mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-31 04:26:37 +08:00 
			
		
		
		
	 bad5537e2c
			
		
	
	bad5537e2c
	
	
	
		
			
			Otherwise doxygen complains about ambiguous filenames when files exist under the same name in different subdirectories. Originally committed as revision 16912 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			130 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * rational numbers
 | |
|  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file libavutil/rational.c
 | |
|  * rational numbers
 | |
|  * @author Michael Niedermayer <michaelni@gmx.at>
 | |
|  */
 | |
| 
 | |
| #include <assert.h>
 | |
| //#include <math.h>
 | |
| #include <limits.h>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "mathematics.h"
 | |
| #include "rational.h"
 | |
| 
 | |
| int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max){
 | |
|     AVRational a0={0,1}, a1={1,0};
 | |
|     int sign= (num<0) ^ (den<0);
 | |
|     int64_t gcd= av_gcd(FFABS(num), FFABS(den));
 | |
| 
 | |
|     if(gcd){
 | |
|         num = FFABS(num)/gcd;
 | |
|         den = FFABS(den)/gcd;
 | |
|     }
 | |
|     if(num<=max && den<=max){
 | |
|         a1= (AVRational){num, den};
 | |
|         den=0;
 | |
|     }
 | |
| 
 | |
|     while(den){
 | |
|         uint64_t x      = num / den;
 | |
|         int64_t next_den= num - den*x;
 | |
|         int64_t a2n= x*a1.num + a0.num;
 | |
|         int64_t a2d= x*a1.den + a0.den;
 | |
| 
 | |
|         if(a2n > max || a2d > max){
 | |
|             if(a1.num) x= (max - a0.num) / a1.num;
 | |
|             if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den);
 | |
| 
 | |
|             if (den*(2*x*a1.den + a0.den) > num*a1.den)
 | |
|                 a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den};
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         a0= a1;
 | |
|         a1= (AVRational){a2n, a2d};
 | |
|         num= den;
 | |
|         den= next_den;
 | |
|     }
 | |
|     assert(av_gcd(a1.num, a1.den) <= 1U);
 | |
| 
 | |
|     *dst_num = sign ? -a1.num : a1.num;
 | |
|     *dst_den = a1.den;
 | |
| 
 | |
|     return den==0;
 | |
| }
 | |
| 
 | |
| AVRational av_mul_q(AVRational b, AVRational c){
 | |
|     av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX);
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| AVRational av_div_q(AVRational b, AVRational c){
 | |
|     return av_mul_q(b, (AVRational){c.den, c.num});
 | |
| }
 | |
| 
 | |
| AVRational av_add_q(AVRational b, AVRational c){
 | |
|     av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX);
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| AVRational av_sub_q(AVRational b, AVRational c){
 | |
|     return av_add_q(b, (AVRational){-c.num, c.den});
 | |
| }
 | |
| 
 | |
| AVRational av_d2q(double d, int max){
 | |
|     AVRational a;
 | |
| #define LOG2  0.69314718055994530941723212145817656807550013436025
 | |
|     int exponent= FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
 | |
|     int64_t den= 1LL << (61 - exponent);
 | |
|     av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
 | |
| 
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
 | |
| {
 | |
|     /* n/d is q, a/b is the median between q1 and q2 */
 | |
|     int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
 | |
|     int64_t b = 2 * (int64_t)q1.den * q2.den;
 | |
| 
 | |
|     /* rnd_up(a*d/b) > n => a*d/b > n */
 | |
|     int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
 | |
| 
 | |
|     /* rnd_down(a*d/b) < n => a*d/b < n */
 | |
|     int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
 | |
| 
 | |
|     return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
 | |
| }
 | |
| 
 | |
| int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
 | |
| {
 | |
|     int i, nearest_q_idx = 0;
 | |
|     for(i=0; q_list[i].den; i++)
 | |
|         if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
 | |
|             nearest_q_idx = i;
 | |
| 
 | |
|     return nearest_q_idx;
 | |
| }
 |