mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 20:42:49 +08:00 
			
		
		
		
	 012620aa1b
			
		
	
	012620aa1b
	
	
	
		
			
			Use proper get_bits.h functions instead of directly accessing index. Signed-off-by: James Almer <jamrial@gmail.com>
		
			
				
	
	
		
			1494 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1494 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2016 foo86
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "dcadec.h"
 | |
| #include "dcadata.h"
 | |
| #include "dcamath.h"
 | |
| #include "dca_syncwords.h"
 | |
| #include "unary.h"
 | |
| 
 | |
| static int get_linear(GetBitContext *gb, int n)
 | |
| {
 | |
|     unsigned int v = get_bits_long(gb, n);
 | |
|     return (v >> 1) ^ -(v & 1);
 | |
| }
 | |
| 
 | |
| static int get_rice_un(GetBitContext *gb, int k)
 | |
| {
 | |
|     unsigned int v = get_unary(gb, 1, get_bits_left(gb));
 | |
|     return (v << k) | get_bits_long(gb, k);
 | |
| }
 | |
| 
 | |
| static int get_rice(GetBitContext *gb, int k)
 | |
| {
 | |
|     unsigned int v = get_rice_un(gb, k);
 | |
|     return (v >> 1) ^ -(v & 1);
 | |
| }
 | |
| 
 | |
| static void get_array(GetBitContext *gb, int32_t *array, int size, int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < size; i++)
 | |
|         array[i] = get_bits(gb, n);
 | |
| }
 | |
| 
 | |
| static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (n == 0)
 | |
|         memset(array, 0, sizeof(*array) * size);
 | |
|     else for (i = 0; i < size; i++)
 | |
|         array[i] = get_linear(gb, n);
 | |
| }
 | |
| 
 | |
| static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < size; i++)
 | |
|         array[i] = get_rice(gb, k);
 | |
| }
 | |
| 
 | |
| static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     // Size of downmix coefficient matrix
 | |
|     int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs;
 | |
|     int i, j, *coeff_ptr = c->dmix_coeff;
 | |
| 
 | |
|     for (i = 0; i < m; i++) {
 | |
|         int code, sign, coeff, scale, scale_inv = 0;
 | |
|         unsigned int index;
 | |
| 
 | |
|         // Downmix scale (only for non-primary channel sets)
 | |
|         if (!c->primary_chset) {
 | |
|             code = get_bits(&s->gb, 9);
 | |
|             sign = (code >> 8) - 1;
 | |
|             index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET;
 | |
|             if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET];
 | |
|             scale_inv = ff_dca_inv_dmixtable[index];
 | |
|             c->dmix_scale[i] = (scale ^ sign) - sign;
 | |
|             c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign;
 | |
|         }
 | |
| 
 | |
|         // Downmix coefficients
 | |
|         for (j = 0; j < c->nchannels; j++) {
 | |
|             code = get_bits(&s->gb, 9);
 | |
|             sign = (code >> 8) - 1;
 | |
|             index = code & 0xff;
 | |
|             if (index >= FF_DCA_DMIXTABLE_SIZE) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|             coeff = ff_dca_dmixtable[index];
 | |
|             if (!c->primary_chset)
 | |
|                 // Multiply by |InvDmixScale| to get |UndoDmixScale|
 | |
|                 coeff = mul16(scale_inv, coeff);
 | |
|             *coeff_ptr++ = (coeff ^ sign) - sign;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset)
 | |
| {
 | |
|     int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb);
 | |
|     DCAXllChSet *p = &s->chset[0];
 | |
|     DCAXllBand *b;
 | |
| 
 | |
|     // Size of channel set sub-header
 | |
|     header_size = get_bits(&s->gb, 10) + 1;
 | |
| 
 | |
|     // Check CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Number of channels in the channel set
 | |
|     c->nchannels = get_bits(&s->gb, 4) + 1;
 | |
|     if (c->nchannels > DCA_XLL_CHANNELS_MAX) {
 | |
|         avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Residual type
 | |
|     c->residual_encode = get_bits(&s->gb, c->nchannels);
 | |
| 
 | |
|     // PCM bit resolution
 | |
|     c->pcm_bit_res = get_bits(&s->gb, 5) + 1;
 | |
| 
 | |
|     // Storage unit width
 | |
|     c->storage_bit_res = get_bits(&s->gb, 5) + 1;
 | |
|     if (c->storage_bit_res != 16 && c->storage_bit_res != 20 && c->storage_bit_res != 24) {
 | |
|         avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     if (c->pcm_bit_res > c->storage_bit_res) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Original sampling frequency
 | |
|     c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
 | |
|     if (c->freq > 192000) {
 | |
|         avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Sampling frequency modifier
 | |
|     if (get_bits(&s->gb, 2)) {
 | |
|         avpriv_request_sample(s->avctx, "XLL sampling frequency modifier");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Which replacement set this channel set is member of
 | |
|     if (get_bits(&s->gb, 2)) {
 | |
|         avpriv_request_sample(s->avctx, "XLL replacement set");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     if (asset->one_to_one_map_ch_to_spkr) {
 | |
|         // Primary channel set flag
 | |
|         c->primary_chset = get_bits1(&s->gb);
 | |
|         if (c->primary_chset != (c == p)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Downmix coefficients present in stream
 | |
|         c->dmix_coeffs_present = get_bits1(&s->gb);
 | |
| 
 | |
|         // Downmix already performed by encoder
 | |
|         c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb);
 | |
| 
 | |
|         // Downmix type
 | |
|         if (c->dmix_coeffs_present && c->primary_chset) {
 | |
|             c->dmix_type = get_bits(&s->gb, 3);
 | |
|             if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Whether the channel set is part of a hierarchy
 | |
|         c->hier_chset = get_bits1(&s->gb);
 | |
|         if (!c->hier_chset && s->nchsets != 1) {
 | |
|             avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         // Downmix coefficients
 | |
|         if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0)
 | |
|             return ret;
 | |
| 
 | |
|         // Channel mask enabled
 | |
|         if (!get_bits1(&s->gb)) {
 | |
|             avpriv_request_sample(s->avctx, "Disabled XLL channel mask");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         // Channel mask for set
 | |
|         c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits);
 | |
|         if (av_popcount(c->ch_mask) != c->nchannels) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Build the channel to speaker map
 | |
|         for (i = 0, j = 0; i < s->ch_mask_nbits; i++)
 | |
|             if (c->ch_mask & (1U << i))
 | |
|                 c->ch_remap[j++] = i;
 | |
|     } else {
 | |
|         // Mapping coeffs present flag
 | |
|         if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) {
 | |
|             avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         // Setup for LtRt decoding
 | |
|         c->primary_chset = 1;
 | |
|         c->dmix_coeffs_present = 0;
 | |
|         c->dmix_embedded = 0;
 | |
|         c->hier_chset = 0;
 | |
|         c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO;
 | |
|         c->ch_remap[0] = DCA_SPEAKER_L;
 | |
|         c->ch_remap[1] = DCA_SPEAKER_R;
 | |
|     }
 | |
| 
 | |
|     if (c->freq > 96000) {
 | |
|         // Extra frequency bands flag
 | |
|         if (get_bits1(&s->gb)) {
 | |
|             avpriv_request_sample(s->avctx, "Extra XLL frequency bands");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|         c->nfreqbands = 2;
 | |
|     } else {
 | |
|         c->nfreqbands = 1;
 | |
|     }
 | |
| 
 | |
|     // Set the sampling frequency to that of the first frequency band.
 | |
|     // Frequency will be doubled again after bands assembly.
 | |
|     c->freq >>= c->nfreqbands - 1;
 | |
| 
 | |
|     // Verify that all channel sets have the same audio characteristics
 | |
|     if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq
 | |
|                    || c->pcm_bit_res != p->pcm_bit_res
 | |
|                    || c->storage_bit_res != p->storage_bit_res)) {
 | |
|         avpriv_request_sample(s->avctx, "Different XLL audio characteristics");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Determine number of bits to read bit allocation coding parameter
 | |
|     if (c->storage_bit_res > 16)
 | |
|         c->nabits = 5;
 | |
|     else if (c->storage_bit_res > 8)
 | |
|         c->nabits = 4;
 | |
|     else
 | |
|         c->nabits = 3;
 | |
| 
 | |
|     // Account for embedded downmix and decimator saturation
 | |
|     if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5)
 | |
|         c->nabits++;
 | |
| 
 | |
|     for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) {
 | |
|         // Pairwise channel decorrelation
 | |
|         if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) {
 | |
|             int ch_nbits = av_ceil_log2(c->nchannels);
 | |
| 
 | |
|             // Original channel order
 | |
|             for (i = 0; i < c->nchannels; i++) {
 | |
|                 b->orig_order[i] = get_bits(&s->gb, ch_nbits);
 | |
|                 if (b->orig_order[i] >= c->nchannels) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Pairwise channel coefficients
 | |
|             for (i = 0; i < c->nchannels / 2; i++)
 | |
|                 b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0;
 | |
|         } else {
 | |
|             for (i = 0; i < c->nchannels; i++)
 | |
|                 b->orig_order[i] = i;
 | |
|             for (i = 0; i < c->nchannels / 2; i++)
 | |
|                 b->decor_coeff[i] = 0;
 | |
|         }
 | |
| 
 | |
|         // Adaptive predictor order
 | |
|         b->highest_pred_order = 0;
 | |
|         for (i = 0; i < c->nchannels; i++) {
 | |
|             b->adapt_pred_order[i] = get_bits(&s->gb, 4);
 | |
|             if (b->adapt_pred_order[i] > b->highest_pred_order)
 | |
|                 b->highest_pred_order = b->adapt_pred_order[i];
 | |
|         }
 | |
|         if (b->highest_pred_order > s->nsegsamples) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Fixed predictor order
 | |
|         for (i = 0; i < c->nchannels; i++)
 | |
|             b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2);
 | |
| 
 | |
|         // Adaptive predictor quantized reflection coefficients
 | |
|         for (i = 0; i < c->nchannels; i++) {
 | |
|             for (j = 0; j < b->adapt_pred_order[i]; j++) {
 | |
|                 k = get_linear(&s->gb, 8);
 | |
|                 if (k == -128) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 if (k < 0)
 | |
|                     b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k];
 | |
|                 else
 | |
|                     b->adapt_refl_coeff[i][j] =  (int)ff_dca_xll_refl_coeff[ k];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Downmix performed by encoder in extension frequency band
 | |
|         b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb));
 | |
| 
 | |
|         // MSB/LSB split flag in extension frequency band
 | |
|         if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
 | |
|             // Size of LSB section in any segment
 | |
|             b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits);
 | |
|             if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             // Account for optional CRC bytes after LSB section
 | |
|             if (b->lsb_section_size && (s->band_crc_present > 2 ||
 | |
|                                         (band == 0 && s->band_crc_present > 1)))
 | |
|                 b->lsb_section_size += 2;
 | |
| 
 | |
|             // Number of bits to represent the samples in LSB part
 | |
|             for (i = 0; i < c->nchannels; i++) {
 | |
|                 b->nscalablelsbs[i] = get_bits(&s->gb, 4);
 | |
|                 if (b->nscalablelsbs[i] && !b->lsb_section_size) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             b->lsb_section_size = 0;
 | |
|             for (i = 0; i < c->nchannels; i++)
 | |
|                 b->nscalablelsbs[i] = 0;
 | |
|         }
 | |
| 
 | |
|         // Scalable resolution flag in extension frequency band
 | |
|         if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
 | |
|             // Number of bits discarded by authoring
 | |
|             for (i = 0; i < c->nchannels; i++)
 | |
|                 b->bit_width_adjust[i] = get_bits(&s->gb, 4);
 | |
|         } else {
 | |
|             for (i = 0; i < c->nchannels; i++)
 | |
|                 b->bit_width_adjust[i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Reserved
 | |
|     // Byte align
 | |
|     // CRC16 of channel set sub-header
 | |
|     if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0;
 | |
|     int nchsamples = s->nframesamples + ndecisamples;
 | |
|     int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands;
 | |
|     int32_t *ptr;
 | |
| 
 | |
|     // Reallocate MSB sample buffer
 | |
|     av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t));
 | |
|     if (!c->sample_buffer[0])
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     ptr = c->sample_buffer[0] + ndecisamples;
 | |
|     for (i = 0; i < c->nfreqbands; i++) {
 | |
|         for (j = 0; j < c->nchannels; j++) {
 | |
|             c->bands[i].msb_sample_buffer[j] = ptr;
 | |
|             ptr += nchsamples;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     int i, j, nsamples = 0;
 | |
|     int32_t *ptr;
 | |
| 
 | |
|     // Determine number of frequency bands that have MSB/LSB split
 | |
|     for (i = 0; i < c->nfreqbands; i++)
 | |
|         if (c->bands[i].lsb_section_size)
 | |
|             nsamples += s->nframesamples * c->nchannels;
 | |
|     if (!nsamples)
 | |
|         return 0;
 | |
| 
 | |
|     // Reallocate LSB sample buffer
 | |
|     av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t));
 | |
|     if (!c->sample_buffer[1])
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     ptr = c->sample_buffer[1];
 | |
|     for (i = 0; i < c->nfreqbands; i++) {
 | |
|         if (c->bands[i].lsb_section_size) {
 | |
|             for (j = 0; j < c->nchannels; j++) {
 | |
|                 c->bands[i].lsb_sample_buffer[j] = ptr;
 | |
|                 ptr += s->nframesamples;
 | |
|             }
 | |
|         } else {
 | |
|             for (j = 0; j < c->nchannels; j++)
 | |
|                 c->bands[i].lsb_sample_buffer[j] = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end)
 | |
| {
 | |
|     DCAXllBand *b = &c->bands[band];
 | |
|     int i, j, k;
 | |
| 
 | |
|     // Start unpacking MSB portion of the segment
 | |
|     if (!(seg && get_bits1(&s->gb))) {
 | |
|         // Unpack segment type
 | |
|         // 0 - distinct coding parameters for each channel
 | |
|         // 1 - common coding parameters for all channels
 | |
|         c->seg_common = get_bits1(&s->gb);
 | |
| 
 | |
|         // Determine number of coding parameters encoded in segment
 | |
|         k = c->seg_common ? 1 : c->nchannels;
 | |
| 
 | |
|         // Unpack Rice coding parameters
 | |
|         for (i = 0; i < k; i++) {
 | |
|             // Unpack Rice coding flag
 | |
|             // 0 - linear code, 1 - Rice code
 | |
|             c->rice_code_flag[i] = get_bits1(&s->gb);
 | |
|             // Unpack Hybrid Rice coding flag
 | |
|             // 0 - Rice code, 1 - Hybrid Rice code
 | |
|             if (!c->seg_common && c->rice_code_flag[i] && get_bits1(&s->gb))
 | |
|                 // Unpack binary code length for isolated samples
 | |
|                 c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1;
 | |
|             else
 | |
|                 // 0 indicates no Hybrid Rice coding
 | |
|                 c->bitalloc_hybrid_linear[i] = 0;
 | |
|         }
 | |
| 
 | |
|         // Unpack coding parameters
 | |
|         for (i = 0; i < k; i++) {
 | |
|             if (seg == 0) {
 | |
|                 // Unpack coding parameter for part A of segment 0
 | |
|                 c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits);
 | |
| 
 | |
|                 // Adjust for the linear code
 | |
|                 if (!c->rice_code_flag[i] && c->bitalloc_part_a[i])
 | |
|                     c->bitalloc_part_a[i]++;
 | |
| 
 | |
|                 if (!c->seg_common)
 | |
|                     c->nsamples_part_a[i] = b->adapt_pred_order[i];
 | |
|                 else
 | |
|                     c->nsamples_part_a[i] = b->highest_pred_order;
 | |
|             } else {
 | |
|                 c->bitalloc_part_a[i] = 0;
 | |
|                 c->nsamples_part_a[i] = 0;
 | |
|             }
 | |
| 
 | |
|             // Unpack coding parameter for part B of segment
 | |
|             c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits);
 | |
| 
 | |
|             // Adjust for the linear code
 | |
|             if (!c->rice_code_flag[i] && c->bitalloc_part_b[i])
 | |
|                 c->bitalloc_part_b[i]++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Unpack entropy codes
 | |
|     for (i = 0; i < c->nchannels; i++) {
 | |
|         int32_t *part_a, *part_b;
 | |
|         int nsamples_part_b;
 | |
| 
 | |
|         // Select index of coding parameters
 | |
|         k = c->seg_common ? 0 : i;
 | |
| 
 | |
|         // Slice the segment into parts A and B
 | |
|         part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples;
 | |
|         part_b = part_a + c->nsamples_part_a[k];
 | |
|         nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k];
 | |
| 
 | |
|         if (get_bits_left(&s->gb) < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         if (!c->rice_code_flag[k]) {
 | |
|             // Linear codes
 | |
|             // Unpack all residuals of part A of segment 0
 | |
|             get_linear_array(&s->gb, part_a, c->nsamples_part_a[k],
 | |
|                              c->bitalloc_part_a[k]);
 | |
| 
 | |
|             // Unpack all residuals of part B of segment 0 and others
 | |
|             get_linear_array(&s->gb, part_b, nsamples_part_b,
 | |
|                              c->bitalloc_part_b[k]);
 | |
|         } else {
 | |
|             // Rice codes
 | |
|             // Unpack all residuals of part A of segment 0
 | |
|             get_rice_array(&s->gb, part_a, c->nsamples_part_a[k],
 | |
|                            c->bitalloc_part_a[k]);
 | |
| 
 | |
|             if (c->bitalloc_hybrid_linear[k]) {
 | |
|                 // Hybrid Rice codes
 | |
|                 // Unpack the number of isolated samples
 | |
|                 int nisosamples = get_bits(&s->gb, s->nsegsamples_log2);
 | |
| 
 | |
|                 // Set all locations to 0
 | |
|                 memset(part_b, 0, sizeof(*part_b) * nsamples_part_b);
 | |
| 
 | |
|                 // Extract the locations of isolated samples and flag by -1
 | |
|                 for (j = 0; j < nisosamples; j++) {
 | |
|                     int loc = get_bits(&s->gb, s->nsegsamples_log2);
 | |
|                     if (loc >= nsamples_part_b) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n");
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                     part_b[loc] = -1;
 | |
|                 }
 | |
| 
 | |
|                 // Unpack all residuals of part B of segment 0 and others
 | |
|                 for (j = 0; j < nsamples_part_b; j++) {
 | |
|                     if (part_b[j])
 | |
|                         part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]);
 | |
|                     else
 | |
|                         part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]);
 | |
|                 }
 | |
|             } else {
 | |
|                 // Rice codes
 | |
|                 // Unpack all residuals of part B of segment 0 and others
 | |
|                 get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Unpack decimator history for frequency band 1
 | |
|     if (seg == 0 && band == 1) {
 | |
|         int nbits = get_bits(&s->gb, 5) + 1;
 | |
|         for (i = 0; i < c->nchannels; i++)
 | |
|             for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++)
 | |
|                 c->deci_history[i][j] = get_sbits_long(&s->gb, nbits);
 | |
|     }
 | |
| 
 | |
|     // Start unpacking LSB portion of the segment
 | |
|     if (b->lsb_section_size) {
 | |
|         // Skip to the start of LSB portion
 | |
|         if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Unpack all LSB parts of residuals of this segment
 | |
|         for (i = 0; i < c->nchannels; i++) {
 | |
|             if (b->nscalablelsbs[i]) {
 | |
|                 get_array(&s->gb,
 | |
|                           b->lsb_sample_buffer[i] + seg * s->nsegsamples,
 | |
|                           s->nsegsamples, b->nscalablelsbs[i]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Skip to the end of band data
 | |
|     if (ff_dca_seek_bits(&s->gb, band_data_end)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg)
 | |
| {
 | |
|     DCAXllBand *b = &c->bands[band];
 | |
|     int i, offset, nsamples;
 | |
| 
 | |
|     if (seg < 0) {
 | |
|         offset = 0;
 | |
|         nsamples = s->nframesamples;
 | |
|     } else {
 | |
|         offset = seg * s->nsegsamples;
 | |
|         nsamples = s->nsegsamples;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < c->nchannels; i++) {
 | |
|         memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
 | |
|         if (b->lsb_section_size)
 | |
|             memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
 | |
|     }
 | |
| 
 | |
|     if (seg <= 0 && band)
 | |
|         memset(c->deci_history, 0, sizeof(c->deci_history));
 | |
| 
 | |
|     if (seg < 0) {
 | |
|         memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs));
 | |
|         memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band)
 | |
| {
 | |
|     DCAXllBand *b = &c->bands[band];
 | |
|     int nsamples = s->nframesamples;
 | |
|     int i, j, k;
 | |
| 
 | |
|     // Inverse adaptive or fixed prediction
 | |
|     for (i = 0; i < c->nchannels; i++) {
 | |
|         int32_t *buf = b->msb_sample_buffer[i];
 | |
|         int order = b->adapt_pred_order[i];
 | |
|         if (order > 0) {
 | |
|             int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX];
 | |
|             // Conversion from reflection coefficients to direct form coefficients
 | |
|             for (j = 0; j < order; j++) {
 | |
|                 int rc = b->adapt_refl_coeff[i][j];
 | |
|                 for (k = 0; k < (j + 1) / 2; k++) {
 | |
|                     int tmp1 = coeff[    k    ];
 | |
|                     int tmp2 = coeff[j - k - 1];
 | |
|                     coeff[    k    ] = tmp1 + mul16(rc, tmp2);
 | |
|                     coeff[j - k - 1] = tmp2 + mul16(rc, tmp1);
 | |
|                 }
 | |
|                 coeff[j] = rc;
 | |
|             }
 | |
|             // Inverse adaptive prediction
 | |
|             for (j = 0; j < nsamples - order; j++) {
 | |
|                 int64_t err = 0;
 | |
|                 for (k = 0; k < order; k++)
 | |
|                     err += (int64_t)buf[j + k] * coeff[order - k - 1];
 | |
|                 buf[j + k] -= (SUINT)clip23(norm16(err));
 | |
|             }
 | |
|         } else {
 | |
|             // Inverse fixed coefficient prediction
 | |
|             for (j = 0; j < b->fixed_pred_order[i]; j++)
 | |
|                 for (k = 1; k < nsamples; k++)
 | |
|                     buf[k] += (unsigned)buf[k - 1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Inverse pairwise channel decorrellation
 | |
|     if (b->decor_enabled) {
 | |
|         int32_t *tmp[DCA_XLL_CHANNELS_MAX];
 | |
| 
 | |
|         for (i = 0; i < c->nchannels / 2; i++) {
 | |
|             int coeff = b->decor_coeff[i];
 | |
|             if (coeff) {
 | |
|                 s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1],
 | |
|                                  b->msb_sample_buffer[i * 2    ],
 | |
|                                  coeff, nsamples);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Reorder channel pointers to the original order
 | |
|         for (i = 0; i < c->nchannels; i++)
 | |
|             tmp[i] = b->msb_sample_buffer[i];
 | |
| 
 | |
|         for (i = 0; i < c->nchannels; i++)
 | |
|             b->msb_sample_buffer[b->orig_order[i]] = tmp[i];
 | |
|     }
 | |
| 
 | |
|     // Map output channel pointers for frequency band 0
 | |
|     if (c->nfreqbands == 1)
 | |
|         for (i = 0; i < c->nchannels; i++)
 | |
|             s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i];
 | |
| }
 | |
| 
 | |
| static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch)
 | |
| {
 | |
|     int adj = c->bands[band].bit_width_adjust[ch];
 | |
|     int shift = c->bands[band].nscalablelsbs[ch];
 | |
| 
 | |
|     if (s->fixed_lsb_width)
 | |
|         shift = s->fixed_lsb_width;
 | |
|     else if (shift && adj)
 | |
|         shift += adj - 1;
 | |
|     else
 | |
|         shift += adj;
 | |
| 
 | |
|     return shift;
 | |
| }
 | |
| 
 | |
| static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band)
 | |
| {
 | |
|     DCAXllBand *b = &c->bands[band];
 | |
|     int n, ch, nsamples = s->nframesamples;
 | |
| 
 | |
|     for (ch = 0; ch < c->nchannels; ch++) {
 | |
|         int shift = chs_get_lsb_width(s, c, band, ch);
 | |
|         if (shift) {
 | |
|             int32_t *msb = b->msb_sample_buffer[ch];
 | |
|             if (b->nscalablelsbs[ch]) {
 | |
|                 int32_t *lsb = b->lsb_sample_buffer[ch];
 | |
|                 int adj = b->bit_width_adjust[ch];
 | |
|                 for (n = 0; n < nsamples; n++)
 | |
|                     msb[n] = msb[n] * (SUINT)(1 << shift) + (lsb[n] << adj);
 | |
|             } else {
 | |
|                 for (n = 0; n < nsamples; n++)
 | |
|                     msb[n] = msb[n] * (SUINT)(1 << shift);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     int ch, nsamples = s->nframesamples;
 | |
|     int32_t *ptr;
 | |
| 
 | |
|     av_assert1(c->nfreqbands > 1);
 | |
| 
 | |
|     // Reallocate frequency band assembly buffer
 | |
|     av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2],
 | |
|                    2 * nsamples * c->nchannels * sizeof(int32_t));
 | |
|     if (!c->sample_buffer[2])
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     // Assemble frequency bands 0 and 1
 | |
|     ptr = c->sample_buffer[2];
 | |
|     for (ch = 0; ch < c->nchannels; ch++) {
 | |
|         int32_t *band0 = c->bands[0].msb_sample_buffer[ch];
 | |
|         int32_t *band1 = c->bands[1].msb_sample_buffer[ch];
 | |
| 
 | |
|         // Copy decimator history
 | |
|         memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX,
 | |
|                c->deci_history[ch], sizeof(c->deci_history[0]));
 | |
| 
 | |
|         // Filter
 | |
|         s->dcadsp->assemble_freq_bands(ptr, band0, band1,
 | |
|                                        ff_dca_xll_band_coeff,
 | |
|                                        nsamples);
 | |
| 
 | |
|         // Remap output channel pointer to assembly buffer
 | |
|         s->output_samples[c->ch_remap[ch]] = ptr;
 | |
|         ptr += nsamples * 2;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_common_header(DCAXllDecoder *s)
 | |
| {
 | |
|     int stream_ver, header_size, frame_size_nbits, nframesegs_log2;
 | |
| 
 | |
|     // XLL extension sync word
 | |
|     if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) {
 | |
|         av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n");
 | |
|         return AVERROR(EAGAIN);
 | |
|     }
 | |
| 
 | |
|     // Version number
 | |
|     stream_ver = get_bits(&s->gb, 4) + 1;
 | |
|     if (stream_ver > 1) {
 | |
|         avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Lossless frame header length
 | |
|     header_size = get_bits(&s->gb, 8) + 1;
 | |
| 
 | |
|     // Check CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, 32, header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Number of bits used to read frame size
 | |
|     frame_size_nbits = get_bits(&s->gb, 5) + 1;
 | |
| 
 | |
|     // Number of bytes in a lossless frame
 | |
|     s->frame_size = get_bits_long(&s->gb, frame_size_nbits);
 | |
|     if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->frame_size++;
 | |
| 
 | |
|     // Number of channels sets per frame
 | |
|     s->nchsets = get_bits(&s->gb, 4) + 1;
 | |
|     if (s->nchsets > DCA_XLL_CHSETS_MAX) {
 | |
|         avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     // Number of segments per frame
 | |
|     nframesegs_log2 = get_bits(&s->gb, 4);
 | |
|     s->nframesegs = 1 << nframesegs_log2;
 | |
|     if (s->nframesegs > 1024) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Samples in segment per one frequency band for the first channel set
 | |
|     // Maximum value is 256 for sampling frequencies <= 48 kHz
 | |
|     // Maximum value is 512 for sampling frequencies > 48 kHz
 | |
|     s->nsegsamples_log2 = get_bits(&s->gb, 4);
 | |
|     if (!s->nsegsamples_log2) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->nsegsamples = 1 << s->nsegsamples_log2;
 | |
|     if (s->nsegsamples > 512) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Samples in frame per one frequency band for the first channel set
 | |
|     s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2;
 | |
|     s->nframesamples = 1 << s->nframesamples_log2;
 | |
|     if (s->nframesamples > 65536) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Number of bits used to read segment size
 | |
|     s->seg_size_nbits = get_bits(&s->gb, 5) + 1;
 | |
| 
 | |
|     // Presence of CRC16 within each frequency band
 | |
|     // 0 - No CRC16 within band
 | |
|     // 1 - CRC16 placed at the end of MSB0
 | |
|     // 2 - CRC16 placed at the end of MSB0 and LSB0
 | |
|     // 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands
 | |
|     s->band_crc_present = get_bits(&s->gb, 2);
 | |
| 
 | |
|     // MSB/LSB split flag
 | |
|     s->scalable_lsbs = get_bits1(&s->gb);
 | |
| 
 | |
|     // Channel position mask
 | |
|     s->ch_mask_nbits = get_bits(&s->gb, 5) + 1;
 | |
| 
 | |
|     // Fixed LSB width
 | |
|     if (s->scalable_lsbs)
 | |
|         s->fixed_lsb_width = get_bits(&s->gb, 4);
 | |
|     else
 | |
|         s->fixed_lsb_width = 0;
 | |
| 
 | |
|     // Reserved
 | |
|     // Byte align
 | |
|     // Header CRC16 protection
 | |
|     if (ff_dca_seek_bits(&s->gb, header_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int is_hier_dmix_chset(DCAXllChSet *c)
 | |
| {
 | |
|     return !c->primary_chset && c->dmix_embedded && c->hier_chset;
 | |
| }
 | |
| 
 | |
| static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     if (c->hier_chset)
 | |
|         while (++c < &s->chset[s->nchsets])
 | |
|             if (is_hier_dmix_chset(c))
 | |
|                 return c;
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o)
 | |
| {
 | |
|     int i, j, *coeff_ptr = c->dmix_coeff;
 | |
| 
 | |
|     for (i = 0; i < c->hier_ofs; i++) {
 | |
|         int scale = o->dmix_scale[i];
 | |
|         int scale_inv = o->dmix_scale_inv[i];
 | |
|         c->dmix_scale[i] = mul15(c->dmix_scale[i], scale);
 | |
|         c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv);
 | |
|         for (j = 0; j < c->nchannels; j++) {
 | |
|             int coeff = mul16(*coeff_ptr, scale_inv);
 | |
|             *coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset)
 | |
| {
 | |
|     DCAContext *dca = s->avctx->priv_data;
 | |
|     DCAXllChSet *c;
 | |
|     int i, ret;
 | |
| 
 | |
|     // Parse channel set headers
 | |
|     s->nfreqbands = 0;
 | |
|     s->nchannels = 0;
 | |
|     s->nreschsets = 0;
 | |
|     for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
 | |
|         c->hier_ofs = s->nchannels;
 | |
|         if ((ret = chs_parse_header(s, c, asset)) < 0)
 | |
|             return ret;
 | |
|         if (c->nfreqbands > s->nfreqbands)
 | |
|             s->nfreqbands = c->nfreqbands;
 | |
|         if (c->hier_chset)
 | |
|             s->nchannels += c->nchannels;
 | |
|         if (c->residual_encode != (1 << c->nchannels) - 1)
 | |
|             s->nreschsets++;
 | |
|     }
 | |
| 
 | |
|     // Pre-scale downmixing coefficients for all non-primary channel sets
 | |
|     for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) {
 | |
|         if (is_hier_dmix_chset(c)) {
 | |
|             DCAXllChSet *o = find_next_hier_dmix_chset(s, c);
 | |
|             if (o)
 | |
|                 prescale_down_mix(c, o);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Determine number of active channel sets to decode
 | |
|     switch (dca->request_channel_layout) {
 | |
|     case DCA_SPEAKER_LAYOUT_STEREO:
 | |
|         s->nactivechsets = 1;
 | |
|         break;
 | |
|     case DCA_SPEAKER_LAYOUT_5POINT0:
 | |
|     case DCA_SPEAKER_LAYOUT_5POINT1:
 | |
|         s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1;
 | |
|         break;
 | |
|     default:
 | |
|         s->nactivechsets = s->nchsets;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_navi_table(DCAXllDecoder *s)
 | |
| {
 | |
|     int chs, seg, band, navi_nb, navi_pos, *navi_ptr;
 | |
|     DCAXllChSet *c;
 | |
| 
 | |
|     // Determine size of NAVI table
 | |
|     navi_nb = s->nfreqbands * s->nframesegs * s->nchsets;
 | |
|     if (navi_nb > 1024) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // Reallocate NAVI table
 | |
|     av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi));
 | |
|     if (!s->navi)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     // Parse NAVI
 | |
|     navi_pos = get_bits_count(&s->gb);
 | |
|     navi_ptr = s->navi;
 | |
|     for (band = 0; band < s->nfreqbands; band++) {
 | |
|         for (seg = 0; seg < s->nframesegs; seg++) {
 | |
|             for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
 | |
|                 int size = 0;
 | |
|                 if (c->nfreqbands > band) {
 | |
|                     size = get_bits_long(&s->gb, s->seg_size_nbits);
 | |
|                     if (size < 0 || size >= s->frame_size) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size);
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                     size++;
 | |
|                 }
 | |
|                 *navi_ptr++ = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Byte align
 | |
|     // CRC16
 | |
|     skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
 | |
|     skip_bits(&s->gb, 16);
 | |
| 
 | |
|     // Check CRC
 | |
|     if (ff_dca_check_crc(s->avctx, &s->gb, navi_pos, get_bits_count(&s->gb))) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_band_data(DCAXllDecoder *s)
 | |
| {
 | |
|     int ret, chs, seg, band, navi_pos, *navi_ptr;
 | |
|     DCAXllChSet *c;
 | |
| 
 | |
|     for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) {
 | |
|         if ((ret = chs_alloc_msb_band_data(s, c)) < 0)
 | |
|             return ret;
 | |
|         if ((ret = chs_alloc_lsb_band_data(s, c)) < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     navi_pos = get_bits_count(&s->gb);
 | |
|     navi_ptr = s->navi;
 | |
|     for (band = 0; band < s->nfreqbands; band++) {
 | |
|         for (seg = 0; seg < s->nframesegs; seg++) {
 | |
|             for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
 | |
|                 if (c->nfreqbands > band) {
 | |
|                     navi_pos += *navi_ptr * 8;
 | |
|                     if (navi_pos > s->gb.size_in_bits) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n");
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                     if (chs < s->nactivechsets &&
 | |
|                         (ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) {
 | |
|                         if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                             return ret;
 | |
|                         chs_clear_band_data(s, c, band, seg);
 | |
|                     }
 | |
|                     skip_bits_long(&s->gb, navi_pos - get_bits_count(&s->gb));
 | |
|                 }
 | |
|                 navi_ptr++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_frame(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = parse_common_header(s)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = parse_sub_headers(s, asset)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = parse_navi_table(s)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = parse_band_data(s)) < 0)
 | |
|         return ret;
 | |
|     if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void clear_pbr(DCAXllDecoder *s)
 | |
| {
 | |
|     s->pbr_length = 0;
 | |
|     s->pbr_delay = 0;
 | |
| }
 | |
| 
 | |
| static int copy_to_pbr(DCAXllDecoder *s, uint8_t *data, int size, int delay)
 | |
| {
 | |
|     if (size > DCA_XLL_PBR_BUFFER_MAX)
 | |
|         return AVERROR(ENOSPC);
 | |
| 
 | |
|     if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + AV_INPUT_BUFFER_PADDING_SIZE)))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     memcpy(s->pbr_buffer, data, size);
 | |
|     s->pbr_length = size;
 | |
|     s->pbr_delay = delay;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_frame_no_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
 | |
| {
 | |
|     int ret = parse_frame(s, data, size, asset);
 | |
| 
 | |
|     // If XLL packet data didn't start with a sync word, we must have jumped
 | |
|     // right into the middle of PBR smoothing period
 | |
|     if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) {
 | |
|         // Skip to the next sync word in this packet
 | |
|         data += asset->xll_sync_offset;
 | |
|         size -= asset->xll_sync_offset;
 | |
| 
 | |
|         // If decoding delay is set, put the frame into PBR buffer and return
 | |
|         // failure code. Higher level decoder is expected to switch to lossy
 | |
|         // core decoding or mute its output until decoding delay expires.
 | |
|         if (asset->xll_delay_nframes > 0) {
 | |
|             if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0)
 | |
|                 return ret;
 | |
|             return AVERROR(EAGAIN);
 | |
|         }
 | |
| 
 | |
|         // No decoding delay, just parse the frame in place
 | |
|         ret = parse_frame(s, data, size, asset);
 | |
|     }
 | |
| 
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (s->frame_size > size)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     // If the XLL decoder didn't consume full packet, start PBR smoothing period
 | |
|     if (s->frame_size < size)
 | |
|         if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0)
 | |
|             return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int parse_frame_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) {
 | |
|         ret = AVERROR(ENOSPC);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     memcpy(s->pbr_buffer + s->pbr_length, data, size);
 | |
|     s->pbr_length += size;
 | |
| 
 | |
|     // Respect decoding delay after synchronization error
 | |
|     if (s->pbr_delay > 0 && --s->pbr_delay)
 | |
|         return AVERROR(EAGAIN);
 | |
| 
 | |
|     if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     if (s->frame_size > s->pbr_length) {
 | |
|         ret = AVERROR(EINVAL);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if (s->frame_size == s->pbr_length) {
 | |
|         // End of PBR smoothing period
 | |
|         clear_pbr(s);
 | |
|     } else {
 | |
|         s->pbr_length -= s->frame_size;
 | |
|         memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     // For now, throw out all PBR state on failure.
 | |
|     // Perhaps we can be smarter and try to resync somehow.
 | |
|     clear_pbr(s);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (s->hd_stream_id != asset->hd_stream_id) {
 | |
|         clear_pbr(s);
 | |
|         s->hd_stream_id = asset->hd_stream_id;
 | |
|     }
 | |
| 
 | |
|     if (s->pbr_length)
 | |
|         ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
 | |
|     else
 | |
|         ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
 | |
| {
 | |
|     int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff;
 | |
|     DCAXllChSet *c;
 | |
| 
 | |
|     for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
 | |
|         if (!c->hier_chset)
 | |
|             continue;
 | |
| 
 | |
|         av_assert1(band < c->nfreqbands);
 | |
|         for (j = 0; j < c->nchannels; j++) {
 | |
|             for (k = 0; k < o->nchannels; k++) {
 | |
|                 int coeff = *coeff_ptr++;
 | |
|                 if (coeff) {
 | |
|                     s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j],
 | |
|                                         o->bands[band].msb_sample_buffer[k],
 | |
|                                         coeff, s->nframesamples);
 | |
|                     if (band)
 | |
|                         s->dcadsp->dmix_sub(c->deci_history[j],
 | |
|                                             o->deci_history[k],
 | |
|                                             coeff, DCA_XLL_DECI_HISTORY_MAX);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         nchannels += c->nchannels;
 | |
|         if (nchannels >= o->hier_ofs)
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
 | |
| {
 | |
|     int i, j, nchannels = 0;
 | |
|     DCAXllChSet *c;
 | |
| 
 | |
|     for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
 | |
|         if (!c->hier_chset)
 | |
|             continue;
 | |
| 
 | |
|         av_assert1(band < c->nfreqbands);
 | |
|         for (j = 0; j < c->nchannels; j++) {
 | |
|             int scale = o->dmix_scale[nchannels++];
 | |
|             if (scale != (1 << 15)) {
 | |
|                 s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j],
 | |
|                                       scale, s->nframesamples);
 | |
|                 if (band)
 | |
|                     s->dcadsp->dmix_scale(c->deci_history[j],
 | |
|                                           scale, DCA_XLL_DECI_HISTORY_MAX);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (nchannels >= o->hier_ofs)
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Clear all band data and replace non-residual encoded channels with lossy
 | |
| // counterparts
 | |
| static av_cold void force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     DCAContext *dca = s->avctx->priv_data;
 | |
|     int band, ch;
 | |
| 
 | |
|     for (band = 0; band < c->nfreqbands; band++)
 | |
|         chs_clear_band_data(s, c, band, -1);
 | |
| 
 | |
|     for (ch = 0; ch < c->nchannels; ch++) {
 | |
|         if (!(c->residual_encode & (1 << ch)))
 | |
|             continue;
 | |
|         if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0)
 | |
|             continue;
 | |
|         c->residual_encode &= ~(1 << ch);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c)
 | |
| {
 | |
|     DCAContext *dca = s->avctx->priv_data;
 | |
|     int ch, nsamples = s->nframesamples;
 | |
|     DCAXllChSet *o;
 | |
| 
 | |
|     // Verify that core is compatible
 | |
|     if (!(dca->packet & DCA_PACKET_CORE)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (c->freq != dca->core.output_rate) {
 | |
|         av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (nsamples != dca->core.npcmsamples) {
 | |
|         av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     // See if this channel set is downmixed and find the next channel set in
 | |
|     // hierarchy. If downmixed, undo core pre-scaling before combining with
 | |
|     // residual (residual is not scaled).
 | |
|     o = find_next_hier_dmix_chset(s, c);
 | |
| 
 | |
|     // Reduce core bit width and combine with residual
 | |
|     for (ch = 0; ch < c->nchannels; ch++) {
 | |
|         int n, spkr, shift, round;
 | |
|         int32_t *src, *dst;
 | |
| 
 | |
|         if (c->residual_encode & (1 << ch))
 | |
|             continue;
 | |
| 
 | |
|         // Map this channel to core speaker
 | |
|         spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]);
 | |
|         if (spkr < 0) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         // Account for LSB width
 | |
|         shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch);
 | |
|         if (shift > 24) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         round = shift > 0 ? 1 << (shift - 1) : 0;
 | |
| 
 | |
|         src = dca->core.output_samples[spkr];
 | |
|         dst = c->bands[0].msb_sample_buffer[ch];
 | |
|         if (o) {
 | |
|             // Undo embedded core downmix pre-scaling
 | |
|             int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch];
 | |
|             for (n = 0; n < nsamples; n++)
 | |
|                 dst[n] += (SUINT)clip23((mul16(src[n], scale_inv) + round) >> shift);
 | |
|         } else {
 | |
|             // No downmix scaling
 | |
|             for (n = 0; n < nsamples; n++)
 | |
|                 dst[n] += (unsigned)((src[n] + round) >> shift);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     DCAContext *dca = avctx->priv_data;
 | |
|     DCAExssAsset *asset = &dca->exss.assets[0];
 | |
|     DCAXllChSet *p = &s->chset[0], *c;
 | |
|     enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE;
 | |
|     int i, j, k, ret, shift, nsamples, request_mask;
 | |
|     int ch_remap[DCA_SPEAKER_COUNT];
 | |
| 
 | |
|     // Force lossy downmixed output during recovery
 | |
|     if (dca->packet & DCA_PACKET_RECOVERY) {
 | |
|         for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
 | |
|             if (i < s->nactivechsets)
 | |
|                 force_lossy_output(s, c);
 | |
| 
 | |
|             if (!c->primary_chset)
 | |
|                 c->dmix_embedded = 0;
 | |
|         }
 | |
| 
 | |
|         s->scalable_lsbs = 0;
 | |
|         s->fixed_lsb_width = 0;
 | |
|     }
 | |
| 
 | |
|     // Filter frequency bands for active channel sets
 | |
|     s->output_mask = 0;
 | |
|     for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
 | |
|         chs_filter_band_data(s, c, 0);
 | |
| 
 | |
|         if (c->residual_encode != (1 << c->nchannels) - 1
 | |
|             && (ret = combine_residual_frame(s, c)) < 0)
 | |
|             return ret;
 | |
| 
 | |
|         if (s->scalable_lsbs)
 | |
|             chs_assemble_msbs_lsbs(s, c, 0);
 | |
| 
 | |
|         if (c->nfreqbands > 1) {
 | |
|             chs_filter_band_data(s, c, 1);
 | |
|             chs_assemble_msbs_lsbs(s, c, 1);
 | |
|         }
 | |
| 
 | |
|         s->output_mask |= c->ch_mask;
 | |
|     }
 | |
| 
 | |
|     // Undo hierarchial downmix and/or apply scaling
 | |
|     for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) {
 | |
|         if (!is_hier_dmix_chset(c))
 | |
|             continue;
 | |
| 
 | |
|         if (i >= s->nactivechsets) {
 | |
|             for (j = 0; j < c->nfreqbands; j++)
 | |
|                 if (c->bands[j].dmix_embedded)
 | |
|                     scale_down_mix(s, c, j);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < c->nfreqbands; j++)
 | |
|             if (c->bands[j].dmix_embedded)
 | |
|                 undo_down_mix(s, c, j);
 | |
|     }
 | |
| 
 | |
|     // Assemble frequency bands for active channel sets
 | |
|     if (s->nfreqbands > 1) {
 | |
|         for (i = 0; i < s->nactivechsets; i++)
 | |
|             if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0)
 | |
|                 return ret;
 | |
|     }
 | |
| 
 | |
|     // Normalize to regular 5.1 layout if downmixing
 | |
|     if (dca->request_channel_layout) {
 | |
|         if (s->output_mask & DCA_SPEAKER_MASK_Lss) {
 | |
|             s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss];
 | |
|             s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls;
 | |
|         }
 | |
|         if (s->output_mask & DCA_SPEAKER_MASK_Rss) {
 | |
|             s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss];
 | |
|             s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Handle downmixing to stereo request
 | |
|     if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
 | |
|         && DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded
 | |
|         && (p->dmix_type == DCA_DMIX_TYPE_LoRo ||
 | |
|             p->dmix_type == DCA_DMIX_TYPE_LtRt))
 | |
|         request_mask = DCA_SPEAKER_LAYOUT_STEREO;
 | |
|     else
 | |
|         request_mask = s->output_mask;
 | |
|     if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask))
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     avctx->sample_rate = p->freq << (s->nfreqbands - 1);
 | |
| 
 | |
|     switch (p->storage_bit_res) {
 | |
|     case 16:
 | |
|         avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
 | |
|         shift = 16 - p->pcm_bit_res;
 | |
|         break;
 | |
|     case 20:
 | |
|     case 24:
 | |
|         avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
 | |
|         shift = 24 - p->pcm_bit_res;
 | |
|         break;
 | |
|     default:
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     avctx->bits_per_raw_sample = p->storage_bit_res;
 | |
|     avctx->profile = FF_PROFILE_DTS_HD_MA;
 | |
|     avctx->bit_rate = 0;
 | |
| 
 | |
|     frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1);
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     // Downmix primary channel set to stereo
 | |
|     if (request_mask != s->output_mask) {
 | |
|         ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples,
 | |
|                                        p->dmix_coeff, nsamples,
 | |
|                                        s->output_mask);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < avctx->channels; i++) {
 | |
|         int32_t *samples = s->output_samples[ch_remap[i]];
 | |
|         if (frame->format == AV_SAMPLE_FMT_S16P) {
 | |
|             int16_t *plane = (int16_t *)frame->extended_data[i];
 | |
|             for (k = 0; k < nsamples; k++)
 | |
|                 plane[k] = av_clip_int16(samples[k] * (SUINT)(1 << shift));
 | |
|         } else {
 | |
|             int32_t *plane = (int32_t *)frame->extended_data[i];
 | |
|             for (k = 0; k < nsamples; k++)
 | |
|                 plane[k] = clip23(samples[k] * (SUINT)(1 << shift)) * (1 << 8);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!asset->one_to_one_map_ch_to_spkr) {
 | |
|         if (asset->representation_type == DCA_REPR_TYPE_LtRt)
 | |
|             matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
 | |
|         else if (asset->representation_type == DCA_REPR_TYPE_LhRh)
 | |
|             matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
 | |
|     } else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) {
 | |
|         matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
 | |
|     }
 | |
|     if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold void ff_dca_xll_flush(DCAXllDecoder *s)
 | |
| {
 | |
|     clear_pbr(s);
 | |
| }
 | |
| 
 | |
| av_cold void ff_dca_xll_close(DCAXllDecoder *s)
 | |
| {
 | |
|     DCAXllChSet *c;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) {
 | |
|         for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) {
 | |
|             av_freep(&c->sample_buffer[j]);
 | |
|             c->sample_size[j] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_freep(&s->navi);
 | |
|     s->navi_size = 0;
 | |
| 
 | |
|     av_freep(&s->pbr_buffer);
 | |
|     clear_pbr(s);
 | |
| }
 |