PRED : mode;
 | |
|     case HOR_PRED:
 | |
|         if (!mb_y) {
 | |
|             *copy_buf = 1;
 | |
|             return mode;
 | |
|         }
 | |
|         /* fall-through */
 | |
|     case HOR_UP_PRED:
 | |
|         return !mb_x ? DC_129_PRED : mode;
 | |
|     case TM_VP8_PRED:
 | |
|         return check_tm_pred4x4_mode(mode, mb_x, mb_y);
 | |
|     case DC_PRED: // 4x4 DC doesn't use the same "H.264-style" exceptions as 16x16/8x8 DC
 | |
|     case DIAG_DOWN_RIGHT_PRED:
 | |
|     case VERT_RIGHT_PRED:
 | |
|     case HOR_DOWN_PRED:
 | |
|         if (!mb_y || !mb_x)
 | |
|             *copy_buf = 1;
 | |
|         return mode;
 | |
|     }
 | |
|     return mode;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
 | |
|                    VP8Macroblock *mb, int mb_x, int mb_y)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     int x, y, mode, nnz;
 | |
|     uint32_t tr;
 | |
| 
 | |
|     // for the first row, we need to run xchg_mb_border to init the top edge to 127
 | |
|     // otherwise, skip it if we aren't going to deblock
 | |
|     if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
 | |
|         xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
 | |
|                        s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
 | |
|                        s->filter.simple, 1);
 | |
| 
 | |
|     if (mb->mode < MODE_I4x4) {
 | |
|         if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // tested
 | |
|             mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y);
 | |
|         } else {
 | |
|             mode = check_intra_pred8x8_mode(mb->mode, mb_x, mb_y);
 | |
|         }
 | |
|         s->hpc.pred16x16[mode](dst[0], s->linesize);
 | |
|     } else {
 | |
|         uint8_t *ptr = dst[0];
 | |
|         uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
 | |
|         uint8_t tr_top[4] = { 127, 127, 127, 127 };
 | |
| 
 | |
|         // all blocks on the right edge of the macroblock use bottom edge
 | |
|         // the top macroblock for their topright edge
 | |
|         uint8_t *tr_right = ptr - s->linesize + 16;
 | |
| 
 | |
|         // if we're on the right edge of the frame, said edge is extended
 | |
|         // from the top macroblock
 | |
|         if (!(!mb_y && avctx->flags & CODEC_FLAG_EMU_EDGE) &&
 | |
|             mb_x == s->mb_width-1) {
 | |
|             tr = tr_right[-1]*0x01010101u;
 | |
|             tr_right = (uint8_t *)&tr;
 | |
|         }
 | |
| 
 | |
|         if (mb->skip)
 | |
|             AV_ZERO128(td->non_zero_count_cache);
 | |
| 
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             uint8_t *topright = ptr + 4 - s->linesize;
 | |
|             for (x = 0; x < 4; x++) {
 | |
|                 int copy = 0, linesize = s->linesize;
 | |
|                 uint8_t *dst = ptr+4*x;
 | |
|                 DECLARE_ALIGNED(4, uint8_t, copy_dst)[5*8];
 | |
| 
 | |
|                 if ((y == 0 || x == 3) && mb_y == 0 && avctx->flags & CODEC_FLAG_EMU_EDGE) {
 | |
|                     topright = tr_top;
 | |
|                 } else if (x == 3)
 | |
|                     topright = tr_right;
 | |
| 
 | |
|                 if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // mb_x+x or mb_y+y is a hack but works
 | |
|                     mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, mb_y + y, ©);
 | |
|                     if (copy) {
 | |
|                         dst = copy_dst + 12;
 | |
|                         linesize = 8;
 | |
|                         if (!(mb_y + y)) {
 | |
|                             copy_dst[3] = 127U;
 | |
|                             AV_WN32A(copy_dst+4, 127U * 0x01010101U);
 | |
|                         } else {
 | |
|                             AV_COPY32(copy_dst+4, ptr+4*x-s->linesize);
 | |
|                             if (!(mb_x + x)) {
 | |
|                                 copy_dst[3] = 129U;
 | |
|                             } else {
 | |
|                                 copy_dst[3] = ptr[4*x-s->linesize-1];
 | |
|                             }
 | |
|                         }
 | |
|                         if (!(mb_x + x)) {
 | |
|                             copy_dst[11] =
 | |
|                             copy_dst[19] =
 | |
|                             copy_dst[27] =
 | |
|                             copy_dst[35] = 129U;
 | |
|                         } else {
 | |
|                             copy_dst[11] = ptr[4*x              -1];
 | |
|                             copy_dst[19] = ptr[4*x+s->linesize  -1];
 | |
|                             copy_dst[27] = ptr[4*x+s->linesize*2-1];
 | |
|                             copy_dst[35] = ptr[4*x+s->linesize*3-1];
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     mode = intra4x4[x];
 | |
|                 }
 | |
|                 s->hpc.pred4x4[mode](dst, topright, linesize);
 | |
|                 if (copy) {
 | |
|                     AV_COPY32(ptr+4*x              , copy_dst+12);
 | |
|                     AV_COPY32(ptr+4*x+s->linesize  , copy_dst+20);
 | |
|                     AV_COPY32(ptr+4*x+s->linesize*2, copy_dst+28);
 | |
|                     AV_COPY32(ptr+4*x+s->linesize*3, copy_dst+36);
 | |
|                 }
 | |
| 
 | |
|                 nnz = td->non_zero_count_cache[y][x];
 | |
|                 if (nnz) {
 | |
|                     if (nnz == 1)
 | |
|                         s->vp8dsp.vp8_idct_dc_add(ptr+4*x, td->block[y][x], s->linesize);
 | |
|                     else
 | |
|                         s->vp8dsp.vp8_idct_add(ptr+4*x, td->block[y][x], s->linesize);
 | |
|                 }
 | |
|                 topright += 4;
 | |
|             }
 | |
| 
 | |
|             ptr   += 4*s->linesize;
 | |
|             intra4x4 += 4;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (avctx->flags & CODEC_FLAG_EMU_EDGE) {
 | |
|         mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode, mb_x, mb_y);
 | |
|     } else {
 | |
|         mode = check_intra_pred8x8_mode(mb->chroma_pred_mode, mb_x, mb_y);
 | |
|     }
 | |
|     s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
 | |
|     s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
 | |
| 
 | |
|     if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
 | |
|         xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
 | |
|                        s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
 | |
|                        s->filter.simple, 0);
 | |
| }
 | |
| 
 | |
| static const uint8_t subpel_idx[3][8] = {
 | |
|     { 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels,
 | |
|                                 // also function pointer index
 | |
|     { 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required
 | |
|     { 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * luma MC function
 | |
|  *
 | |
|  * @param s VP8 decoding context
 | |
|  * @param dst target buffer for block data at block position
 | |
|  * @param ref reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block (16, 8 or 4)
 | |
|  * @param block_h height of block (always same as block_w)
 | |
|  * @param width width of src/dst plane data
 | |
|  * @param height height of src/dst plane data
 | |
|  * @param linesize size of a single line of plane data, including padding
 | |
|  * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
 | |
|  */
 | |
| static av_always_inline
 | |
| void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst,
 | |
|                  ThreadFrame *ref, const VP56mv *mv,
 | |
|                  int x_off, int y_off, int block_w, int block_h,
 | |
|                  int width, int height, int linesize,
 | |
|                  vp8_mc_func mc_func[3][3])
 | |
| {
 | |
|     uint8_t *src = ref->f->data[0];
 | |
| 
 | |
|     if (AV_RN32A(mv)) {
 | |
| 
 | |
|         int mx = (mv->x << 1)&7, mx_idx = subpel_idx[0][mx];
 | |
|         int my = (mv->y << 1)&7, my_idx = subpel_idx[0][my];
 | |
| 
 | |
|         x_off += mv->x >> 2;
 | |
|         y_off += mv->y >> 2;
 | |
| 
 | |
|         // edge emulation
 | |
|         ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0);
 | |
|         src += y_off * linesize + x_off;
 | |
|         if (x_off < mx_idx || x_off >= width  - block_w - subpel_idx[2][mx] ||
 | |
|             y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
 | |
|             s->vdsp.emulated_edge_mc(td->edge_emu_buffer, src - my_idx * linesize - mx_idx, linesize,
 | |
|                                      block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
 | |
|                                      x_off - mx_idx, y_off - my_idx, width, height);
 | |
|             src = td->edge_emu_buffer + mx_idx + linesize * my_idx;
 | |
|         }
 | |
|         mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
 | |
|     } else {
 | |
|         ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0);
 | |
|         mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * chroma MC function
 | |
|  *
 | |
|  * @param s VP8 decoding context
 | |
|  * @param dst1 target buffer for block data at block position (U plane)
 | |
|  * @param dst2 target buffer for block data at block position (V plane)
 | |
|  * @param ref reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block (16, 8 or 4)
 | |
|  * @param block_h height of block (always same as block_w)
 | |
|  * @param width width of src/dst plane data
 | |
|  * @param height height of src/dst plane data
 | |
|  * @param linesize size of a single line of plane data, including padding
 | |
|  * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
 | |
|  */
 | |
| static av_always_inline
 | |
| void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, uint8_t *dst2,
 | |
|                    ThreadFrame *ref, const VP56mv *mv, int x_off, int y_off,
 | |
|                    int block_w, int block_h, int width, int height, int linesize,
 | |
|                    vp8_mc_func mc_func[3][3])
 | |
| {
 | |
|     uint8_t *src1 = ref->f->data[1], *src2 = ref->f->data[2];
 | |
| 
 | |
|     if (AV_RN32A(mv)) {
 | |
|         int mx = mv->x&7, mx_idx = subpel_idx[0][mx];
 | |
|         int my = mv->y&7, my_idx = subpel_idx[0][my];
 | |
| 
 | |
|         x_off += mv->x >> 3;
 | |
|         y_off += mv->y >> 3;
 | |
| 
 | |
|         // edge emulation
 | |
|         src1 += y_off * linesize + x_off;
 | |
|         src2 += y_off * linesize + x_off;
 | |
|         ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0);
 | |
|         if (x_off < mx_idx || x_off >= width  - block_w - subpel_idx[2][mx] ||
 | |
|             y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
 | |
|             s->vdsp.emulated_edge_mc(td->edge_emu_buffer, src1 - my_idx * linesize - mx_idx, linesize,
 | |
|                                      block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
 | |
|                                      x_off - mx_idx, y_off - my_idx, width, height);
 | |
|             src1 = td->edge_emu_buffer + mx_idx + linesize * my_idx;
 | |
|             mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my);
 | |
| 
 | |
|             s->vdsp.emulated_edge_mc(td->edge_emu_buffer, src2 - my_idx * linesize - mx_idx, linesize,
 | |
|                                      block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
 | |
|                                      x_off - mx_idx, y_off - my_idx, width, height);
 | |
|             src2 = td->edge_emu_buffer + mx_idx + linesize * my_idx;
 | |
|             mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
 | |
|         } else {
 | |
|             mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my);
 | |
|             mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
 | |
|         }
 | |
|     } else {
 | |
|         ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0);
 | |
|         mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
 | |
|         mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
 | |
|                  ThreadFrame *ref_frame, int x_off, int y_off,
 | |
|                  int bx_off, int by_off,
 | |
|                  int block_w, int block_h,
 | |
|                  int width, int height, VP56mv *mv)
 | |
| {
 | |
|     VP56mv uvmv = *mv;
 | |
| 
 | |
|     /* Y */
 | |
|     vp8_mc_luma(s, td, dst[0] + by_off * s->linesize + bx_off,
 | |
|                 ref_frame, mv, x_off + bx_off, y_off + by_off,
 | |
|                 block_w, block_h, width, height, s->linesize,
 | |
|                 s->put_pixels_tab[block_w == 8]);
 | |
| 
 | |
|     /* U/V */
 | |
|     if (s->profile == 3) {
 | |
|         uvmv.x &= ~7;
 | |
|         uvmv.y &= ~7;
 | |
|     }
 | |
|     x_off   >>= 1; y_off   >>= 1;
 | |
|     bx_off  >>= 1; by_off  >>= 1;
 | |
|     width   >>= 1; height  >>= 1;
 | |
|     block_w >>= 1; block_h >>= 1;
 | |
|     vp8_mc_chroma(s, td, dst[1] + by_off * s->uvlinesize + bx_off,
 | |
|                   dst[2] + by_off * s->uvlinesize + bx_off, ref_frame,
 | |
|                   &uvmv, x_off + bx_off, y_off + by_off,
 | |
|                   block_w, block_h, width, height, s->uvlinesize,
 | |
|                   s->put_pixels_tab[1 + (block_w == 4)]);
 | |
| }
 | |
| 
 | |
| /* Fetch pixels for estimated mv 4 macroblocks ahead.
 | |
|  * Optimized for 64-byte cache lines.  Inspired by ffh264 prefetch_motion. */
 | |
| static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
 | |
| {
 | |
|     /* Don't prefetch refs that haven't been used very often this frame. */
 | |
|     if (s->ref_count[ref-1] > (mb_xy >> 5)) {
 | |
|         int x_off = mb_x << 4, y_off = mb_y << 4;
 | |
|         int mx = (mb->mv.x>>2) + x_off + 8;
 | |
|         int my = (mb->mv.y>>2) + y_off;
 | |
|         uint8_t **src= s->framep[ref]->tf.f->data;
 | |
|         int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
 | |
|         /* For threading, a ff_thread_await_progress here might be useful, but
 | |
|          * it actually slows down the decoder. Since a bad prefetch doesn't
 | |
|          * generate bad decoder output, we don't run it here. */
 | |
|         s->vdsp.prefetch(src[0]+off, s->linesize, 4);
 | |
|         off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
 | |
|         s->vdsp.prefetch(src[1]+off, src[2]-src[1], 2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply motion vectors to prediction buffer, chapter 18.
 | |
|  */
 | |
| static av_always_inline
 | |
| void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
 | |
|                    VP8Macroblock *mb, int mb_x, int mb_y)
 | |
| {
 | |
|     int x_off = mb_x << 4, y_off = mb_y << 4;
 | |
|     int width = 16*s->mb_width, height = 16*s->mb_height;
 | |
|     ThreadFrame *ref = &s->framep[mb->ref_frame]->tf;
 | |
|     VP56mv *bmv = mb->bmv;
 | |
| 
 | |
|     switch (mb->partitioning) {
 | |
|     case VP8_SPLITMVMODE_NONE:
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     0, 0, 16, 16, width, height, &mb->mv);
 | |
|         break;
 | |
|     case VP8_SPLITMVMODE_4x4: {
 | |
|         int x, y;
 | |
|         VP56mv uvmv;
 | |
| 
 | |
|         /* Y */
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             for (x = 0; x < 4; x++) {
 | |
|                 vp8_mc_luma(s, td, dst[0] + 4*y*s->linesize + x*4,
 | |
|                             ref, &bmv[4*y + x],
 | |
|                             4*x + x_off, 4*y + y_off, 4, 4,
 | |
|                             width, height, s->linesize,
 | |
|                             s->put_pixels_tab[2]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* U/V */
 | |
|         x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
 | |
|         for (y = 0; y < 2; y++) {
 | |
|             for (x = 0; x < 2; x++) {
 | |
|                 uvmv.x = mb->bmv[ 2*y    * 4 + 2*x  ].x +
 | |
|                          mb->bmv[ 2*y    * 4 + 2*x+1].x +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x  ].x +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x+1].x;
 | |
|                 uvmv.y = mb->bmv[ 2*y    * 4 + 2*x  ].y +
 | |
|                          mb->bmv[ 2*y    * 4 + 2*x+1].y +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x  ].y +
 | |
|                          mb->bmv[(2*y+1) * 4 + 2*x+1].y;
 | |
|                 uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
 | |
|                 uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
 | |
|                 if (s->profile == 3) {
 | |
|                     uvmv.x &= ~7;
 | |
|                     uvmv.y &= ~7;
 | |
|                 }
 | |
|                 vp8_mc_chroma(s, td, dst[1] + 4*y*s->uvlinesize + x*4,
 | |
|                               dst[2] + 4*y*s->uvlinesize + x*4, ref, &uvmv,
 | |
|                               4*x + x_off, 4*y + y_off, 4, 4,
 | |
|                               width, height, s->uvlinesize,
 | |
|                               s->put_pixels_tab[2]);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case VP8_SPLITMVMODE_16x8:
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     0, 0, 16, 8, width, height, &bmv[0]);
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     0, 8, 16, 8, width, height, &bmv[1]);
 | |
|         break;
 | |
|     case VP8_SPLITMVMODE_8x16:
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     0, 0, 8, 16, width, height, &bmv[0]);
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     8, 0, 8, 16, width, height, &bmv[1]);
 | |
|         break;
 | |
|     case VP8_SPLITMVMODE_8x8:
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     0, 0, 8, 8, width, height, &bmv[0]);
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     8, 0, 8, 8, width, height, &bmv[1]);
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     0, 8, 8, 8, width, height, &bmv[2]);
 | |
|         vp8_mc_part(s, td, dst, ref, x_off, y_off,
 | |
|                     8, 8, 8, 8, width, height, &bmv[3]);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline void idct_mb(VP8Context *s, VP8ThreadData *td,
 | |
|                                      uint8_t *dst[3], VP8Macroblock *mb)
 | |
| {
 | |
|     int x, y, ch;
 | |
| 
 | |
|     if (mb->mode != MODE_I4x4) {
 | |
|         uint8_t *y_dst = dst[0];
 | |
|         for (y = 0; y < 4; y++) {
 | |
|             uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[y]);
 | |
|             if (nnz4) {
 | |
|                 if (nnz4&~0x01010101) {
 | |
|                     for (x = 0; x < 4; x++) {
 | |
|                         if ((uint8_t)nnz4 == 1)
 | |
|                             s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, td->block[y][x], s->linesize);
 | |
|                         else if((uint8_t)nnz4 > 1)
 | |
|                             s->vp8dsp.vp8_idct_add(y_dst+4*x, td->block[y][x], s->linesize);
 | |
|                         nnz4 >>= 8;
 | |
|                         if (!nnz4)
 | |
|                             break;
 | |
|                     }
 | |
|                 } else {
 | |
|                     s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->block[y], s->linesize);
 | |
|                 }
 | |
|             }
 | |
|             y_dst += 4*s->linesize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < 2; ch++) {
 | |
|         uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[4+ch]);
 | |
|         if (nnz4) {
 | |
|             uint8_t *ch_dst = dst[1+ch];
 | |
|             if (nnz4&~0x01010101) {
 | |
|                 for (y = 0; y < 2; y++) {
 | |
|                     for (x = 0; x < 2; x++) {
 | |
|                         if ((uint8_t)nnz4 == 1)
 | |
|                             s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, td->block[4+ch][(y<<1)+x], s->uvlinesize);
 | |
|                         else if((uint8_t)nnz4 > 1)
 | |
|                             s->vp8dsp.vp8_idct_add(ch_dst+4*x, td->block[4+ch][(y<<1)+x], s->uvlinesize);
 | |
|                         nnz4 >>= 8;
 | |
|                         if (!nnz4)
 | |
|                             goto chroma_idct_end;
 | |
|                     }
 | |
|                     ch_dst += 4*s->uvlinesize;
 | |
|                 }
 | |
|             } else {
 | |
|                 s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->block[4+ch], s->uvlinesize);
 | |
|             }
 | |
|         }
 | |
| chroma_idct_end: ;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
 | |
| {
 | |
|     int interior_limit, filter_level;
 | |
| 
 | |
|     if (s->segmentation.enabled) {
 | |
|         filter_level = s->segmentation.filter_level[mb->segment];
 | |
|         if (!s->segmentation.absolute_vals)
 | |
|             filter_level += s->filter.level;
 | |
|     } else
 | |
|         filter_level = s->filter.level;
 | |
| 
 | |
|     if (s->lf_delta.enabled) {
 | |
|         filter_level += s->lf_delta.ref[mb->ref_frame];
 | |
|         filter_level += s->lf_delta.mode[mb->mode];
 | |
|     }
 | |
| 
 | |
|     filter_level = av_clip_uintp2(filter_level, 6);
 | |
| 
 | |
|     interior_limit = filter_level;
 | |
|     if (s->filter.sharpness) {
 | |
|         interior_limit >>= (s->filter.sharpness + 3) >> 2;
 | |
|         interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
 | |
|     }
 | |
|     interior_limit = FFMAX(interior_limit, 1);
 | |
| 
 | |
|     f->filter_level = filter_level;
 | |
|     f->inner_limit = interior_limit;
 | |
|     f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
 | |
| }
 | |
| 
 | |
| static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
 | |
| {
 | |
|     int mbedge_lim, bedge_lim, hev_thresh;
 | |
|     int filter_level = f->filter_level;
 | |
|     int inner_limit = f->inner_limit;
 | |
|     int inner_filter = f->inner_filter;
 | |
|     int linesize = s->linesize;
 | |
|     int uvlinesize = s->uvlinesize;
 | |
|     static const uint8_t hev_thresh_lut[2][64] = {
 | |
|         { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
 | |
|           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 | |
|           3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 | |
|           3, 3, 3, 3 },
 | |
|         { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
 | |
|           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 | |
|           2, 2, 2, 2 }
 | |
|     };
 | |
| 
 | |
|     if (!filter_level)
 | |
|         return;
 | |
| 
 | |
|      bedge_lim = 2*filter_level + inner_limit;
 | |
|     mbedge_lim = bedge_lim + 4;
 | |
| 
 | |
|     hev_thresh = hev_thresh_lut[s->keyframe][filter_level];
 | |
| 
 | |
|     if (mb_x) {
 | |
|         s->vp8dsp.vp8_h_loop_filter16y(dst[0],     linesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter8uv(dst[1],     dst[2],      uvlinesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|     }
 | |
| 
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
 | |
|                                              uvlinesize,  bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|     }
 | |
| 
 | |
|     if (mb_y) {
 | |
|         s->vp8dsp.vp8_v_loop_filter16y(dst[0],     linesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter8uv(dst[1],     dst[2],      uvlinesize,
 | |
|                                        mbedge_lim, inner_limit, hev_thresh);
 | |
|     }
 | |
| 
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize,
 | |
|                                              linesize,    bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize,
 | |
|                                              linesize,    bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize,
 | |
|                                              linesize,    bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|         s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
 | |
|                                              dst[2] + 4 * uvlinesize,
 | |
|                                              uvlinesize,  bedge_lim,
 | |
|                                              inner_limit, hev_thresh);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
 | |
| {
 | |
|     int mbedge_lim, bedge_lim;
 | |
|     int filter_level = f->filter_level;
 | |
|     int inner_limit = f->inner_limit;
 | |
|     int inner_filter = f->inner_filter;
 | |
|     int linesize = s->linesize;
 | |
| 
 | |
|     if (!filter_level)
 | |
|         return;
 | |
| 
 | |
|      bedge_lim = 2*filter_level + inner_limit;
 | |
|     mbedge_lim = bedge_lim + 4;
 | |
| 
 | |
|     if (mb_x)
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
 | |
|     }
 | |
| 
 | |
|     if (mb_y)
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
 | |
|     if (inner_filter) {
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
 | |
|         s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define MARGIN (16 << 2)
 | |
| static void vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe,
 | |
|                                    VP8Frame *prev_frame)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int mb_x, mb_y;
 | |
| 
 | |
|     s->mv_min.y = -MARGIN;
 | |
|     s->mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
 | |
|     for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
 | |
|         VP8Macroblock *mb = s->macroblocks_base + ((s->mb_width+1)*(mb_y + 1) + 1);
 | |
|         int mb_xy = mb_y*s->mb_width;
 | |
| 
 | |
|         AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
 | |
| 
 | |
|         s->mv_min.x = -MARGIN;
 | |
|         s->mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
 | |
|         for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
 | |
|             if (mb_y == 0)
 | |
|                 AV_WN32A((mb-s->mb_width-1)->intra4x4_pred_mode_top, DC_PRED*0x01010101);
 | |
|             decode_mb_mode(s, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy,
 | |
|                            prev_frame && prev_frame->seg_map ?
 | |
|                            prev_frame->seg_map->data + mb_xy : NULL, 1);
 | |
|             s->mv_min.x -= 64;
 | |
|             s->mv_max.x -= 64;
 | |
|         }
 | |
|         s->mv_min.y -= 64;
 | |
|         s->mv_max.y -= 64;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if HAVE_THREADS
 | |
| #define check_thread_pos(td, otd, mb_x_check, mb_y_check)\
 | |
|     do {\
 | |
|         int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF);\
 | |
|         if (otd->thread_mb_pos < tmp) {\
 | |
|             pthread_mutex_lock(&otd->lock);\
 | |
|             td->wait_mb_pos = tmp;\
 | |
|             do {\
 | |
|                 if (otd->thread_mb_pos >= tmp)\
 | |
|                     break;\
 | |
|                 pthread_cond_wait(&otd->cond, &otd->lock);\
 | |
|             } while (1);\
 | |
|             td->wait_mb_pos = INT_MAX;\
 | |
|             pthread_mutex_unlock(&otd->lock);\
 | |
|         }\
 | |
|     } while(0);
 | |
| 
 | |
| #define update_pos(td, mb_y, mb_x)\
 | |
|     do {\
 | |
|     int pos              = (mb_y << 16) | (mb_x & 0xFFFF);\
 | |
|     int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && (num_jobs > 1);\
 | |
|     int is_null          = (next_td == NULL) || (prev_td == NULL);\
 | |
|     int pos_check        = (is_null) ? 1 :\
 | |
|                             (next_td != td && pos >= next_td->wait_mb_pos) ||\
 | |
|                             (prev_td != td && pos >= prev_td->wait_mb_pos);\
 | |
|     td->thread_mb_pos = pos;\
 | |
|     if (sliced_threading && pos_check) {\
 | |
|         pthread_mutex_lock(&td->lock);\
 | |
|         pthread_cond_broadcast(&td->cond);\
 | |
|         pthread_mutex_unlock(&td->lock);\
 | |
|     }\
 | |
|     } while(0);
 | |
| #else
 | |
| #define check_thread_pos(td, otd, mb_x_check, mb_y_check)
 | |
| #define update_pos(td, mb_y, mb_x)
 | |
| #endif
 | |
| 
 | |
| static void vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata,
 | |
|                                         int jobnr, int threadnr)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     VP8ThreadData *prev_td, *next_td, *td = &s->thread_data[threadnr];
 | |
|     int mb_y = td->thread_mb_pos>>16;
 | |
|     int i, y, mb_x, mb_xy = mb_y*s->mb_width;
 | |
|     int num_jobs = s->num_jobs;
 | |
|     VP8Frame *curframe = s->curframe, *prev_frame = s->prev_frame;
 | |
|     VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
 | |
|     VP8Macroblock *mb;
 | |
|     uint8_t *dst[3] = {
 | |
|         curframe->tf.f->data[0] + 16*mb_y*s->linesize,
 | |
|         curframe->tf.f->data[1] +  8*mb_y*s->uvlinesize,
 | |
|         curframe->tf.f->data[2] +  8*mb_y*s->uvlinesize
 | |
|     };
 | |
|     if (mb_y == 0) prev_td = td;
 | |
|     else           prev_td = &s->thread_data[(jobnr + num_jobs - 1)%num_jobs];
 | |
|     if (mb_y == s->mb_height-1) next_td = td;
 | |
|     else                        next_td = &s->thread_data[(jobnr + 1)%num_jobs];
 | |
|     if (s->mb_layout == 1)
 | |
|         mb = s->macroblocks_base + ((s->mb_width+1)*(mb_y + 1) + 1);
 | |
|     else {
 | |
|         mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
 | |
|         memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock
 | |
|         AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
 | |
|     }
 | |
| 
 | |
|     memset(td->left_nnz, 0, sizeof(td->left_nnz));
 | |
|     // left edge of 129 for intra prediction
 | |
|     if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
 | |
|         for (i = 0; i < 3; i++)
 | |
|             for (y = 0; y < 16>>!!i; y++)
 | |
|                 dst[i][y*curframe->tf.f->linesize[i]-1] = 129;
 | |
|         if (mb_y == 1) {
 | |
|             s->top_border[0][15] = s->top_border[0][23] = s->top_border[0][31] = 129;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->mv_min.x = -MARGIN;
 | |
|     s->mv_max.x = ((s->mb_width  - 1) << 6) + MARGIN;
 | |
| 
 | |
|     for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
 | |
|         // Wait for previous thread to read mb_x+2, and reach mb_y-1.
 | |
|         if (prev_td != td) {
 | |
|             if (threadnr != 0) {
 | |
|                 check_thread_pos(td, prev_td, mb_x+1, mb_y-1);
 | |
|             } else {
 | |
|                 check_thread_pos(td, prev_td, (s->mb_width+3) + (mb_x+1), mb_y-1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         s->vdsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
 | |
|         s->vdsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
 | |
| 
 | |
|         if (!s->mb_layout)
 | |
|             decode_mb_mode(s, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy,
 | |
|                            prev_frame && prev_frame->seg_map ?
 | |
|                            prev_frame->seg_map->data + mb_xy : NULL, 0);
 | |
| 
 | |
|         prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
 | |
| 
 | |
|         if (!mb->skip)
 | |
|             decode_mb_coeffs(s, td, c, mb, s->top_nnz[mb_x], td->left_nnz);
 | |
| 
 | |
|         if (mb->mode <= MODE_I4x4)
 | |
|             intra_predict(s, td, dst, mb, mb_x, mb_y);
 | |
|         else
 | |
|             inter_predict(s, td, dst, mb, mb_x, mb_y);
 | |
| 
 | |
|         prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
 | |
| 
 | |
|         if (!mb->skip) {
 | |
|             idct_mb(s, td, dst, mb);
 | |
|         } else {
 | |
|             AV_ZERO64(td->left_nnz);
 | |
|             AV_WN64(s->top_nnz[mb_x], 0);   // array of 9, so unaligned
 | |
| 
 | |
|             // Reset DC block predictors if they would exist if the mb had coefficients
 | |
|             if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
 | |
|                 td->left_nnz[8]     = 0;
 | |
|                 s->top_nnz[mb_x][8] = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->deblock_filter)
 | |
|             filter_level_for_mb(s, mb, &td->filter_strength[mb_x]);
 | |
| 
 | |
|         if (s->deblock_filter && num_jobs != 1 && threadnr == num_jobs-1) {
 | |
|             if (s->filter.simple)
 | |
|                 backup_mb_border(s->top_border[mb_x+1], dst[0], NULL, NULL, s->linesize, 0, 1);
 | |
|             else
 | |
|                 backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
 | |
|         }
 | |
| 
 | |
|         prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
 | |
| 
 | |
|         dst[0] += 16;
 | |
|         dst[1] += 8;
 | |
|         dst[2] += 8;
 | |
|         s->mv_min.x -= 64;
 | |
|         s->mv_max.x -= 64;
 | |
| 
 | |
|         if (mb_x == s->mb_width+1) {
 | |
|             update_pos(td, mb_y, s->mb_width+3);
 | |
|         } else {
 | |
|             update_pos(td, mb_y, mb_x);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata,
 | |
|                               int jobnr, int threadnr)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     VP8ThreadData *td = &s->thread_data[threadnr];
 | |
|     int mb_x, mb_y = td->thread_mb_pos>>16, num_jobs = s->num_jobs;
 | |
|     AVFrame *curframe = s->curframe->tf.f;
 | |
|     VP8Macroblock *mb;
 | |
|     VP8ThreadData *prev_td, *next_td;
 | |
|     uint8_t *dst[3] = {
 | |
|         curframe->data[0] + 16*mb_y*s->linesize,
 | |
|         curframe->data[1] +  8*mb_y*s->uvlinesize,
 | |
|         curframe->data[2] +  8*mb_y*s->uvlinesize
 | |
|     };
 | |
| 
 | |
|     if (s->mb_layout == 1)
 | |
|         mb = s->macroblocks_base + ((s->mb_width+1)*(mb_y + 1) + 1);
 | |
|     else
 | |
|         mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
 | |
| 
 | |
|     if (mb_y == 0) prev_td = td;
 | |
|     else           prev_td = &s->thread_data[(jobnr + num_jobs - 1)%num_jobs];
 | |
|     if (mb_y == s->mb_height-1) next_td = td;
 | |
|     else                        next_td = &s->thread_data[(jobnr + 1)%num_jobs];
 | |
| 
 | |
|     for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb++) {
 | |
|         VP8FilterStrength *f = &td->filter_strength[mb_x];
 | |
|         if (prev_td != td) {
 | |
|             check_thread_pos(td, prev_td, (mb_x+1) + (s->mb_width+3), mb_y-1);
 | |
|         }
 | |
|         if (next_td != td)
 | |
|             if (next_td != &s->thread_data[0]) {
 | |
|                 check_thread_pos(td, next_td, mb_x+1, mb_y+1);
 | |
|             }
 | |
| 
 | |
|         if (num_jobs == 1) {
 | |
|             if (s->filter.simple)
 | |
|                 backup_mb_border(s->top_border[mb_x+1], dst[0], NULL, NULL, s->linesize, 0, 1);
 | |
|             else
 | |
|                 backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
 | |
|         }
 | |
| 
 | |
|         if (s->filter.simple)
 | |
|             filter_mb_simple(s, dst[0], f, mb_x, mb_y);
 | |
|         else
 | |
|             filter_mb(s, dst, f, mb_x, mb_y);
 | |
|         dst[0] += 16;
 | |
|         dst[1] += 8;
 | |
|         dst[2] += 8;
 | |
| 
 | |
|         update_pos(td, mb_y, (s->mb_width+3) + mb_x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata,
 | |
|                                     int jobnr, int threadnr)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     VP8ThreadData *td = &s->thread_data[jobnr];
 | |
|     VP8ThreadData *next_td = NULL, *prev_td = NULL;
 | |
|     VP8Frame *curframe = s->curframe;
 | |
|     int mb_y, num_jobs = s->num_jobs;
 | |
|     td->thread_nr = threadnr;
 | |
|     for (mb_y = jobnr; mb_y < s->mb_height; mb_y += num_jobs) {
 | |
|         if (mb_y >= s->mb_height) break;
 | |
|         td->thread_mb_pos = mb_y<<16;
 | |
|         vp8_decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr);
 | |
|         if (s->deblock_filter)
 | |
|             vp8_filter_mb_row(avctx, tdata, jobnr, threadnr);
 | |
|         update_pos(td, mb_y, INT_MAX & 0xFFFF);
 | |
| 
 | |
|         s->mv_min.y -= 64;
 | |
|         s->mv_max.y -= 64;
 | |
| 
 | |
|         if (avctx->active_thread_type == FF_THREAD_FRAME)
 | |
|             ff_thread_report_progress(&curframe->tf, mb_y, 0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
 | |
|                             AVPacket *avpkt)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int ret, i, referenced, num_jobs;
 | |
|     enum AVDiscard skip_thresh;
 | |
|     VP8Frame *av_uninit(curframe), *prev_frame;
 | |
| 
 | |
|     if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
 | |
|         goto err;
 | |
| 
 | |
|     prev_frame = s->framep[VP56_FRAME_CURRENT];
 | |
| 
 | |
|     referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
 | |
|                                 || s->update_altref == VP56_FRAME_CURRENT;
 | |
| 
 | |
|     skip_thresh = !referenced ? AVDISCARD_NONREF :
 | |
|                     !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
 | |
| 
 | |
|     if (avctx->skip_frame >= skip_thresh) {
 | |
|         s->invisible = 1;
 | |
|         memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
 | |
|         goto skip_decode;
 | |
|     }
 | |
|     s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
 | |
| 
 | |
|     // release no longer referenced frames
 | |
|     for (i = 0; i < 5; i++)
 | |
|         if (s->frames[i].tf.f->data[0] &&
 | |
|             &s->frames[i] != prev_frame &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
 | |
|             vp8_release_frame(s, &s->frames[i]);
 | |
| 
 | |
|     // find a free buffer
 | |
|     for (i = 0; i < 5; i++)
 | |
|         if (&s->frames[i] != prev_frame &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
 | |
|             &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
 | |
|             curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
 | |
|             break;
 | |
|         }
 | |
|     if (i == 5) {
 | |
|         av_log(avctx, AV_LOG_FATAL, "Ran out of free frames!\n");
 | |
|         abort();
 | |
|     }
 | |
|     if (curframe->tf.f->data[0])
 | |
|         vp8_release_frame(s, curframe);
 | |
| 
 | |
|     // Given that arithmetic probabilities are updated every frame, it's quite likely
 | |
|     // that the values we have on a random interframe are complete junk if we didn't
 | |
|     // start decode on a keyframe. So just don't display anything rather than junk.
 | |
|     if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
 | |
|                          !s->framep[VP56_FRAME_GOLDEN] ||
 | |
|                          !s->framep[VP56_FRAME_GOLDEN2])) {
 | |
|         av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
 | |
|         ret = AVERROR_INVALIDDATA;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     curframe->tf.f->key_frame = s->keyframe;
 | |
|     curframe->tf.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
 | |
|     if ((ret = vp8_alloc_frame(s, curframe, referenced)) < 0)
 | |
|         goto err;
 | |
| 
 | |
|     // check if golden and altref are swapped
 | |
|     if (s->update_altref != VP56_FRAME_NONE) {
 | |
|         s->next_framep[VP56_FRAME_GOLDEN2]  = s->framep[s->update_altref];
 | |
|     } else {
 | |
|         s->next_framep[VP56_FRAME_GOLDEN2]  = s->framep[VP56_FRAME_GOLDEN2];
 | |
|     }
 | |
|     if (s->update_golden != VP56_FRAME_NONE) {
 | |
|         s->next_framep[VP56_FRAME_GOLDEN]   = s->framep[s->update_golden];
 | |
|     } else {
 | |
|         s->next_framep[VP56_FRAME_GOLDEN]   = s->framep[VP56_FRAME_GOLDEN];
 | |
|     }
 | |
|     if (s->update_last) {
 | |
|         s->next_framep[VP56_FRAME_PREVIOUS] = curframe;
 | |
|     } else {
 | |
|         s->next_framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_PREVIOUS];
 | |
|     }
 | |
|     s->next_framep[VP56_FRAME_CURRENT]      = curframe;
 | |
| 
 | |
|     ff_thread_finish_setup(avctx);
 | |
| 
 | |
|     s->linesize   = curframe->tf.f->linesize[0];
 | |
|     s->uvlinesize = curframe->tf.f->linesize[1];
 | |
| 
 | |
|     if (!s->thread_data[0].edge_emu_buffer)
 | |
|         for (i = 0; i < MAX_THREADS; i++)
 | |
|             s->thread_data[i].edge_emu_buffer = av_malloc(21*s->linesize);
 | |
| 
 | |
|     memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
 | |
|     /* Zero macroblock structures for top/top-left prediction from outside the frame. */
 | |
|     if (!s->mb_layout)
 | |
|         memset(s->macroblocks + s->mb_height*2 - 1, 0, (s->mb_width+1)*sizeof(*s->macroblocks));
 | |
|     if (!s->mb_layout && s->keyframe)
 | |
|         memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width*4);
 | |
| 
 | |
|     // top edge of 127 for intra prediction
 | |
|     if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
 | |
|         s->top_border[0][15] = s->top_border[0][23] = 127;
 | |
|         s->top_border[0][31] = 127;
 | |
|         memset(s->top_border[1], 127, s->mb_width*sizeof(*s->top_border));
 | |
|     }
 | |
|     memset(s->ref_count, 0, sizeof(s->ref_count));
 | |
| 
 | |
| 
 | |
|     // Make sure the previous frame has read its segmentation map,
 | |
|     // if we re-use the same map.
 | |
|     if (prev_frame && s->segmentation.enabled && !s->segmentation.update_map)
 | |
|         ff_thread_await_progress(&prev_frame->tf, 1, 0);
 | |
| 
 | |
|     if (s->mb_layout == 1)
 | |
|         vp8_decode_mv_mb_modes(avctx, curframe, prev_frame);
 | |
| 
 | |
|     if (avctx->active_thread_type == FF_THREAD_FRAME)
 | |
|         num_jobs = 1;
 | |
|     else
 | |
|         num_jobs = FFMIN(s->num_coeff_partitions, avctx->thread_count);
 | |
|     s->num_jobs   = num_jobs;
 | |
|     s->curframe   = curframe;
 | |
|     s->prev_frame = prev_frame;
 | |
|     s->mv_min.y   = -MARGIN;
 | |
|     s->mv_max.y   = ((s->mb_height - 1) << 6) + MARGIN;
 | |
|     for (i = 0; i < MAX_THREADS; i++) {
 | |
|         s->thread_data[i].thread_mb_pos = 0;
 | |
|         s->thread_data[i].wait_mb_pos = INT_MAX;
 | |
|     }
 | |
|     avctx->execute2(avctx, vp8_decode_mb_row_sliced, s->thread_data, NULL, num_jobs);
 | |
| 
 | |
|     ff_thread_report_progress(&curframe->tf, INT_MAX, 0);
 | |
|     memcpy(&s->framep[0], &s->next_framep[0], sizeof(s->framep[0]) * 4);
 | |
| 
 | |
| skip_decode:
 | |
|     // if future frames don't use the updated probabilities,
 | |
|     // reset them to the values we saved
 | |
|     if (!s->update_probabilities)
 | |
|         s->prob[0] = s->prob[1];
 | |
| 
 | |
|     if (!s->invisible) {
 | |
|         if ((ret = av_frame_ref(data, curframe->tf.f)) < 0)
 | |
|             return ret;
 | |
|         *got_frame      = 1;
 | |
|     }
 | |
| 
 | |
|     return avpkt->size;
 | |
| err:
 | |
|     memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static av_cold int vp8_decode_free(AVCodecContext *avctx)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     vp8_decode_flush_impl(avctx, 1);
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
 | |
|         av_frame_free(&s->frames[i].tf.f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int vp8_init_frames(VP8Context *s)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) {
 | |
|         s->frames[i].tf.f = av_frame_alloc();
 | |
|         if (!s->frames[i].tf.f)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int vp8_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | |
|     avctx->internal->allocate_progress = 1;
 | |
| 
 | |
|     ff_videodsp_init(&s->vdsp, 8);
 | |
|     ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP8, 8, 1);
 | |
|     ff_vp8dsp_init(&s->vp8dsp);
 | |
| 
 | |
|     if ((ret = vp8_init_frames(s)) < 0) {
 | |
|         vp8_decode_free(avctx);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int vp8_decode_init_thread_copy(AVCodecContext *avctx)
 | |
| {
 | |
|     VP8Context *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     if ((ret = vp8_init_frames(s)) < 0) {
 | |
|         vp8_decode_free(avctx);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define REBASE(pic) \
 | |
|     pic ? pic - &s_src->frames[0] + &s->frames[0] : NULL
 | |
| 
 | |
| static int vp8_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
 | |
| {
 | |
|     VP8Context *s = dst->priv_data, *s_src = src->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     if (s->macroblocks_base &&
 | |
|         (s_src->mb_width != s->mb_width || s_src->mb_height != s->mb_height)) {
 | |
|         free_buffers(s);
 | |
|         s->mb_width  = s_src->mb_width;
 | |
|         s->mb_height = s_src->mb_height;
 | |
|     }
 | |
| 
 | |
|     s->prob[0] = s_src->prob[!s_src->update_probabilities];
 | |
|     s->segmentation = s_src->segmentation;
 | |
|     s->lf_delta = s_src->lf_delta;
 | |
|     memcpy(s->sign_bias, s_src->sign_bias, sizeof(s->sign_bias));
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s_src->frames); i++) {
 | |
|         if (s_src->frames[i].tf.f->data[0]) {
 | |
|             int ret = vp8_ref_frame(s, &s->frames[i], &s_src->frames[i]);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->framep[0] = REBASE(s_src->next_framep[0]);
 | |
|     s->framep[1] = REBASE(s_src->next_framep[1]);
 | |
|     s->framep[2] = REBASE(s_src->next_framep[2]);
 | |
|     s->framep[3] = REBASE(s_src->next_framep[3]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static unsigned apply_padding(unsigned size) { return size + (size & 1); }
 | |
| 
 | |
| static int webp_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
 | |
|                              AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     AVPacket pkt       = *avpkt;
 | |
| 
 | |
|     if (buf_size >= 16
 | |
|         && AV_RL32(buf   ) == AV_RL32("RIFF")
 | |
|         && AV_RL32(buf+ 8) == AV_RL32("WEBP")) {
 | |
|         unsigned riff_size = apply_padding(AV_RL32(buf+4)) + 8;
 | |
|         buf += 12;   // Skip over main header
 | |
|         buf_size -= 12;
 | |
|         if (buf_size < 8 || riff_size < 8) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Incomplete header.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         if (AV_RL32(buf) == AV_RL32("VP8L")) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Unsupported WebP lossless format.\n");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         if (AV_RL32(buf) == AV_RL32("VP8X") && AV_RL32(buf+4) < (unsigned)buf_size) {
 | |
|             unsigned size = apply_padding(AV_RL32(buf+4) + 8);
 | |
|             buf      += size;
 | |
|             buf_size -= size;
 | |
|         }
 | |
|         if (buf_size >= 8
 | |
|             && AV_RL32(buf) == AV_RL32("ALPH") && AV_RL32(buf+4) < (unsigned)buf_size) {
 | |
|             unsigned size = apply_padding(AV_RL32(buf+4) + 8);
 | |
|             buf      += size;
 | |
|             buf_size -= size;
 | |
|             av_log(avctx, AV_LOG_WARNING, "Skipping alpha plane\n");
 | |
|         }
 | |
|         if (buf_size >= 8 && AV_RL32(buf) == AV_RL32("VP8 ")) {
 | |
|             buf      += 8;
 | |
|             buf_size -= 8;
 | |
|         }
 | |
|     }
 | |
|     pkt.data = buf;
 | |
|     pkt.size = buf_size;
 | |
| 
 | |
|     return vp8_decode_frame(avctx, data, data_size, &pkt);
 | |
| }
 | |
| 
 | |
| AVCodec ff_vp8_decoder = {
 | |
|     .name                  = "vp8",
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_VP8,
 | |
|     .priv_data_size        = sizeof(VP8Context),
 | |
|     .init                  = vp8_decode_init,
 | |
|     .close                 = vp8_decode_free,
 | |
|     .decode                = vp8_decode_frame,
 | |
|     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
 | |
|     .flush                 = vp8_decode_flush,
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("On2 VP8"),
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp8_decode_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp8_decode_update_thread_context),
 | |
| };
 | |
| 
 | |
| AVCodec ff_webp_decoder = {
 | |
|     .name                  = "webp",
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_WEBP,
 | |
|     .priv_data_size        = sizeof(VP8Context),
 | |
|     .init                  = vp8_decode_init,
 | |
|     .close                 = vp8_decode_free,
 | |
|     .decode                = webp_decode_frame,
 | |
|     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
 | |
|     .flush                 = vp8_decode_flush,
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("WebP"),
 | |
|     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp8_decode_init_thread_copy),
 | |
|     .update_thread_context = ONLY_IF_THREADS_ENABLED(vp8_decode_update_thread_context),
 | |
| };
 | 
