mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-10-30 04:02:04 +08:00 
			
		
		
		
	 8e2bab5d4b
			
		
	
	8e2bab5d4b
	
	
	
		
			
			* qatar/master: drawtext: remove typo pcm-mpeg: implement new audio decoding api w32thread: port fixes to pthread_cond_broadcast() from x264. doc: add editor configuration section with Vim and Emacs settings dxva2.h: include d3d9.h to define LPDIRECT3DSURFACE9 avformat/utils: Drop unused goto label. doxygen: Replace '\' by '@' in Doxygen markup tags. cosmetics: drop some completely pointless parentheses cljr: simplify CLJRContext drawtext: introduce rand(min, max) drawtext: introduce explicit draw/hide variable rtmp: Use nb_invokes for all invoke commands Conflicts: libavcodec/mpegvideo.c libavfilter/vf_drawtext.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			1077 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1077 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Atrac 3 compatible decoder
 | |
|  * Copyright (c) 2006-2008 Maxim Poliakovski
 | |
|  * Copyright (c) 2006-2008 Benjamin Larsson
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Atrac 3 compatible decoder.
 | |
|  * This decoder handles Sony's ATRAC3 data.
 | |
|  *
 | |
|  * Container formats used to store atrac 3 data:
 | |
|  * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
 | |
|  *
 | |
|  * To use this decoder, a calling application must supply the extradata
 | |
|  * bytes provided in the containers above.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| #include "bytestream.h"
 | |
| #include "fft.h"
 | |
| #include "fmtconvert.h"
 | |
| 
 | |
| #include "atrac.h"
 | |
| #include "atrac3data.h"
 | |
| 
 | |
| #define JOINT_STEREO    0x12
 | |
| #define STEREO          0x2
 | |
| 
 | |
| #define SAMPLES_PER_FRAME 1024
 | |
| #define MDCT_SIZE          512
 | |
| 
 | |
| /* These structures are needed to store the parsed gain control data. */
 | |
| typedef struct {
 | |
|     int   num_gain_data;
 | |
|     int   levcode[8];
 | |
|     int   loccode[8];
 | |
| } gain_info;
 | |
| 
 | |
| typedef struct {
 | |
|     gain_info   gBlock[4];
 | |
| } gain_block;
 | |
| 
 | |
| typedef struct {
 | |
|     int     pos;
 | |
|     int     numCoefs;
 | |
|     float   coef[8];
 | |
| } tonal_component;
 | |
| 
 | |
| typedef struct {
 | |
|     int               bandsCoded;
 | |
|     int               numComponents;
 | |
|     tonal_component   components[64];
 | |
|     float             prevFrame[SAMPLES_PER_FRAME];
 | |
|     int               gcBlkSwitch;
 | |
|     gain_block        gainBlock[2];
 | |
| 
 | |
|     DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME];
 | |
|     DECLARE_ALIGNED(32, float, IMDCT_buf)[SAMPLES_PER_FRAME];
 | |
| 
 | |
|     float             delayBuf1[46]; ///<qmf delay buffers
 | |
|     float             delayBuf2[46];
 | |
|     float             delayBuf3[46];
 | |
| } channel_unit;
 | |
| 
 | |
| typedef struct {
 | |
|     AVFrame             frame;
 | |
|     GetBitContext       gb;
 | |
|     //@{
 | |
|     /** stream data */
 | |
|     int                 channels;
 | |
|     int                 codingMode;
 | |
|     int                 bit_rate;
 | |
|     int                 sample_rate;
 | |
|     int                 samples_per_channel;
 | |
|     int                 samples_per_frame;
 | |
| 
 | |
|     int                 bits_per_frame;
 | |
|     int                 bytes_per_frame;
 | |
|     int                 pBs;
 | |
|     channel_unit*       pUnits;
 | |
|     //@}
 | |
|     //@{
 | |
|     /** joint-stereo related variables */
 | |
|     int                 matrix_coeff_index_prev[4];
 | |
|     int                 matrix_coeff_index_now[4];
 | |
|     int                 matrix_coeff_index_next[4];
 | |
|     int                 weighting_delay[6];
 | |
|     //@}
 | |
|     //@{
 | |
|     /** data buffers */
 | |
|     float              *outSamples[2];
 | |
|     uint8_t*            decoded_bytes_buffer;
 | |
|     float               tempBuf[1070];
 | |
|     //@}
 | |
|     //@{
 | |
|     /** extradata */
 | |
|     int                 atrac3version;
 | |
|     int                 delay;
 | |
|     int                 scrambled_stream;
 | |
|     int                 frame_factor;
 | |
|     //@}
 | |
| 
 | |
|     FFTContext          mdct_ctx;
 | |
|     FmtConvertContext   fmt_conv;
 | |
| } ATRAC3Context;
 | |
| 
 | |
| static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE];
 | |
| static VLC              spectral_coeff_tab[7];
 | |
| static float            gain_tab1[16];
 | |
| static float            gain_tab2[31];
 | |
| static DSPContext       dsp;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
 | |
|  * caused by the reverse spectra of the QMF.
 | |
|  *
 | |
|  * @param pInput    float input
 | |
|  * @param pOutput   float output
 | |
|  * @param odd_band  1 if the band is an odd band
 | |
|  */
 | |
| 
 | |
| static void IMLT(ATRAC3Context *q, float *pInput, float *pOutput, int odd_band)
 | |
| {
 | |
|     int     i;
 | |
| 
 | |
|     if (odd_band) {
 | |
|         /**
 | |
|         * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
 | |
|         * or it gives better compression to do it this way.
 | |
|         * FIXME: It should be possible to handle this in imdct_calc
 | |
|         * for that to happen a modification of the prerotation step of
 | |
|         * all SIMD code and C code is needed.
 | |
|         * Or fix the functions before so they generate a pre reversed spectrum.
 | |
|         */
 | |
| 
 | |
|         for (i=0; i<128; i++)
 | |
|             FFSWAP(float, pInput[i], pInput[255-i]);
 | |
|     }
 | |
| 
 | |
|     q->mdct_ctx.imdct_calc(&q->mdct_ctx,pOutput,pInput);
 | |
| 
 | |
|     /* Perform windowing on the output. */
 | |
|     dsp.vector_fmul(pOutput, pOutput, mdct_window, MDCT_SIZE);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Atrac 3 indata descrambling, only used for data coming from the rm container
 | |
|  *
 | |
|  * @param inbuffer  pointer to 8 bit array of indata
 | |
|  * @param out       pointer to 8 bit array of outdata
 | |
|  * @param bytes     amount of bytes
 | |
|  */
 | |
| 
 | |
| static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
 | |
|     int i, off;
 | |
|     uint32_t c;
 | |
|     const uint32_t* buf;
 | |
|     uint32_t* obuf = (uint32_t*) out;
 | |
| 
 | |
|     off = (intptr_t)inbuffer & 3;
 | |
|     buf = (const uint32_t*) (inbuffer - off);
 | |
|     c = av_be2ne32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
 | |
|     bytes += 3 + off;
 | |
|     for (i = 0; i < bytes/4; i++)
 | |
|         obuf[i] = c ^ buf[i];
 | |
| 
 | |
|     if (off)
 | |
|         av_log_ask_for_sample(NULL, "Offset of %d not handled.\n", off);
 | |
| 
 | |
|     return off;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int init_atrac3_transforms(ATRAC3Context *q, int is_float) {
 | |
|     float enc_window[256];
 | |
|     int i;
 | |
| 
 | |
|     /* Generate the mdct window, for details see
 | |
|      * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
 | |
|     for (i=0 ; i<256; i++)
 | |
|         enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
 | |
| 
 | |
|     if (!mdct_window[0])
 | |
|         for (i=0 ; i<256; i++) {
 | |
|             mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
 | |
|             mdct_window[511-i] = mdct_window[i];
 | |
|         }
 | |
| 
 | |
|     /* Initialize the MDCT transform. */
 | |
|     return ff_mdct_init(&q->mdct_ctx, 9, 1, is_float ? 1.0 / 32768 : 1.0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Atrac3 uninit, free all allocated memory
 | |
|  */
 | |
| 
 | |
| static av_cold int atrac3_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
| 
 | |
|     av_free(q->pUnits);
 | |
|     av_free(q->decoded_bytes_buffer);
 | |
|     av_freep(&q->outSamples[0]);
 | |
| 
 | |
|     ff_mdct_end(&q->mdct_ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
| / * Mantissa decoding
 | |
|  *
 | |
|  * @param gb            the GetBit context
 | |
|  * @param selector      what table is the output values coded with
 | |
|  * @param codingFlag    constant length coding or variable length coding
 | |
|  * @param mantissas     mantissa output table
 | |
|  * @param numCodes      amount of values to get
 | |
|  */
 | |
| 
 | |
| static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
 | |
| {
 | |
|     int   numBits, cnt, code, huffSymb;
 | |
| 
 | |
|     if (selector == 1)
 | |
|         numCodes /= 2;
 | |
| 
 | |
|     if (codingFlag != 0) {
 | |
|         /* constant length coding (CLC) */
 | |
|         numBits = CLCLengthTab[selector];
 | |
| 
 | |
|         if (selector > 1) {
 | |
|             for (cnt = 0; cnt < numCodes; cnt++) {
 | |
|                 if (numBits)
 | |
|                     code = get_sbits(gb, numBits);
 | |
|                 else
 | |
|                     code = 0;
 | |
|                 mantissas[cnt] = code;
 | |
|             }
 | |
|         } else {
 | |
|             for (cnt = 0; cnt < numCodes; cnt++) {
 | |
|                 if (numBits)
 | |
|                     code = get_bits(gb, numBits); //numBits is always 4 in this case
 | |
|                 else
 | |
|                     code = 0;
 | |
|                 mantissas[cnt*2] = seTab_0[code >> 2];
 | |
|                 mantissas[cnt*2+1] = seTab_0[code & 3];
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* variable length coding (VLC) */
 | |
|         if (selector != 1) {
 | |
|             for (cnt = 0; cnt < numCodes; cnt++) {
 | |
|                 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
 | |
|                 huffSymb += 1;
 | |
|                 code = huffSymb >> 1;
 | |
|                 if (huffSymb & 1)
 | |
|                     code = -code;
 | |
|                 mantissas[cnt] = code;
 | |
|             }
 | |
|         } else {
 | |
|             for (cnt = 0; cnt < numCodes; cnt++) {
 | |
|                 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
 | |
|                 mantissas[cnt*2] = decTable1[huffSymb*2];
 | |
|                 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Restore the quantized band spectrum coefficients
 | |
|  *
 | |
|  * @param gb            the GetBit context
 | |
|  * @param pOut          decoded band spectrum
 | |
|  * @return outSubbands   subband counter, fix for broken specification/files
 | |
|  */
 | |
| 
 | |
| static int decodeSpectrum (GetBitContext *gb, float *pOut)
 | |
| {
 | |
|     int   numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
 | |
|     int   subband_vlc_index[32], SF_idxs[32];
 | |
|     int   mantissas[128];
 | |
|     float SF;
 | |
| 
 | |
|     numSubbands = get_bits(gb, 5); // number of coded subbands
 | |
|     codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
 | |
| 
 | |
|     /* Get the VLC selector table for the subbands, 0 means not coded. */
 | |
|     for (cnt = 0; cnt <= numSubbands; cnt++)
 | |
|         subband_vlc_index[cnt] = get_bits(gb, 3);
 | |
| 
 | |
|     /* Read the scale factor indexes from the stream. */
 | |
|     for (cnt = 0; cnt <= numSubbands; cnt++) {
 | |
|         if (subband_vlc_index[cnt] != 0)
 | |
|             SF_idxs[cnt] = get_bits(gb, 6);
 | |
|     }
 | |
| 
 | |
|     for (cnt = 0; cnt <= numSubbands; cnt++) {
 | |
|         first = subbandTab[cnt];
 | |
|         last = subbandTab[cnt+1];
 | |
| 
 | |
|         subbWidth = last - first;
 | |
| 
 | |
|         if (subband_vlc_index[cnt] != 0) {
 | |
|             /* Decode spectral coefficients for this subband. */
 | |
|             /* TODO: This can be done faster is several blocks share the
 | |
|              * same VLC selector (subband_vlc_index) */
 | |
|             readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
 | |
| 
 | |
|             /* Decode the scale factor for this subband. */
 | |
|             SF = ff_atrac_sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
 | |
| 
 | |
|             /* Inverse quantize the coefficients. */
 | |
|             for (pIn=mantissas ; first<last; first++, pIn++)
 | |
|                 pOut[first] = *pIn * SF;
 | |
|         } else {
 | |
|             /* This subband was not coded, so zero the entire subband. */
 | |
|             memset(pOut+first, 0, subbWidth*sizeof(float));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the subbands that were not coded. */
 | |
|     first = subbandTab[cnt];
 | |
|     memset(pOut+first, 0, (SAMPLES_PER_FRAME - first) * sizeof(float));
 | |
|     return numSubbands;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Restore the quantized tonal components
 | |
|  *
 | |
|  * @param gb            the GetBit context
 | |
|  * @param pComponent    tone component
 | |
|  * @param numBands      amount of coded bands
 | |
|  */
 | |
| 
 | |
| static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
 | |
| {
 | |
|     int i,j,k,cnt;
 | |
|     int   components, coding_mode_selector, coding_mode, coded_values_per_component;
 | |
|     int   sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
 | |
|     int   band_flags[4], mantissa[8];
 | |
|     float  *pCoef;
 | |
|     float  scalefactor;
 | |
|     int   component_count = 0;
 | |
| 
 | |
|     components = get_bits(gb,5);
 | |
| 
 | |
|     /* no tonal components */
 | |
|     if (components == 0)
 | |
|         return 0;
 | |
| 
 | |
|     coding_mode_selector = get_bits(gb,2);
 | |
|     if (coding_mode_selector == 2)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     coding_mode = coding_mode_selector & 1;
 | |
| 
 | |
|     for (i = 0; i < components; i++) {
 | |
|         for (cnt = 0; cnt <= numBands; cnt++)
 | |
|             band_flags[cnt] = get_bits1(gb);
 | |
| 
 | |
|         coded_values_per_component = get_bits(gb,3);
 | |
| 
 | |
|         quant_step_index = get_bits(gb,3);
 | |
|         if (quant_step_index <= 1)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         if (coding_mode_selector == 3)
 | |
|             coding_mode = get_bits1(gb);
 | |
| 
 | |
|         for (j = 0; j < (numBands + 1) * 4; j++) {
 | |
|             if (band_flags[j >> 2] == 0)
 | |
|                 continue;
 | |
| 
 | |
|             coded_components = get_bits(gb,3);
 | |
| 
 | |
|             for (k=0; k<coded_components; k++) {
 | |
|                 sfIndx = get_bits(gb,6);
 | |
|                 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
 | |
|                 max_coded_values = SAMPLES_PER_FRAME - pComponent[component_count].pos;
 | |
|                 coded_values = coded_values_per_component + 1;
 | |
|                 coded_values = FFMIN(max_coded_values,coded_values);
 | |
| 
 | |
|                 scalefactor = ff_atrac_sf_table[sfIndx] * iMaxQuant[quant_step_index];
 | |
| 
 | |
|                 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
 | |
| 
 | |
|                 pComponent[component_count].numCoefs = coded_values;
 | |
| 
 | |
|                 /* inverse quant */
 | |
|                 pCoef = pComponent[component_count].coef;
 | |
|                 for (cnt = 0; cnt < coded_values; cnt++)
 | |
|                     pCoef[cnt] = mantissa[cnt] * scalefactor;
 | |
| 
 | |
|                 component_count++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return component_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode gain parameters for the coded bands
 | |
|  *
 | |
|  * @param gb            the GetBit context
 | |
|  * @param pGb           the gainblock for the current band
 | |
|  * @param numBands      amount of coded bands
 | |
|  */
 | |
| 
 | |
| static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
 | |
| {
 | |
|     int   i, cf, numData;
 | |
|     int   *pLevel, *pLoc;
 | |
| 
 | |
|     gain_info   *pGain = pGb->gBlock;
 | |
| 
 | |
|     for (i=0 ; i<=numBands; i++)
 | |
|     {
 | |
|         numData = get_bits(gb,3);
 | |
|         pGain[i].num_gain_data = numData;
 | |
|         pLevel = pGain[i].levcode;
 | |
|         pLoc = pGain[i].loccode;
 | |
| 
 | |
|         for (cf = 0; cf < numData; cf++){
 | |
|             pLevel[cf]= get_bits(gb,4);
 | |
|             pLoc  [cf]= get_bits(gb,5);
 | |
|             if(cf && pLoc[cf] <= pLoc[cf-1])
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the unused blocks. */
 | |
|     for (; i<4 ; i++)
 | |
|         pGain[i].num_gain_data = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply gain parameters and perform the MDCT overlapping part
 | |
|  *
 | |
|  * @param pIn           input float buffer
 | |
|  * @param pPrev         previous float buffer to perform overlap against
 | |
|  * @param pOut          output float buffer
 | |
|  * @param pGain1        current band gain info
 | |
|  * @param pGain2        next band gain info
 | |
|  */
 | |
| 
 | |
| static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
 | |
| {
 | |
|     /* gain compensation function */
 | |
|     float  gain1, gain2, gain_inc;
 | |
|     int   cnt, numdata, nsample, startLoc, endLoc;
 | |
| 
 | |
| 
 | |
|     if (pGain2->num_gain_data == 0)
 | |
|         gain1 = 1.0;
 | |
|     else
 | |
|         gain1 = gain_tab1[pGain2->levcode[0]];
 | |
| 
 | |
|     if (pGain1->num_gain_data == 0) {
 | |
|         for (cnt = 0; cnt < 256; cnt++)
 | |
|             pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
 | |
|     } else {
 | |
|         numdata = pGain1->num_gain_data;
 | |
|         pGain1->loccode[numdata] = 32;
 | |
|         pGain1->levcode[numdata] = 4;
 | |
| 
 | |
|         nsample = 0; // current sample = 0
 | |
| 
 | |
|         for (cnt = 0; cnt < numdata; cnt++) {
 | |
|             startLoc = pGain1->loccode[cnt] * 8;
 | |
|             endLoc = startLoc + 8;
 | |
| 
 | |
|             gain2 = gain_tab1[pGain1->levcode[cnt]];
 | |
|             gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
 | |
| 
 | |
|             /* interpolate */
 | |
|             for (; nsample < startLoc; nsample++)
 | |
|                 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
 | |
| 
 | |
|             /* interpolation is done over eight samples */
 | |
|             for (; nsample < endLoc; nsample++) {
 | |
|                 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
 | |
|                 gain2 *= gain_inc;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (; nsample < 256; nsample++)
 | |
|             pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
 | |
|     }
 | |
| 
 | |
|     /* Delay for the overlapping part. */
 | |
|     memcpy(pPrev, &pIn[256], 256*sizeof(float));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Combine the tonal band spectrum and regular band spectrum
 | |
|  * Return position of the last tonal coefficient
 | |
|  *
 | |
|  * @param pSpectrum     output spectrum buffer
 | |
|  * @param numComponents amount of tonal components
 | |
|  * @param pComponent    tonal components for this band
 | |
|  */
 | |
| 
 | |
| static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
 | |
| {
 | |
|     int   cnt, i, lastPos = -1;
 | |
|     float   *pIn, *pOut;
 | |
| 
 | |
|     for (cnt = 0; cnt < numComponents; cnt++){
 | |
|         lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
 | |
|         pIn = pComponent[cnt].coef;
 | |
|         pOut = &(pSpectrum[pComponent[cnt].pos]);
 | |
| 
 | |
|         for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
 | |
|             pOut[i] += pIn[i];
 | |
|     }
 | |
| 
 | |
|     return lastPos;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
 | |
| 
 | |
| static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
 | |
| {
 | |
|     int    i, band, nsample, s1, s2;
 | |
|     float    c1, c2;
 | |
|     float    mc1_l, mc1_r, mc2_l, mc2_r;
 | |
| 
 | |
|     for (i=0,band = 0; band < 4*256; band+=256,i++) {
 | |
|         s1 = pPrevCode[i];
 | |
|         s2 = pCurrCode[i];
 | |
|         nsample = 0;
 | |
| 
 | |
|         if (s1 != s2) {
 | |
|             /* Selector value changed, interpolation needed. */
 | |
|             mc1_l = matrixCoeffs[s1*2];
 | |
|             mc1_r = matrixCoeffs[s1*2+1];
 | |
|             mc2_l = matrixCoeffs[s2*2];
 | |
|             mc2_r = matrixCoeffs[s2*2+1];
 | |
| 
 | |
|             /* Interpolation is done over the first eight samples. */
 | |
|             for(; nsample < 8; nsample++) {
 | |
|                 c1 = su1[band+nsample];
 | |
|                 c2 = su2[band+nsample];
 | |
|                 c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
 | |
|                 su1[band+nsample] = c2;
 | |
|                 su2[band+nsample] = c1 * 2.0 - c2;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Apply the matrix without interpolation. */
 | |
|         switch (s2) {
 | |
|             case 0:     /* M/S decoding */
 | |
|                 for (; nsample < 256; nsample++) {
 | |
|                     c1 = su1[band+nsample];
 | |
|                     c2 = su2[band+nsample];
 | |
|                     su1[band+nsample] = c2 * 2.0;
 | |
|                     su2[band+nsample] = (c1 - c2) * 2.0;
 | |
|                 }
 | |
|                 break;
 | |
| 
 | |
|             case 1:
 | |
|                 for (; nsample < 256; nsample++) {
 | |
|                     c1 = su1[band+nsample];
 | |
|                     c2 = su2[band+nsample];
 | |
|                     su1[band+nsample] = (c1 + c2) * 2.0;
 | |
|                     su2[band+nsample] = c2 * -2.0;
 | |
|                 }
 | |
|                 break;
 | |
|             case 2:
 | |
|             case 3:
 | |
|                 for (; nsample < 256; nsample++) {
 | |
|                     c1 = su1[band+nsample];
 | |
|                     c2 = su2[band+nsample];
 | |
|                     su1[band+nsample] = c1 + c2;
 | |
|                     su2[band+nsample] = c1 - c2;
 | |
|                 }
 | |
|                 break;
 | |
|             default:
 | |
|                 assert(0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void getChannelWeights (int indx, int flag, float ch[2]){
 | |
| 
 | |
|     if (indx == 7) {
 | |
|         ch[0] = 1.0;
 | |
|         ch[1] = 1.0;
 | |
|     } else {
 | |
|         ch[0] = (float)(indx & 7) / 7.0;
 | |
|         ch[1] = sqrt(2 - ch[0]*ch[0]);
 | |
|         if(flag)
 | |
|             FFSWAP(float, ch[0], ch[1]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void channelWeighting (float *su1, float *su2, int *p3)
 | |
| {
 | |
|     int   band, nsample;
 | |
|     /* w[x][y] y=0 is left y=1 is right */
 | |
|     float w[2][2];
 | |
| 
 | |
|     if (p3[1] != 7 || p3[3] != 7){
 | |
|         getChannelWeights(p3[1], p3[0], w[0]);
 | |
|         getChannelWeights(p3[3], p3[2], w[1]);
 | |
| 
 | |
|         for(band = 1; band < 4; band++) {
 | |
|             /* scale the channels by the weights */
 | |
|             for(nsample = 0; nsample < 8; nsample++) {
 | |
|                 su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
 | |
|                 su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
 | |
|             }
 | |
| 
 | |
|             for(; nsample < 256; nsample++) {
 | |
|                 su1[band*256+nsample] *= w[1][0];
 | |
|                 su2[band*256+nsample] *= w[1][1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Decode a Sound Unit
 | |
|  *
 | |
|  * @param gb            the GetBit context
 | |
|  * @param pSnd          the channel unit to be used
 | |
|  * @param pOut          the decoded samples before IQMF in float representation
 | |
|  * @param channelNum    channel number
 | |
|  * @param codingMode    the coding mode (JOINT_STEREO or regular stereo/mono)
 | |
|  */
 | |
| 
 | |
| 
 | |
| static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
 | |
| {
 | |
|     int   band, result=0, numSubbands, lastTonal, numBands;
 | |
| 
 | |
|     if (codingMode == JOINT_STEREO && channelNum == 1) {
 | |
|         if (get_bits(gb,2) != 3) {
 | |
|             av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     } else {
 | |
|         if (get_bits(gb,6) != 0x28) {
 | |
|             av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* number of coded QMF bands */
 | |
|     pSnd->bandsCoded = get_bits(gb,2);
 | |
| 
 | |
|     result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
 | |
|     if (result) return result;
 | |
| 
 | |
|     pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
 | |
|     if (pSnd->numComponents == -1) return -1;
 | |
| 
 | |
|     numSubbands = decodeSpectrum (gb, pSnd->spectrum);
 | |
| 
 | |
|     /* Merge the decoded spectrum and tonal components. */
 | |
|     lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
 | |
| 
 | |
| 
 | |
|     /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
 | |
|     numBands = (subbandTab[numSubbands] - 1) >> 8;
 | |
|     if (lastTonal >= 0)
 | |
|         numBands = FFMAX((lastTonal + 256) >> 8, numBands);
 | |
| 
 | |
| 
 | |
|     /* Reconstruct time domain samples. */
 | |
|     for (band=0; band<4; band++) {
 | |
|         /* Perform the IMDCT step without overlapping. */
 | |
|         if (band <= numBands) {
 | |
|             IMLT(q, &(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
 | |
|         } else
 | |
|             memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
 | |
| 
 | |
|         /* gain compensation and overlapping */
 | |
|         gainCompensateAndOverlap(pSnd->IMDCT_buf, &pSnd->prevFrame[band * 256],
 | |
|                                  &pOut[band * 256],
 | |
|                                  &pSnd->gainBlock[1 - pSnd->gcBlkSwitch].gBlock[band],
 | |
|                                  &pSnd->gainBlock[    pSnd->gcBlkSwitch].gBlock[band]);
 | |
|     }
 | |
| 
 | |
|     /* Swap the gain control buffers for the next frame. */
 | |
|     pSnd->gcBlkSwitch ^= 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Frame handling
 | |
|  *
 | |
|  * @param q             Atrac3 private context
 | |
|  * @param databuf       the input data
 | |
|  */
 | |
| 
 | |
| static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf,
 | |
|                        float **out_samples)
 | |
| {
 | |
|     int   result, i;
 | |
|     float   *p1, *p2, *p3, *p4;
 | |
|     uint8_t *ptr1;
 | |
| 
 | |
|     if (q->codingMode == JOINT_STEREO) {
 | |
| 
 | |
|         /* channel coupling mode */
 | |
|         /* decode Sound Unit 1 */
 | |
|         init_get_bits(&q->gb,databuf,q->bits_per_frame);
 | |
| 
 | |
|         result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, out_samples[0], 0, JOINT_STEREO);
 | |
|         if (result != 0)
 | |
|             return (result);
 | |
| 
 | |
|         /* Framedata of the su2 in the joint-stereo mode is encoded in
 | |
|          * reverse byte order so we need to swap it first. */
 | |
|         if (databuf == q->decoded_bytes_buffer) {
 | |
|             uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
 | |
|             ptr1 = q->decoded_bytes_buffer;
 | |
|             for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
 | |
|                 FFSWAP(uint8_t,*ptr1,*ptr2);
 | |
|             }
 | |
|         } else {
 | |
|             const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
 | |
|             for (i = 0; i < q->bytes_per_frame; i++)
 | |
|                 q->decoded_bytes_buffer[i] = *ptr2--;
 | |
|         }
 | |
| 
 | |
|         /* Skip the sync codes (0xF8). */
 | |
|         ptr1 = q->decoded_bytes_buffer;
 | |
|         for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
 | |
|             if (i >= q->bytes_per_frame)
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /* set the bitstream reader at the start of the second Sound Unit*/
 | |
|         init_get_bits(&q->gb,ptr1,q->bits_per_frame);
 | |
| 
 | |
|         /* Fill the Weighting coeffs delay buffer */
 | |
|         memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
 | |
|         q->weighting_delay[4] = get_bits1(&q->gb);
 | |
|         q->weighting_delay[5] = get_bits(&q->gb,3);
 | |
| 
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
 | |
|             q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
 | |
|             q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
 | |
|         }
 | |
| 
 | |
|         /* Decode Sound Unit 2. */
 | |
|         result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], out_samples[1], 1, JOINT_STEREO);
 | |
|         if (result != 0)
 | |
|             return (result);
 | |
| 
 | |
|         /* Reconstruct the channel coefficients. */
 | |
|         reverseMatrixing(out_samples[0], out_samples[1], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
 | |
| 
 | |
|         channelWeighting(out_samples[0], out_samples[1], q->weighting_delay);
 | |
| 
 | |
|     } else {
 | |
|         /* normal stereo mode or mono */
 | |
|         /* Decode the channel sound units. */
 | |
|         for (i=0 ; i<q->channels ; i++) {
 | |
| 
 | |
|             /* Set the bitstream reader at the start of a channel sound unit. */
 | |
|             init_get_bits(&q->gb,
 | |
|                           databuf + i * q->bytes_per_frame / q->channels,
 | |
|                           q->bits_per_frame / q->channels);
 | |
| 
 | |
|             result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], out_samples[i], i, q->codingMode);
 | |
|             if (result != 0)
 | |
|                 return (result);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Apply the iQMF synthesis filter. */
 | |
|     for (i=0 ; i<q->channels ; i++) {
 | |
|         p1 = out_samples[i];
 | |
|         p2= p1+256;
 | |
|         p3= p2+256;
 | |
|         p4= p3+256;
 | |
|         atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
 | |
|         atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
 | |
|         atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Atrac frame decoding
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static int atrac3_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                                int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
|     int result;
 | |
|     const uint8_t* databuf;
 | |
|     float   *samples_flt;
 | |
|     int16_t *samples_s16;
 | |
| 
 | |
|     if (buf_size < avctx->block_align) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Frame too small (%d bytes). Truncated file?\n", buf_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     q->frame.nb_samples = SAMPLES_PER_FRAME;
 | |
|     if ((result = avctx->get_buffer(avctx, &q->frame)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         return result;
 | |
|     }
 | |
|     samples_flt = (float   *)q->frame.data[0];
 | |
|     samples_s16 = (int16_t *)q->frame.data[0];
 | |
| 
 | |
|     /* Check if we need to descramble and what buffer to pass on. */
 | |
|     if (q->scrambled_stream) {
 | |
|         decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
 | |
|         databuf = q->decoded_bytes_buffer;
 | |
|     } else {
 | |
|         databuf = buf;
 | |
|     }
 | |
| 
 | |
|     if (q->channels == 1 && avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
 | |
|         result = decodeFrame(q, databuf, &samples_flt);
 | |
|     else
 | |
|         result = decodeFrame(q, databuf, q->outSamples);
 | |
| 
 | |
|     if (result != 0) {
 | |
|         av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     /* interleave */
 | |
|     if (q->channels == 2 && avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
 | |
|         q->fmt_conv.float_interleave(samples_flt,
 | |
|                                      (const float **)q->outSamples,
 | |
|                                      SAMPLES_PER_FRAME, 2);
 | |
|     } else if (avctx->sample_fmt == AV_SAMPLE_FMT_S16) {
 | |
|         q->fmt_conv.float_to_int16_interleave(samples_s16,
 | |
|                                               (const float **)q->outSamples,
 | |
|                                               SAMPLES_PER_FRAME, q->channels);
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr   = 1;
 | |
|     *(AVFrame *)data = q->frame;
 | |
| 
 | |
|     return avctx->block_align;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Atrac3 initialization
 | |
|  *
 | |
|  * @param avctx     pointer to the AVCodecContext
 | |
|  */
 | |
| 
 | |
| static av_cold int atrac3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int i, ret;
 | |
|     const uint8_t *edata_ptr = avctx->extradata;
 | |
|     ATRAC3Context *q = avctx->priv_data;
 | |
|     static VLC_TYPE atrac3_vlc_table[4096][2];
 | |
|     static int vlcs_initialized = 0;
 | |
| 
 | |
|     /* Take data from the AVCodecContext (RM container). */
 | |
|     q->sample_rate = avctx->sample_rate;
 | |
|     q->channels = avctx->channels;
 | |
|     q->bit_rate = avctx->bit_rate;
 | |
|     q->bits_per_frame = avctx->block_align * 8;
 | |
|     q->bytes_per_frame = avctx->block_align;
 | |
| 
 | |
|     /* Take care of the codec-specific extradata. */
 | |
|     if (avctx->extradata_size == 14) {
 | |
|         /* Parse the extradata, WAV format */
 | |
|         av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr));  //Unknown value always 1
 | |
|         q->samples_per_channel = bytestream_get_le32(&edata_ptr);
 | |
|         q->codingMode = bytestream_get_le16(&edata_ptr);
 | |
|         av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr));  //Dupe of coding mode
 | |
|         q->frame_factor = bytestream_get_le16(&edata_ptr);  //Unknown always 1
 | |
|         av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr));  //Unknown always 0
 | |
| 
 | |
|         /* setup */
 | |
|         q->samples_per_frame = SAMPLES_PER_FRAME * q->channels;
 | |
|         q->atrac3version = 4;
 | |
|         q->delay = 0x88E;
 | |
|         if (q->codingMode)
 | |
|             q->codingMode = JOINT_STEREO;
 | |
|         else
 | |
|             q->codingMode = STEREO;
 | |
| 
 | |
|         q->scrambled_stream = 0;
 | |
| 
 | |
|         if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
 | |
|         } else {
 | |
|             av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|     } else if (avctx->extradata_size == 10) {
 | |
|         /* Parse the extradata, RM format. */
 | |
|         q->atrac3version = bytestream_get_be32(&edata_ptr);
 | |
|         q->samples_per_frame = bytestream_get_be16(&edata_ptr);
 | |
|         q->delay = bytestream_get_be16(&edata_ptr);
 | |
|         q->codingMode = bytestream_get_be16(&edata_ptr);
 | |
| 
 | |
|         q->samples_per_channel = q->samples_per_frame / q->channels;
 | |
|         q->scrambled_stream = 1;
 | |
| 
 | |
|     } else {
 | |
|         av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
 | |
|     }
 | |
|     /* Check the extradata. */
 | |
| 
 | |
|     if (q->atrac3version != 4) {
 | |
|         av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (q->samples_per_frame != SAMPLES_PER_FRAME && q->samples_per_frame != SAMPLES_PER_FRAME*2) {
 | |
|         av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (q->delay != 0x88E) {
 | |
|         av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (q->codingMode == STEREO) {
 | |
|         av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
 | |
|     } else if (q->codingMode == JOINT_STEREO) {
 | |
|         av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
 | |
|     } else {
 | |
|         av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
 | |
|         av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if(avctx->block_align >= UINT_MAX/2)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
 | |
|      * this is for the bitstream reader. */
 | |
|     if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)))  == NULL)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
| 
 | |
|     /* Initialize the VLC tables. */
 | |
|     if (!vlcs_initialized) {
 | |
|         for (i=0 ; i<7 ; i++) {
 | |
|             spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
 | |
|             spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
 | |
|             init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
 | |
|                 huff_bits[i], 1, 1,
 | |
|                 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
 | |
|         }
 | |
|         vlcs_initialized = 1;
 | |
|     }
 | |
| 
 | |
|     if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT)
 | |
|         avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
 | |
|     else
 | |
|         avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | |
| 
 | |
|     if ((ret = init_atrac3_transforms(q, avctx->sample_fmt == AV_SAMPLE_FMT_FLT))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
 | |
|         av_freep(&q->decoded_bytes_buffer);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     atrac_generate_tables();
 | |
| 
 | |
|     /* Generate gain tables. */
 | |
|     for (i=0 ; i<16 ; i++)
 | |
|         gain_tab1[i] = powf (2.0, (4 - i));
 | |
| 
 | |
|     for (i=-15 ; i<16 ; i++)
 | |
|         gain_tab2[i+15] = powf (2.0, i * -0.125);
 | |
| 
 | |
|     /* init the joint-stereo decoding data */
 | |
|     q->weighting_delay[0] = 0;
 | |
|     q->weighting_delay[1] = 7;
 | |
|     q->weighting_delay[2] = 0;
 | |
|     q->weighting_delay[3] = 7;
 | |
|     q->weighting_delay[4] = 0;
 | |
|     q->weighting_delay[5] = 7;
 | |
| 
 | |
|     for (i=0; i<4; i++) {
 | |
|         q->matrix_coeff_index_prev[i] = 3;
 | |
|         q->matrix_coeff_index_now[i] = 3;
 | |
|         q->matrix_coeff_index_next[i] = 3;
 | |
|     }
 | |
| 
 | |
|     dsputil_init(&dsp, avctx);
 | |
|     ff_fmt_convert_init(&q->fmt_conv, avctx);
 | |
| 
 | |
|     q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
 | |
|     if (!q->pUnits) {
 | |
|         atrac3_decode_close(avctx);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     if (avctx->channels > 1 || avctx->sample_fmt == AV_SAMPLE_FMT_S16) {
 | |
|         q->outSamples[0] = av_mallocz(SAMPLES_PER_FRAME * avctx->channels * sizeof(*q->outSamples[0]));
 | |
|         q->outSamples[1] = q->outSamples[0] + SAMPLES_PER_FRAME;
 | |
|         if (!q->outSamples[0]) {
 | |
|             atrac3_decode_close(avctx);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     avcodec_get_frame_defaults(&q->frame);
 | |
|     avctx->coded_frame = &q->frame;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| AVCodec ff_atrac3_decoder =
 | |
| {
 | |
|     .name = "atrac3",
 | |
|     .type = AVMEDIA_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_ATRAC3,
 | |
|     .priv_data_size = sizeof(ATRAC3Context),
 | |
|     .init = atrac3_decode_init,
 | |
|     .close = atrac3_decode_close,
 | |
|     .decode = atrac3_decode_frame,
 | |
|     .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),
 | |
| };
 |