mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-26 02:10:55 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			279 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Audio Processing Technology codec for Bluetooth (aptX)
 | |
|  *
 | |
|  * Copyright (C) 2017  Aurelien Jacobs <aurel@gnuage.org>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "aptx.h"
 | |
| 
 | |
| /*
 | |
|  * Half-band QMF analysis filter realized with a polyphase FIR filter.
 | |
|  * Split into 2 subbands and downsample by 2.
 | |
|  * So for each pair of samples that goes in, one sample goes out,
 | |
|  * split into 2 separate subbands.
 | |
|  */
 | |
| av_always_inline
 | |
| static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],
 | |
|                                         const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
 | |
|                                         int shift,
 | |
|                                         int32_t samples[NB_FILTERS],
 | |
|                                         int32_t *low_subband_output,
 | |
|                                         int32_t *high_subband_output)
 | |
| {
 | |
|     int32_t subbands[NB_FILTERS];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < NB_FILTERS; i++) {
 | |
|         aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]);
 | |
|         subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
 | |
|     }
 | |
| 
 | |
|     *low_subband_output  = av_clip_intp2(subbands[0] + subbands[1], 23);
 | |
|     *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Two stage QMF analysis tree.
 | |
|  * Split 4 input samples into 4 subbands and downsample by 4.
 | |
|  * So for each group of 4 samples that goes in, one sample goes out,
 | |
|  * split into 4 separate subbands.
 | |
|  */
 | |
| static void aptx_qmf_tree_analysis(QMFAnalysis *qmf,
 | |
|                                    int32_t samples[4],
 | |
|                                    int32_t subband_samples[4])
 | |
| {
 | |
|     int32_t intermediate_samples[4];
 | |
|     int i;
 | |
| 
 | |
|     /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */
 | |
|     for (i = 0; i < 2; i++)
 | |
|         aptx_qmf_polyphase_analysis(qmf->outer_filter_signal,
 | |
|                                     aptx_qmf_outer_coeffs, 23,
 | |
|                                     &samples[2*i],
 | |
|                                     &intermediate_samples[0+i],
 | |
|                                     &intermediate_samples[2+i]);
 | |
| 
 | |
|     /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */
 | |
|     for (i = 0; i < 2; i++)
 | |
|         aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i],
 | |
|                                     aptx_qmf_inner_coeffs, 23,
 | |
|                                     &intermediate_samples[2*i],
 | |
|                                     &subband_samples[2*i+0],
 | |
|                                     &subband_samples[2*i+1]);
 | |
| }
 | |
| 
 | |
| av_always_inline
 | |
| static int32_t aptx_bin_search(int32_t value, int32_t factor,
 | |
|                                const int32_t *intervals, int32_t nb_intervals)
 | |
| {
 | |
|     int32_t idx = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = nb_intervals >> 1; i > 0; i >>= 1)
 | |
|         if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24))
 | |
|             idx += i;
 | |
| 
 | |
|     return idx;
 | |
| }
 | |
| 
 | |
| static void aptx_quantize_difference(Quantize *quantize,
 | |
|                                      int32_t sample_difference,
 | |
|                                      int32_t dither,
 | |
|                                      int32_t quantization_factor,
 | |
|                                      ConstTables *tables)
 | |
| {
 | |
|     const int32_t *intervals = tables->quantize_intervals;
 | |
|     int32_t quantized_sample, dithered_sample, parity_change;
 | |
|     int32_t d, mean, interval, inv, sample_difference_abs;
 | |
|     int64_t error;
 | |
| 
 | |
|     sample_difference_abs = FFABS(sample_difference);
 | |
|     sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1);
 | |
| 
 | |
|     quantized_sample = aptx_bin_search(sample_difference_abs >> 4,
 | |
|                                        quantization_factor,
 | |
|                                        intervals, tables->tables_size);
 | |
| 
 | |
|     d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23);
 | |
|     d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23);
 | |
| 
 | |
|     intervals += quantized_sample;
 | |
|     mean = (intervals[1] + intervals[0]) / 2;
 | |
|     interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1);
 | |
| 
 | |
|     dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32);
 | |
|     error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor);
 | |
|     quantize->error = FFABS(rshift64(error, 23));
 | |
| 
 | |
|     parity_change = quantized_sample;
 | |
|     if (error < 0)
 | |
|         quantized_sample--;
 | |
|     else
 | |
|         parity_change--;
 | |
| 
 | |
|     inv = -(sample_difference < 0);
 | |
|     quantize->quantized_sample               = quantized_sample ^ inv;
 | |
|     quantize->quantized_sample_parity_change = parity_change    ^ inv;
 | |
| }
 | |
| 
 | |
| static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd)
 | |
| {
 | |
|     int32_t subband_samples[4];
 | |
|     int subband;
 | |
|     aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples);
 | |
|     ff_aptx_generate_dither(channel);
 | |
|     for (subband = 0; subband < NB_SUBBANDS; subband++) {
 | |
|         int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23);
 | |
|         aptx_quantize_difference(&channel->quantize[subband], diff,
 | |
|                                  channel->dither[subband],
 | |
|                                  channel->invert_quantize[subband].quantization_factor,
 | |
|                                  &ff_aptx_quant_tables[hd][subband]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx)
 | |
| {
 | |
|     if (aptx_check_parity(channels, idx)) {
 | |
|         int i;
 | |
|         Channel *c;
 | |
|         static const int map[] = { 1, 2, 0, 3 };
 | |
|         Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]];
 | |
|         for (c = &channels[NB_CHANNELS-1]; c >= channels; c--)
 | |
|             for (i = 0; i < NB_SUBBANDS; i++)
 | |
|                 if (c->quantize[map[i]].error < min->error)
 | |
|                     min = &c->quantize[map[i]];
 | |
| 
 | |
|         /* Forcing the desired parity is done by offsetting by 1 the quantized
 | |
|          * sample from the subband featuring the smallest quantization error. */
 | |
|         min->quantized_sample = min->quantized_sample_parity_change;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t aptx_pack_codeword(Channel *channel)
 | |
| {
 | |
|     int32_t parity = aptx_quantized_parity(channel);
 | |
|     return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13)
 | |
|          | (((channel->quantize[2].quantized_sample & 0x03)         ) << 11)
 | |
|          | (((channel->quantize[1].quantized_sample & 0x0F)         ) <<  7)
 | |
|          | (((channel->quantize[0].quantized_sample & 0x7F)         ) <<  0);
 | |
| }
 | |
| 
 | |
| static uint32_t aptxhd_pack_codeword(Channel *channel)
 | |
| {
 | |
|     int32_t parity = aptx_quantized_parity(channel);
 | |
|     return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19)
 | |
|          | (((channel->quantize[2].quantized_sample & 0x00F)         ) << 15)
 | |
|          | (((channel->quantize[1].quantized_sample & 0x03F)         ) <<  9)
 | |
|          | (((channel->quantize[0].quantized_sample & 0x1FF)         ) <<  0);
 | |
| }
 | |
| 
 | |
| static void aptx_encode_samples(AptXContext *ctx,
 | |
|                                 int32_t samples[NB_CHANNELS][4],
 | |
|                                 uint8_t *output)
 | |
| {
 | |
|     int channel;
 | |
|     for (channel = 0; channel < NB_CHANNELS; channel++)
 | |
|         aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd);
 | |
| 
 | |
|     aptx_insert_sync(ctx->channels, &ctx->sync_idx);
 | |
| 
 | |
|     for (channel = 0; channel < NB_CHANNELS; channel++) {
 | |
|         ff_aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
 | |
|         if (ctx->hd)
 | |
|             AV_WB24(output + 3*channel,
 | |
|                     aptxhd_pack_codeword(&ctx->channels[channel]));
 | |
|         else
 | |
|             AV_WB16(output + 2*channel,
 | |
|                     aptx_pack_codeword(&ctx->channels[channel]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                              const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     AptXContext *s = avctx->priv_data;
 | |
|     int pos, ipos, channel, sample, output_size, ret;
 | |
| 
 | |
|     if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     output_size = s->block_size * frame->nb_samples/4;
 | |
|     if ((ret = ff_alloc_packet2(avctx, avpkt, output_size, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) {
 | |
|         int32_t samples[NB_CHANNELS][4];
 | |
| 
 | |
|         for (channel = 0; channel < NB_CHANNELS; channel++)
 | |
|             for (sample = 0; sample < 4; sample++)
 | |
|                 samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8;
 | |
| 
 | |
|         aptx_encode_samples(s, samples, avpkt->data + pos);
 | |
|     }
 | |
| 
 | |
|     ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration);
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int aptx_close(AVCodecContext *avctx)
 | |
| {
 | |
|     AptXContext *s = avctx->priv_data;
 | |
|     ff_af_queue_close(&s->afq);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_APTX_ENCODER
 | |
| AVCodec ff_aptx_encoder = {
 | |
|     .name                  = "aptx",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
 | |
|     .type                  = AVMEDIA_TYPE_AUDIO,
 | |
|     .id                    = AV_CODEC_ID_APTX,
 | |
|     .priv_data_size        = sizeof(AptXContext),
 | |
|     .init                  = ff_aptx_init,
 | |
|     .encode2               = aptx_encode_frame,
 | |
|     .close                 = aptx_close,
 | |
|     .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
 | |
|     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
 | |
|     .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
 | |
|     .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
 | |
|                                                              AV_SAMPLE_FMT_NONE },
 | |
|     .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_APTX_HD_ENCODER
 | |
| AVCodec ff_aptx_hd_encoder = {
 | |
|     .name                  = "aptx_hd",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
 | |
|     .type                  = AVMEDIA_TYPE_AUDIO,
 | |
|     .id                    = AV_CODEC_ID_APTX_HD,
 | |
|     .priv_data_size        = sizeof(AptXContext),
 | |
|     .init                  = ff_aptx_init,
 | |
|     .encode2               = aptx_encode_frame,
 | |
|     .close                 = aptx_close,
 | |
|     .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
 | |
|     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
 | |
|     .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
 | |
|     .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
 | |
|                                                              AV_SAMPLE_FMT_NONE },
 | |
|     .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
 | |
| };
 | |
| #endif
 | 
