mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	 170e6b14f7
			
		
	
	170e6b14f7
	
	
	
		
			
			to it were removed in r6606 Originally committed as revision 17997 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			375 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * FFT/IFFT transforms
 | |
|  * Copyright (c) 2008 Loren Merritt
 | |
|  * Copyright (c) 2002 Fabrice Bellard
 | |
|  * Partly based on libdjbfft by D. J. Bernstein
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file libavcodec/fft.c
 | |
|  * FFT/IFFT transforms.
 | |
|  */
 | |
| 
 | |
| #include "dsputil.h"
 | |
| 
 | |
| /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
 | |
| DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
 | |
| FFTSample *ff_cos_tabs[] = {
 | |
|     ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
 | |
|     ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
 | |
| };
 | |
| 
 | |
| static int split_radix_permutation(int i, int n, int inverse)
 | |
| {
 | |
|     int m;
 | |
|     if(n <= 2) return i&1;
 | |
|     m = n >> 1;
 | |
|     if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
 | |
|     m >>= 1;
 | |
|     if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
 | |
|     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
 | |
| }
 | |
| 
 | |
| av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
 | |
| {
 | |
|     int i, j, m, n;
 | |
|     float alpha, c1, s1, s2;
 | |
|     int split_radix = 1;
 | |
|     int av_unused has_vectors;
 | |
| 
 | |
|     if (nbits < 2 || nbits > 16)
 | |
|         goto fail;
 | |
|     s->nbits = nbits;
 | |
|     n = 1 << nbits;
 | |
| 
 | |
|     s->tmp_buf = NULL;
 | |
|     s->exptab  = av_malloc((n / 2) * sizeof(FFTComplex));
 | |
|     if (!s->exptab)
 | |
|         goto fail;
 | |
|     s->revtab = av_malloc(n * sizeof(uint16_t));
 | |
|     if (!s->revtab)
 | |
|         goto fail;
 | |
|     s->inverse = inverse;
 | |
| 
 | |
|     s2 = inverse ? 1.0 : -1.0;
 | |
| 
 | |
|     s->fft_permute = ff_fft_permute_c;
 | |
|     s->fft_calc    = ff_fft_calc_c;
 | |
|     s->imdct_calc  = ff_imdct_calc_c;
 | |
|     s->imdct_half  = ff_imdct_half_c;
 | |
|     s->exptab1     = NULL;
 | |
| 
 | |
| #if HAVE_MMX && HAVE_YASM
 | |
|     has_vectors = mm_support();
 | |
|     if (has_vectors & FF_MM_SSE && HAVE_SSE) {
 | |
|         /* SSE for P3/P4/K8 */
 | |
|         s->imdct_calc  = ff_imdct_calc_sse;
 | |
|         s->imdct_half  = ff_imdct_half_sse;
 | |
|         s->fft_permute = ff_fft_permute_sse;
 | |
|         s->fft_calc    = ff_fft_calc_sse;
 | |
|     } else if (has_vectors & FF_MM_3DNOWEXT && HAVE_AMD3DNOWEXT) {
 | |
|         /* 3DNowEx for K7 */
 | |
|         s->imdct_calc = ff_imdct_calc_3dn2;
 | |
|         s->imdct_half = ff_imdct_half_3dn2;
 | |
|         s->fft_calc   = ff_fft_calc_3dn2;
 | |
|     } else if (has_vectors & FF_MM_3DNOW && HAVE_AMD3DNOW) {
 | |
|         /* 3DNow! for K6-2/3 */
 | |
|         s->imdct_calc = ff_imdct_calc_3dn;
 | |
|         s->imdct_half = ff_imdct_half_3dn;
 | |
|         s->fft_calc   = ff_fft_calc_3dn;
 | |
|     }
 | |
| #elif HAVE_ALTIVEC
 | |
|     has_vectors = mm_support();
 | |
|     if (has_vectors & FF_MM_ALTIVEC) {
 | |
|         s->fft_calc = ff_fft_calc_altivec;
 | |
|         split_radix = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (split_radix) {
 | |
|         for(j=4; j<=nbits; j++) {
 | |
|             int m = 1<<j;
 | |
|             double freq = 2*M_PI/m;
 | |
|             FFTSample *tab = ff_cos_tabs[j-4];
 | |
|             for(i=0; i<=m/4; i++)
 | |
|                 tab[i] = cos(i*freq);
 | |
|             for(i=1; i<m/4; i++)
 | |
|                 tab[m/2-i] = tab[i];
 | |
|         }
 | |
|         for(i=0; i<n; i++)
 | |
|             s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
 | |
|         s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
 | |
|     } else {
 | |
|         int np, nblocks, np2, l;
 | |
|         FFTComplex *q;
 | |
| 
 | |
|         for(i=0; i<(n/2); i++) {
 | |
|             alpha = 2 * M_PI * (float)i / (float)n;
 | |
|             c1 = cos(alpha);
 | |
|             s1 = sin(alpha) * s2;
 | |
|             s->exptab[i].re = c1;
 | |
|             s->exptab[i].im = s1;
 | |
|         }
 | |
| 
 | |
|         np = 1 << nbits;
 | |
|         nblocks = np >> 3;
 | |
|         np2 = np >> 1;
 | |
|         s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
 | |
|         if (!s->exptab1)
 | |
|             goto fail;
 | |
|         q = s->exptab1;
 | |
|         do {
 | |
|             for(l = 0; l < np2; l += 2 * nblocks) {
 | |
|                 *q++ = s->exptab[l];
 | |
|                 *q++ = s->exptab[l + nblocks];
 | |
| 
 | |
|                 q->re = -s->exptab[l].im;
 | |
|                 q->im = s->exptab[l].re;
 | |
|                 q++;
 | |
|                 q->re = -s->exptab[l + nblocks].im;
 | |
|                 q->im = s->exptab[l + nblocks].re;
 | |
|                 q++;
 | |
|             }
 | |
|             nblocks = nblocks >> 1;
 | |
|         } while (nblocks != 0);
 | |
|         av_freep(&s->exptab);
 | |
| 
 | |
|         /* compute bit reverse table */
 | |
|         for(i=0;i<n;i++) {
 | |
|             m=0;
 | |
|             for(j=0;j<nbits;j++) {
 | |
|                 m |= ((i >> j) & 1) << (nbits-j-1);
 | |
|             }
 | |
|             s->revtab[i]=m;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|  fail:
 | |
|     av_freep(&s->revtab);
 | |
|     av_freep(&s->exptab);
 | |
|     av_freep(&s->exptab1);
 | |
|     av_freep(&s->tmp_buf);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
 | |
| {
 | |
|     int j, k, np;
 | |
|     FFTComplex tmp;
 | |
|     const uint16_t *revtab = s->revtab;
 | |
|     np = 1 << s->nbits;
 | |
| 
 | |
|     if (s->tmp_buf) {
 | |
|         /* TODO: handle split-radix permute in a more optimal way, probably in-place */
 | |
|         for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
 | |
|         memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* reverse */
 | |
|     for(j=0;j<np;j++) {
 | |
|         k = revtab[j];
 | |
|         if (k < j) {
 | |
|             tmp = z[k];
 | |
|             z[k] = z[j];
 | |
|             z[j] = tmp;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| av_cold void ff_fft_end(FFTContext *s)
 | |
| {
 | |
|     av_freep(&s->revtab);
 | |
|     av_freep(&s->exptab);
 | |
|     av_freep(&s->exptab1);
 | |
|     av_freep(&s->tmp_buf);
 | |
| }
 | |
| 
 | |
| #define sqrthalf (float)M_SQRT1_2
 | |
| 
 | |
| #define BF(x,y,a,b) {\
 | |
|     x = a - b;\
 | |
|     y = a + b;\
 | |
| }
 | |
| 
 | |
| #define BUTTERFLIES(a0,a1,a2,a3) {\
 | |
|     BF(t3, t5, t5, t1);\
 | |
|     BF(a2.re, a0.re, a0.re, t5);\
 | |
|     BF(a3.im, a1.im, a1.im, t3);\
 | |
|     BF(t4, t6, t2, t6);\
 | |
|     BF(a3.re, a1.re, a1.re, t4);\
 | |
|     BF(a2.im, a0.im, a0.im, t6);\
 | |
| }
 | |
| 
 | |
| // force loading all the inputs before storing any.
 | |
| // this is slightly slower for small data, but avoids store->load aliasing
 | |
| // for addresses separated by large powers of 2.
 | |
| #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
 | |
|     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
 | |
|     BF(t3, t5, t5, t1);\
 | |
|     BF(a2.re, a0.re, r0, t5);\
 | |
|     BF(a3.im, a1.im, i1, t3);\
 | |
|     BF(t4, t6, t2, t6);\
 | |
|     BF(a3.re, a1.re, r1, t4);\
 | |
|     BF(a2.im, a0.im, i0, t6);\
 | |
| }
 | |
| 
 | |
| #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
 | |
|     t1 = a2.re * wre + a2.im * wim;\
 | |
|     t2 = a2.im * wre - a2.re * wim;\
 | |
|     t5 = a3.re * wre - a3.im * wim;\
 | |
|     t6 = a3.im * wre + a3.re * wim;\
 | |
|     BUTTERFLIES(a0,a1,a2,a3)\
 | |
| }
 | |
| 
 | |
| #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
 | |
|     t1 = a2.re;\
 | |
|     t2 = a2.im;\
 | |
|     t5 = a3.re;\
 | |
|     t6 = a3.im;\
 | |
|     BUTTERFLIES(a0,a1,a2,a3)\
 | |
| }
 | |
| 
 | |
| /* z[0...8n-1], w[1...2n-1] */
 | |
| #define PASS(name)\
 | |
| static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
 | |
| {\
 | |
|     FFTSample t1, t2, t3, t4, t5, t6;\
 | |
|     int o1 = 2*n;\
 | |
|     int o2 = 4*n;\
 | |
|     int o3 = 6*n;\
 | |
|     const FFTSample *wim = wre+o1;\
 | |
|     n--;\
 | |
| \
 | |
|     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
 | |
|     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
 | |
|     do {\
 | |
|         z += 2;\
 | |
|         wre += 2;\
 | |
|         wim -= 2;\
 | |
|         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
 | |
|         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
 | |
|     } while(--n);\
 | |
| }
 | |
| 
 | |
| PASS(pass)
 | |
| #undef BUTTERFLIES
 | |
| #define BUTTERFLIES BUTTERFLIES_BIG
 | |
| PASS(pass_big)
 | |
| 
 | |
| #define DECL_FFT(n,n2,n4)\
 | |
| static void fft##n(FFTComplex *z)\
 | |
| {\
 | |
|     fft##n2(z);\
 | |
|     fft##n4(z+n4*2);\
 | |
|     fft##n4(z+n4*3);\
 | |
|     pass(z,ff_cos_##n,n4/2);\
 | |
| }
 | |
| 
 | |
| static void fft4(FFTComplex *z)
 | |
| {
 | |
|     FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
 | |
| 
 | |
|     BF(t3, t1, z[0].re, z[1].re);
 | |
|     BF(t8, t6, z[3].re, z[2].re);
 | |
|     BF(z[2].re, z[0].re, t1, t6);
 | |
|     BF(t4, t2, z[0].im, z[1].im);
 | |
|     BF(t7, t5, z[2].im, z[3].im);
 | |
|     BF(z[3].im, z[1].im, t4, t8);
 | |
|     BF(z[3].re, z[1].re, t3, t7);
 | |
|     BF(z[2].im, z[0].im, t2, t5);
 | |
| }
 | |
| 
 | |
| static void fft8(FFTComplex *z)
 | |
| {
 | |
|     FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
 | |
| 
 | |
|     fft4(z);
 | |
| 
 | |
|     BF(t1, z[5].re, z[4].re, -z[5].re);
 | |
|     BF(t2, z[5].im, z[4].im, -z[5].im);
 | |
|     BF(t3, z[7].re, z[6].re, -z[7].re);
 | |
|     BF(t4, z[7].im, z[6].im, -z[7].im);
 | |
|     BF(t8, t1, t3, t1);
 | |
|     BF(t7, t2, t2, t4);
 | |
|     BF(z[4].re, z[0].re, z[0].re, t1);
 | |
|     BF(z[4].im, z[0].im, z[0].im, t2);
 | |
|     BF(z[6].re, z[2].re, z[2].re, t7);
 | |
|     BF(z[6].im, z[2].im, z[2].im, t8);
 | |
| 
 | |
|     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
 | |
| }
 | |
| 
 | |
| #if !CONFIG_SMALL
 | |
| static void fft16(FFTComplex *z)
 | |
| {
 | |
|     FFTSample t1, t2, t3, t4, t5, t6;
 | |
| 
 | |
|     fft8(z);
 | |
|     fft4(z+8);
 | |
|     fft4(z+12);
 | |
| 
 | |
|     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
 | |
|     TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
 | |
|     TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
 | |
|     TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
 | |
| }
 | |
| #else
 | |
| DECL_FFT(16,8,4)
 | |
| #endif
 | |
| DECL_FFT(32,16,8)
 | |
| DECL_FFT(64,32,16)
 | |
| DECL_FFT(128,64,32)
 | |
| DECL_FFT(256,128,64)
 | |
| DECL_FFT(512,256,128)
 | |
| #if !CONFIG_SMALL
 | |
| #define pass pass_big
 | |
| #endif
 | |
| DECL_FFT(1024,512,256)
 | |
| DECL_FFT(2048,1024,512)
 | |
| DECL_FFT(4096,2048,1024)
 | |
| DECL_FFT(8192,4096,2048)
 | |
| DECL_FFT(16384,8192,4096)
 | |
| DECL_FFT(32768,16384,8192)
 | |
| DECL_FFT(65536,32768,16384)
 | |
| 
 | |
| static void (*fft_dispatch[])(FFTComplex*) = {
 | |
|     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
 | |
|     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
 | |
| };
 | |
| 
 | |
| void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
 | |
| {
 | |
|     fft_dispatch[s->nbits-2](z);
 | |
| }
 | |
| 
 |