mirror of
				https://github.com/nyanmisaka/ffmpeg-rockchip.git
				synced 2025-11-01 04:53:04 +08:00 
			
		
		
		
	 a94eba6f0c
			
		
	
	a94eba6f0c
	
	
	
		
			
			* commit '7f9f771eac0d37a632e0ed9bd89961d57fcfb7e0': avcodec: Don't anonymously typedef structs Conflicts: libavcodec/alac.c libavcodec/cinepak.c libavcodec/cscd.c libavcodec/dcadec.c libavcodec/g723_1.c libavcodec/gif.c libavcodec/iff.c libavcodec/kgv1dec.c libavcodec/libopenjpegenc.c libavcodec/libspeexenc.c libavcodec/ra288.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			2076 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2076 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Windows Media Audio Voice decoder.
 | |
|  * Copyright (c) 2009 Ronald S. Bultje
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * @brief Windows Media Audio Voice compatible decoder
 | |
|  * @author Ronald S. Bultje <rsbultje@gmail.com>
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/mem.h"
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "get_bits.h"
 | |
| #include "put_bits.h"
 | |
| #include "wmavoice_data.h"
 | |
| #include "celp_filters.h"
 | |
| #include "acelp_vectors.h"
 | |
| #include "acelp_filters.h"
 | |
| #include "lsp.h"
 | |
| #include "dct.h"
 | |
| #include "rdft.h"
 | |
| #include "sinewin.h"
 | |
| 
 | |
| #define MAX_BLOCKS           8   ///< maximum number of blocks per frame
 | |
| #define MAX_LSPS             16  ///< maximum filter order
 | |
| #define MAX_LSPS_ALIGN16     16  ///< same as #MAX_LSPS; needs to be multiple
 | |
|                                  ///< of 16 for ASM input buffer alignment
 | |
| #define MAX_FRAMES           3   ///< maximum number of frames per superframe
 | |
| #define MAX_FRAMESIZE        160 ///< maximum number of samples per frame
 | |
| #define MAX_SIGNAL_HISTORY   416 ///< maximum excitation signal history
 | |
| #define MAX_SFRAMESIZE       (MAX_FRAMESIZE * MAX_FRAMES)
 | |
|                                  ///< maximum number of samples per superframe
 | |
| #define SFRAME_CACHE_MAXSIZE 256 ///< maximum cache size for frame data that
 | |
|                                  ///< was split over two packets
 | |
| #define VLC_NBITS            6   ///< number of bits to read per VLC iteration
 | |
| 
 | |
| /**
 | |
|  * Frame type VLC coding.
 | |
|  */
 | |
| static VLC frame_type_vlc;
 | |
| 
 | |
| /**
 | |
|  * Adaptive codebook types.
 | |
|  */
 | |
| enum {
 | |
|     ACB_TYPE_NONE       = 0, ///< no adaptive codebook (only hardcoded fixed)
 | |
|     ACB_TYPE_ASYMMETRIC = 1, ///< adaptive codebook with per-frame pitch, which
 | |
|                              ///< we interpolate to get a per-sample pitch.
 | |
|                              ///< Signal is generated using an asymmetric sinc
 | |
|                              ///< window function
 | |
|                              ///< @note see #wmavoice_ipol1_coeffs
 | |
|     ACB_TYPE_HAMMING    = 2  ///< Per-block pitch with signal generation using
 | |
|                              ///< a Hamming sinc window function
 | |
|                              ///< @note see #wmavoice_ipol2_coeffs
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Fixed codebook types.
 | |
|  */
 | |
| enum {
 | |
|     FCB_TYPE_SILENCE    = 0, ///< comfort noise during silence
 | |
|                              ///< generated from a hardcoded (fixed) codebook
 | |
|                              ///< with per-frame (low) gain values
 | |
|     FCB_TYPE_HARDCODED  = 1, ///< hardcoded (fixed) codebook with per-block
 | |
|                              ///< gain values
 | |
|     FCB_TYPE_AW_PULSES  = 2, ///< Pitch-adaptive window (AW) pulse signals,
 | |
|                              ///< used in particular for low-bitrate streams
 | |
|     FCB_TYPE_EXC_PULSES = 3, ///< Innovation (fixed) codebook pulse sets in
 | |
|                              ///< combinations of either single pulses or
 | |
|                              ///< pulse pairs
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Description of frame types.
 | |
|  */
 | |
| static const struct frame_type_desc {
 | |
|     uint8_t n_blocks;     ///< amount of blocks per frame (each block
 | |
|                           ///< (contains 160/#n_blocks samples)
 | |
|     uint8_t log_n_blocks; ///< log2(#n_blocks)
 | |
|     uint8_t acb_type;     ///< Adaptive codebook type (ACB_TYPE_*)
 | |
|     uint8_t fcb_type;     ///< Fixed codebook type (FCB_TYPE_*)
 | |
|     uint8_t dbl_pulses;   ///< how many pulse vectors have pulse pairs
 | |
|                           ///< (rather than just one single pulse)
 | |
|                           ///< only if #fcb_type == #FCB_TYPE_EXC_PULSES
 | |
|     uint16_t frame_size;  ///< the amount of bits that make up the block
 | |
|                           ///< data (per frame)
 | |
| } frame_descs[17] = {
 | |
|     { 1, 0, ACB_TYPE_NONE,       FCB_TYPE_SILENCE,    0,   0 },
 | |
|     { 2, 1, ACB_TYPE_NONE,       FCB_TYPE_HARDCODED,  0,  28 },
 | |
|     { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_AW_PULSES,  0,  46 },
 | |
|     { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2,  80 },
 | |
|     { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 104 },
 | |
|     { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 0, 108 },
 | |
|     { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 132 },
 | |
|     { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 168 },
 | |
|     { 2, 1, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 0,  64 },
 | |
|     { 2, 1, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 2,  80 },
 | |
|     { 2, 1, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 5, 104 },
 | |
|     { 4, 2, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 0, 108 },
 | |
|     { 4, 2, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 2, 132 },
 | |
|     { 4, 2, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 5, 168 },
 | |
|     { 8, 3, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 0, 176 },
 | |
|     { 8, 3, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 2, 208 },
 | |
|     { 8, 3, ACB_TYPE_HAMMING,    FCB_TYPE_EXC_PULSES, 5, 256 }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * WMA Voice decoding context.
 | |
|  */
 | |
| typedef struct WMAVoiceContext {
 | |
|     /**
 | |
|      * @name Global values specified in the stream header / extradata or used all over.
 | |
|      * @{
 | |
|      */
 | |
|     GetBitContext gb;             ///< packet bitreader. During decoder init,
 | |
|                                   ///< it contains the extradata from the
 | |
|                                   ///< demuxer. During decoding, it contains
 | |
|                                   ///< packet data.
 | |
|     int8_t vbm_tree[25];          ///< converts VLC codes to frame type
 | |
| 
 | |
|     int spillover_bitsize;        ///< number of bits used to specify
 | |
|                                   ///< #spillover_nbits in the packet header
 | |
|                                   ///< = ceil(log2(ctx->block_align << 3))
 | |
|     int history_nsamples;         ///< number of samples in history for signal
 | |
|                                   ///< prediction (through ACB)
 | |
| 
 | |
|     /* postfilter specific values */
 | |
|     int do_apf;                   ///< whether to apply the averaged
 | |
|                                   ///< projection filter (APF)
 | |
|     int denoise_strength;         ///< strength of denoising in Wiener filter
 | |
|                                   ///< [0-11]
 | |
|     int denoise_tilt_corr;        ///< Whether to apply tilt correction to the
 | |
|                                   ///< Wiener filter coefficients (postfilter)
 | |
|     int dc_level;                 ///< Predicted amount of DC noise, based
 | |
|                                   ///< on which a DC removal filter is used
 | |
| 
 | |
|     int lsps;                     ///< number of LSPs per frame [10 or 16]
 | |
|     int lsp_q_mode;               ///< defines quantizer defaults [0, 1]
 | |
|     int lsp_def_mode;             ///< defines different sets of LSP defaults
 | |
|                                   ///< [0, 1]
 | |
|     int frame_lsp_bitsize;        ///< size (in bits) of LSPs, when encoded
 | |
|                                   ///< per-frame (independent coding)
 | |
|     int sframe_lsp_bitsize;       ///< size (in bits) of LSPs, when encoded
 | |
|                                   ///< per superframe (residual coding)
 | |
| 
 | |
|     int min_pitch_val;            ///< base value for pitch parsing code
 | |
|     int max_pitch_val;            ///< max value + 1 for pitch parsing
 | |
|     int pitch_nbits;              ///< number of bits used to specify the
 | |
|                                   ///< pitch value in the frame header
 | |
|     int block_pitch_nbits;        ///< number of bits used to specify the
 | |
|                                   ///< first block's pitch value
 | |
|     int block_pitch_range;        ///< range of the block pitch
 | |
|     int block_delta_pitch_nbits;  ///< number of bits used to specify the
 | |
|                                   ///< delta pitch between this and the last
 | |
|                                   ///< block's pitch value, used in all but
 | |
|                                   ///< first block
 | |
|     int block_delta_pitch_hrange; ///< 1/2 range of the delta (full range is
 | |
|                                   ///< from -this to +this-1)
 | |
|     uint16_t block_conv_table[4]; ///< boundaries for block pitch unit/scale
 | |
|                                   ///< conversion
 | |
| 
 | |
|     /**
 | |
|      * @}
 | |
|      *
 | |
|      * @name Packet values specified in the packet header or related to a packet.
 | |
|      *
 | |
|      * A packet is considered to be a single unit of data provided to this
 | |
|      * decoder by the demuxer.
 | |
|      * @{
 | |
|      */
 | |
|     int spillover_nbits;          ///< number of bits of the previous packet's
 | |
|                                   ///< last superframe preceding this
 | |
|                                   ///< packet's first full superframe (useful
 | |
|                                   ///< for re-synchronization also)
 | |
|     int has_residual_lsps;        ///< if set, superframes contain one set of
 | |
|                                   ///< LSPs that cover all frames, encoded as
 | |
|                                   ///< independent and residual LSPs; if not
 | |
|                                   ///< set, each frame contains its own, fully
 | |
|                                   ///< independent, LSPs
 | |
|     int skip_bits_next;           ///< number of bits to skip at the next call
 | |
|                                   ///< to #wmavoice_decode_packet() (since
 | |
|                                   ///< they're part of the previous superframe)
 | |
| 
 | |
|     uint8_t sframe_cache[SFRAME_CACHE_MAXSIZE + FF_INPUT_BUFFER_PADDING_SIZE];
 | |
|                                   ///< cache for superframe data split over
 | |
|                                   ///< multiple packets
 | |
|     int sframe_cache_size;        ///< set to >0 if we have data from an
 | |
|                                   ///< (incomplete) superframe from a previous
 | |
|                                   ///< packet that spilled over in the current
 | |
|                                   ///< packet; specifies the amount of bits in
 | |
|                                   ///< #sframe_cache
 | |
|     PutBitContext pb;             ///< bitstream writer for #sframe_cache
 | |
| 
 | |
|     /**
 | |
|      * @}
 | |
|      *
 | |
|      * @name Frame and superframe values
 | |
|      * Superframe and frame data - these can change from frame to frame,
 | |
|      * although some of them do in that case serve as a cache / history for
 | |
|      * the next frame or superframe.
 | |
|      * @{
 | |
|      */
 | |
|     double prev_lsps[MAX_LSPS];   ///< LSPs of the last frame of the previous
 | |
|                                   ///< superframe
 | |
|     int last_pitch_val;           ///< pitch value of the previous frame
 | |
|     int last_acb_type;            ///< frame type [0-2] of the previous frame
 | |
|     int pitch_diff_sh16;          ///< ((cur_pitch_val - #last_pitch_val)
 | |
|                                   ///< << 16) / #MAX_FRAMESIZE
 | |
|     float silence_gain;           ///< set for use in blocks if #ACB_TYPE_NONE
 | |
| 
 | |
|     int aw_idx_is_ext;            ///< whether the AW index was encoded in
 | |
|                                   ///< 8 bits (instead of 6)
 | |
|     int aw_pulse_range;           ///< the range over which #aw_pulse_set1()
 | |
|                                   ///< can apply the pulse, relative to the
 | |
|                                   ///< value in aw_first_pulse_off. The exact
 | |
|                                   ///< position of the first AW-pulse is within
 | |
|                                   ///< [pulse_off, pulse_off + this], and
 | |
|                                   ///< depends on bitstream values; [16 or 24]
 | |
|     int aw_n_pulses[2];           ///< number of AW-pulses in each block; note
 | |
|                                   ///< that this number can be negative (in
 | |
|                                   ///< which case it basically means "zero")
 | |
|     int aw_first_pulse_off[2];    ///< index of first sample to which to
 | |
|                                   ///< apply AW-pulses, or -0xff if unset
 | |
|     int aw_next_pulse_off_cache;  ///< the position (relative to start of the
 | |
|                                   ///< second block) at which pulses should
 | |
|                                   ///< start to be positioned, serves as a
 | |
|                                   ///< cache for pitch-adaptive window pulses
 | |
|                                   ///< between blocks
 | |
| 
 | |
|     int frame_cntr;               ///< current frame index [0 - 0xFFFE]; is
 | |
|                                   ///< only used for comfort noise in #pRNG()
 | |
|     float gain_pred_err[6];       ///< cache for gain prediction
 | |
|     float excitation_history[MAX_SIGNAL_HISTORY];
 | |
|                                   ///< cache of the signal of previous
 | |
|                                   ///< superframes, used as a history for
 | |
|                                   ///< signal generation
 | |
|     float synth_history[MAX_LSPS]; ///< see #excitation_history
 | |
|     /**
 | |
|      * @}
 | |
|      *
 | |
|      * @name Postfilter values
 | |
|      *
 | |
|      * Variables used for postfilter implementation, mostly history for
 | |
|      * smoothing and so on, and context variables for FFT/iFFT.
 | |
|      * @{
 | |
|      */
 | |
|     RDFTContext rdft, irdft;      ///< contexts for FFT-calculation in the
 | |
|                                   ///< postfilter (for denoise filter)
 | |
|     DCTContext dct, dst;          ///< contexts for phase shift (in Hilbert
 | |
|                                   ///< transform, part of postfilter)
 | |
|     float sin[511], cos[511];     ///< 8-bit cosine/sine windows over [-pi,pi]
 | |
|                                   ///< range
 | |
|     float postfilter_agc;         ///< gain control memory, used in
 | |
|                                   ///< #adaptive_gain_control()
 | |
|     float dcf_mem[2];             ///< DC filter history
 | |
|     float zero_exc_pf[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE];
 | |
|                                   ///< zero filter output (i.e. excitation)
 | |
|                                   ///< by postfilter
 | |
|     float denoise_filter_cache[MAX_FRAMESIZE];
 | |
|     int   denoise_filter_cache_size; ///< samples in #denoise_filter_cache
 | |
|     DECLARE_ALIGNED(32, float, tilted_lpcs_pf)[0x80];
 | |
|                                   ///< aligned buffer for LPC tilting
 | |
|     DECLARE_ALIGNED(32, float, denoise_coeffs_pf)[0x80];
 | |
|                                   ///< aligned buffer for denoise coefficients
 | |
|     DECLARE_ALIGNED(32, float, synth_filter_out_buf)[0x80 + MAX_LSPS_ALIGN16];
 | |
|                                   ///< aligned buffer for postfilter speech
 | |
|                                   ///< synthesis
 | |
|     /**
 | |
|      * @}
 | |
|      */
 | |
| } WMAVoiceContext;
 | |
| 
 | |
| /**
 | |
|  * Set up the variable bit mode (VBM) tree from container extradata.
 | |
|  * @param gb bit I/O context.
 | |
|  *           The bit context (s->gb) should be loaded with byte 23-46 of the
 | |
|  *           container extradata (i.e. the ones containing the VBM tree).
 | |
|  * @param vbm_tree pointer to array to which the decoded VBM tree will be
 | |
|  *                 written.
 | |
|  * @return 0 on success, <0 on error.
 | |
|  */
 | |
| static av_cold int decode_vbmtree(GetBitContext *gb, int8_t vbm_tree[25])
 | |
| {
 | |
|     int cntr[8] = { 0 }, n, res;
 | |
| 
 | |
|     memset(vbm_tree, 0xff, sizeof(vbm_tree[0]) * 25);
 | |
|     for (n = 0; n < 17; n++) {
 | |
|         res = get_bits(gb, 3);
 | |
|         if (cntr[res] > 3) // should be >= 3 + (res == 7))
 | |
|             return -1;
 | |
|         vbm_tree[res * 3 + cntr[res]++] = n;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void wmavoice_init_static_data(AVCodec *codec)
 | |
| {
 | |
|     static const uint8_t bits[] = {
 | |
|          2,  2,  2,  4,  4,  4,
 | |
|          6,  6,  6,  8,  8,  8,
 | |
|         10, 10, 10, 12, 12, 12,
 | |
|         14, 14, 14, 14
 | |
|     };
 | |
|     static const uint16_t codes[] = {
 | |
|           0x0000, 0x0001, 0x0002,        //              00/01/10
 | |
|           0x000c, 0x000d, 0x000e,        //           11+00/01/10
 | |
|           0x003c, 0x003d, 0x003e,        //         1111+00/01/10
 | |
|           0x00fc, 0x00fd, 0x00fe,        //       111111+00/01/10
 | |
|           0x03fc, 0x03fd, 0x03fe,        //     11111111+00/01/10
 | |
|           0x0ffc, 0x0ffd, 0x0ffe,        //   1111111111+00/01/10
 | |
|           0x3ffc, 0x3ffd, 0x3ffe, 0x3fff // 111111111111+xx
 | |
|     };
 | |
| 
 | |
|     INIT_VLC_STATIC(&frame_type_vlc, VLC_NBITS, sizeof(bits),
 | |
|                     bits, 1, 1, codes, 2, 2, 132);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set up decoder with parameters from demuxer (extradata etc.).
 | |
|  */
 | |
| static av_cold int wmavoice_decode_init(AVCodecContext *ctx)
 | |
| {
 | |
|     int n, flags, pitch_range, lsp16_flag;
 | |
|     WMAVoiceContext *s = ctx->priv_data;
 | |
| 
 | |
|     /**
 | |
|      * Extradata layout:
 | |
|      * - byte  0-18: WMAPro-in-WMAVoice extradata (see wmaprodec.c),
 | |
|      * - byte 19-22: flags field (annoyingly in LE; see below for known
 | |
|      *               values),
 | |
|      * - byte 23-46: variable bitmode tree (really just 17 * 3 bits,
 | |
|      *               rest is 0).
 | |
|      */
 | |
|     if (ctx->extradata_size != 46) {
 | |
|         av_log(ctx, AV_LOG_ERROR,
 | |
|                "Invalid extradata size %d (should be 46)\n",
 | |
|                ctx->extradata_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     flags                = AV_RL32(ctx->extradata + 18);
 | |
|     s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align);
 | |
|     s->do_apf            =    flags & 0x1;
 | |
|     if (s->do_apf) {
 | |
|         ff_rdft_init(&s->rdft,  7, DFT_R2C);
 | |
|         ff_rdft_init(&s->irdft, 7, IDFT_C2R);
 | |
|         ff_dct_init(&s->dct,  6, DCT_I);
 | |
|         ff_dct_init(&s->dst,  6, DST_I);
 | |
| 
 | |
|         ff_sine_window_init(s->cos, 256);
 | |
|         memcpy(&s->sin[255], s->cos, 256 * sizeof(s->cos[0]));
 | |
|         for (n = 0; n < 255; n++) {
 | |
|             s->sin[n]       = -s->sin[510 - n];
 | |
|             s->cos[510 - n] =  s->cos[n];
 | |
|         }
 | |
|     }
 | |
|     s->denoise_strength  =   (flags >> 2) & 0xF;
 | |
|     if (s->denoise_strength >= 12) {
 | |
|         av_log(ctx, AV_LOG_ERROR,
 | |
|                "Invalid denoise filter strength %d (max=11)\n",
 | |
|                s->denoise_strength);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->denoise_tilt_corr = !!(flags & 0x40);
 | |
|     s->dc_level          =   (flags >> 7) & 0xF;
 | |
|     s->lsp_q_mode        = !!(flags & 0x2000);
 | |
|     s->lsp_def_mode      = !!(flags & 0x4000);
 | |
|     lsp16_flag           =    flags & 0x1000;
 | |
|     if (lsp16_flag) {
 | |
|         s->lsps               = 16;
 | |
|         s->frame_lsp_bitsize  = 34;
 | |
|         s->sframe_lsp_bitsize = 60;
 | |
|     } else {
 | |
|         s->lsps               = 10;
 | |
|         s->frame_lsp_bitsize  = 24;
 | |
|         s->sframe_lsp_bitsize = 48;
 | |
|     }
 | |
|     for (n = 0; n < s->lsps; n++)
 | |
|         s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
 | |
| 
 | |
|     init_get_bits(&s->gb, ctx->extradata + 22, (ctx->extradata_size - 22) << 3);
 | |
|     if (decode_vbmtree(&s->gb, s->vbm_tree) < 0) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Invalid VBM tree; broken extradata?\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     s->min_pitch_val    = ((ctx->sample_rate << 8)      /  400 + 50) >> 8;
 | |
|     s->max_pitch_val    = ((ctx->sample_rate << 8) * 37 / 2000 + 50) >> 8;
 | |
|     pitch_range         = s->max_pitch_val - s->min_pitch_val;
 | |
|     if (pitch_range <= 0) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Invalid pitch range; broken extradata?\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->pitch_nbits      = av_ceil_log2(pitch_range);
 | |
|     s->last_pitch_val   = 40;
 | |
|     s->last_acb_type    = ACB_TYPE_NONE;
 | |
|     s->history_nsamples = s->max_pitch_val + 8;
 | |
| 
 | |
|     if (s->min_pitch_val < 1 || s->history_nsamples > MAX_SIGNAL_HISTORY) {
 | |
|         int min_sr = ((((1 << 8) - 50) * 400) + 0xFF) >> 8,
 | |
|             max_sr = ((((MAX_SIGNAL_HISTORY - 8) << 8) + 205) * 2000 / 37) >> 8;
 | |
| 
 | |
|         av_log(ctx, AV_LOG_ERROR,
 | |
|                "Unsupported samplerate %d (min=%d, max=%d)\n",
 | |
|                ctx->sample_rate, min_sr, max_sr); // 322-22097 Hz
 | |
| 
 | |
|         return AVERROR(ENOSYS);
 | |
|     }
 | |
| 
 | |
|     s->block_conv_table[0]      = s->min_pitch_val;
 | |
|     s->block_conv_table[1]      = (pitch_range * 25) >> 6;
 | |
|     s->block_conv_table[2]      = (pitch_range * 44) >> 6;
 | |
|     s->block_conv_table[3]      = s->max_pitch_val - 1;
 | |
|     s->block_delta_pitch_hrange = (pitch_range >> 3) & ~0xF;
 | |
|     if (s->block_delta_pitch_hrange <= 0) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Invalid delta pitch hrange; broken extradata?\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->block_delta_pitch_nbits  = 1 + av_ceil_log2(s->block_delta_pitch_hrange);
 | |
|     s->block_pitch_range        = s->block_conv_table[2] +
 | |
|                                   s->block_conv_table[3] + 1 +
 | |
|                                   2 * (s->block_conv_table[1] - 2 * s->min_pitch_val);
 | |
|     s->block_pitch_nbits        = av_ceil_log2(s->block_pitch_range);
 | |
| 
 | |
|     ctx->channels               = 1;
 | |
|     ctx->channel_layout         = AV_CH_LAYOUT_MONO;
 | |
|     ctx->sample_fmt             = AV_SAMPLE_FMT_FLT;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @name Postfilter functions
 | |
|  * Postfilter functions (gain control, wiener denoise filter, DC filter,
 | |
|  * kalman smoothening, plus surrounding code to wrap it)
 | |
|  * @{
 | |
|  */
 | |
| /**
 | |
|  * Adaptive gain control (as used in postfilter).
 | |
|  *
 | |
|  * Identical to #ff_adaptive_gain_control() in acelp_vectors.c, except
 | |
|  * that the energy here is calculated using sum(abs(...)), whereas the
 | |
|  * other codecs (e.g. AMR-NB, SIPRO) use sqrt(dotproduct(...)).
 | |
|  *
 | |
|  * @param out output buffer for filtered samples
 | |
|  * @param in input buffer containing the samples as they are after the
 | |
|  *           postfilter steps so far
 | |
|  * @param speech_synth input buffer containing speech synth before postfilter
 | |
|  * @param size input buffer size
 | |
|  * @param alpha exponential filter factor
 | |
|  * @param gain_mem pointer to filter memory (single float)
 | |
|  */
 | |
| static void adaptive_gain_control(float *out, const float *in,
 | |
|                                   const float *speech_synth,
 | |
|                                   int size, float alpha, float *gain_mem)
 | |
| {
 | |
|     int i;
 | |
|     float speech_energy = 0.0, postfilter_energy = 0.0, gain_scale_factor;
 | |
|     float mem = *gain_mem;
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         speech_energy     += fabsf(speech_synth[i]);
 | |
|         postfilter_energy += fabsf(in[i]);
 | |
|     }
 | |
|     gain_scale_factor = (1.0 - alpha) * speech_energy / postfilter_energy;
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         mem = alpha * mem + gain_scale_factor;
 | |
|         out[i] = in[i] * mem;
 | |
|     }
 | |
| 
 | |
|     *gain_mem = mem;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Kalman smoothing function.
 | |
|  *
 | |
|  * This function looks back pitch +/- 3 samples back into history to find
 | |
|  * the best fitting curve (that one giving the optimal gain of the two
 | |
|  * signals, i.e. the highest dot product between the two), and then
 | |
|  * uses that signal history to smoothen the output of the speech synthesis
 | |
|  * filter.
 | |
|  *
 | |
|  * @param s WMA Voice decoding context
 | |
|  * @param pitch pitch of the speech signal
 | |
|  * @param in input speech signal
 | |
|  * @param out output pointer for smoothened signal
 | |
|  * @param size input/output buffer size
 | |
|  *
 | |
|  * @returns -1 if no smoothening took place, e.g. because no optimal
 | |
|  *          fit could be found, or 0 on success.
 | |
|  */
 | |
| static int kalman_smoothen(WMAVoiceContext *s, int pitch,
 | |
|                            const float *in, float *out, int size)
 | |
| {
 | |
|     int n;
 | |
|     float optimal_gain = 0, dot;
 | |
|     const float *ptr = &in[-FFMAX(s->min_pitch_val, pitch - 3)],
 | |
|                 *end = &in[-FFMIN(s->max_pitch_val, pitch + 3)],
 | |
|                 *best_hist_ptr = NULL;
 | |
| 
 | |
|     /* find best fitting point in history */
 | |
|     do {
 | |
|         dot = avpriv_scalarproduct_float_c(in, ptr, size);
 | |
|         if (dot > optimal_gain) {
 | |
|             optimal_gain  = dot;
 | |
|             best_hist_ptr = ptr;
 | |
|         }
 | |
|     } while (--ptr >= end);
 | |
| 
 | |
|     if (optimal_gain <= 0)
 | |
|         return -1;
 | |
|     dot = avpriv_scalarproduct_float_c(best_hist_ptr, best_hist_ptr, size);
 | |
|     if (dot <= 0) // would be 1.0
 | |
|         return -1;
 | |
| 
 | |
|     if (optimal_gain <= dot) {
 | |
|         dot = dot / (dot + 0.6 * optimal_gain); // 0.625-1.000
 | |
|     } else
 | |
|         dot = 0.625;
 | |
| 
 | |
|     /* actual smoothing */
 | |
|     for (n = 0; n < size; n++)
 | |
|         out[n] = best_hist_ptr[n] + dot * (in[n] - best_hist_ptr[n]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the tilt factor of a formant filter from its transfer function
 | |
|  * @see #tilt_factor() in amrnbdec.c, which does essentially the same,
 | |
|  *      but somehow (??) it does a speech synthesis filter in the
 | |
|  *      middle, which is missing here
 | |
|  *
 | |
|  * @param lpcs LPC coefficients
 | |
|  * @param n_lpcs Size of LPC buffer
 | |
|  * @returns the tilt factor
 | |
|  */
 | |
| static float tilt_factor(const float *lpcs, int n_lpcs)
 | |
| {
 | |
|     float rh0, rh1;
 | |
| 
 | |
|     rh0 = 1.0     + avpriv_scalarproduct_float_c(lpcs,  lpcs,    n_lpcs);
 | |
|     rh1 = lpcs[0] + avpriv_scalarproduct_float_c(lpcs, &lpcs[1], n_lpcs - 1);
 | |
| 
 | |
|     return rh1 / rh0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Derive denoise filter coefficients (in real domain) from the LPCs.
 | |
|  */
 | |
| static void calc_input_response(WMAVoiceContext *s, float *lpcs,
 | |
|                                 int fcb_type, float *coeffs, int remainder)
 | |
| {
 | |
|     float last_coeff, min = 15.0, max = -15.0;
 | |
|     float irange, angle_mul, gain_mul, range, sq;
 | |
|     int n, idx;
 | |
| 
 | |
|     /* Create frequency power spectrum of speech input (i.e. RDFT of LPCs) */
 | |
|     s->rdft.rdft_calc(&s->rdft, lpcs);
 | |
| #define log_range(var, assign) do { \
 | |
|         float tmp = log10f(assign);  var = tmp; \
 | |
|         max       = FFMAX(max, tmp); min = FFMIN(min, tmp); \
 | |
|     } while (0)
 | |
|     log_range(last_coeff,  lpcs[1]         * lpcs[1]);
 | |
|     for (n = 1; n < 64; n++)
 | |
|         log_range(lpcs[n], lpcs[n * 2]     * lpcs[n * 2] +
 | |
|                            lpcs[n * 2 + 1] * lpcs[n * 2 + 1]);
 | |
|     log_range(lpcs[0],     lpcs[0]         * lpcs[0]);
 | |
| #undef log_range
 | |
|     range    = max - min;
 | |
|     lpcs[64] = last_coeff;
 | |
| 
 | |
|     /* Now, use this spectrum to pick out these frequencies with higher
 | |
|      * (relative) power/energy (which we then take to be "not noise"),
 | |
|      * and set up a table (still in lpc[]) of (relative) gains per frequency.
 | |
|      * These frequencies will be maintained, while others ("noise") will be
 | |
|      * decreased in the filter output. */
 | |
|     irange    = 64.0 / range; // so irange*(max-value) is in the range [0, 63]
 | |
|     gain_mul  = range * (fcb_type == FCB_TYPE_HARDCODED ? (5.0 / 13.0) :
 | |
|                                                           (5.0 / 14.7));
 | |
|     angle_mul = gain_mul * (8.0 * M_LN10 / M_PI);
 | |
|     for (n = 0; n <= 64; n++) {
 | |
|         float pwr;
 | |
| 
 | |
|         idx = FFMAX(0, lrint((max - lpcs[n]) * irange) - 1);
 | |
|         pwr = wmavoice_denoise_power_table[s->denoise_strength][idx];
 | |
|         lpcs[n] = angle_mul * pwr;
 | |
| 
 | |
|         /* 70.57 =~ 1/log10(1.0331663) */
 | |
|         idx = (pwr * gain_mul - 0.0295) * 70.570526123;
 | |
|         if (idx > 127) { // fall back if index falls outside table range
 | |
|             coeffs[n] = wmavoice_energy_table[127] *
 | |
|                         powf(1.0331663, idx - 127);
 | |
|         } else
 | |
|             coeffs[n] = wmavoice_energy_table[FFMAX(0, idx)];
 | |
|     }
 | |
| 
 | |
|     /* calculate the Hilbert transform of the gains, which we do (since this
 | |
|      * is a sine input) by doing a phase shift (in theory, H(sin())=cos()).
 | |
|      * Hilbert_Transform(RDFT(x)) = Laplace_Transform(x), which calculates the
 | |
|      * "moment" of the LPCs in this filter. */
 | |
|     s->dct.dct_calc(&s->dct, lpcs);
 | |
|     s->dst.dct_calc(&s->dst, lpcs);
 | |
| 
 | |
|     /* Split out the coefficient indexes into phase/magnitude pairs */
 | |
|     idx = 255 + av_clip(lpcs[64],               -255, 255);
 | |
|     coeffs[0]  = coeffs[0]  * s->cos[idx];
 | |
|     idx = 255 + av_clip(lpcs[64] - 2 * lpcs[63], -255, 255);
 | |
|     last_coeff = coeffs[64] * s->cos[idx];
 | |
|     for (n = 63;; n--) {
 | |
|         idx = 255 + av_clip(-lpcs[64] - 2 * lpcs[n - 1], -255, 255);
 | |
|         coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
 | |
|         coeffs[n * 2]     = coeffs[n] * s->cos[idx];
 | |
| 
 | |
|         if (!--n) break;
 | |
| 
 | |
|         idx = 255 + av_clip( lpcs[64] - 2 * lpcs[n - 1], -255, 255);
 | |
|         coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
 | |
|         coeffs[n * 2]     = coeffs[n] * s->cos[idx];
 | |
|     }
 | |
|     coeffs[1] = last_coeff;
 | |
| 
 | |
|     /* move into real domain */
 | |
|     s->irdft.rdft_calc(&s->irdft, coeffs);
 | |
| 
 | |
|     /* tilt correction and normalize scale */
 | |
|     memset(&coeffs[remainder], 0, sizeof(coeffs[0]) * (128 - remainder));
 | |
|     if (s->denoise_tilt_corr) {
 | |
|         float tilt_mem = 0;
 | |
| 
 | |
|         coeffs[remainder - 1] = 0;
 | |
|         ff_tilt_compensation(&tilt_mem,
 | |
|                              -1.8 * tilt_factor(coeffs, remainder - 1),
 | |
|                              coeffs, remainder);
 | |
|     }
 | |
|     sq = (1.0 / 64.0) * sqrtf(1 / avpriv_scalarproduct_float_c(coeffs, coeffs,
 | |
|                                                                remainder));
 | |
|     for (n = 0; n < remainder; n++)
 | |
|         coeffs[n] *= sq;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This function applies a Wiener filter on the (noisy) speech signal as
 | |
|  * a means to denoise it.
 | |
|  *
 | |
|  * - take RDFT of LPCs to get the power spectrum of the noise + speech;
 | |
|  * - using this power spectrum, calculate (for each frequency) the Wiener
 | |
|  *    filter gain, which depends on the frequency power and desired level
 | |
|  *    of noise subtraction (when set too high, this leads to artifacts)
 | |
|  *    We can do this symmetrically over the X-axis (so 0-4kHz is the inverse
 | |
|  *    of 4-8kHz);
 | |
|  * - by doing a phase shift, calculate the Hilbert transform of this array
 | |
|  *    of per-frequency filter-gains to get the filtering coefficients;
 | |
|  * - smoothen/normalize/de-tilt these filter coefficients as desired;
 | |
|  * - take RDFT of noisy sound, apply the coefficients and take its IRDFT
 | |
|  *    to get the denoised speech signal;
 | |
|  * - the leftover (i.e. output of the IRDFT on denoised speech data beyond
 | |
|  *    the frame boundary) are saved and applied to subsequent frames by an
 | |
|  *    overlap-add method (otherwise you get clicking-artifacts).
 | |
|  *
 | |
|  * @param s WMA Voice decoding context
 | |
|  * @param fcb_type Frame (codebook) type
 | |
|  * @param synth_pf input: the noisy speech signal, output: denoised speech
 | |
|  *                 data; should be 16-byte aligned (for ASM purposes)
 | |
|  * @param size size of the speech data
 | |
|  * @param lpcs LPCs used to synthesize this frame's speech data
 | |
|  */
 | |
| static void wiener_denoise(WMAVoiceContext *s, int fcb_type,
 | |
|                            float *synth_pf, int size,
 | |
|                            const float *lpcs)
 | |
| {
 | |
|     int remainder, lim, n;
 | |
| 
 | |
|     if (fcb_type != FCB_TYPE_SILENCE) {
 | |
|         float *tilted_lpcs = s->tilted_lpcs_pf,
 | |
|               *coeffs = s->denoise_coeffs_pf, tilt_mem = 0;
 | |
| 
 | |
|         tilted_lpcs[0]           = 1.0;
 | |
|         memcpy(&tilted_lpcs[1], lpcs, sizeof(lpcs[0]) * s->lsps);
 | |
|         memset(&tilted_lpcs[s->lsps + 1], 0,
 | |
|                sizeof(tilted_lpcs[0]) * (128 - s->lsps - 1));
 | |
|         ff_tilt_compensation(&tilt_mem, 0.7 * tilt_factor(lpcs, s->lsps),
 | |
|                              tilted_lpcs, s->lsps + 2);
 | |
| 
 | |
|         /* The IRDFT output (127 samples for 7-bit filter) beyond the frame
 | |
|          * size is applied to the next frame. All input beyond this is zero,
 | |
|          * and thus all output beyond this will go towards zero, hence we can
 | |
|          * limit to min(size-1, 127-size) as a performance consideration. */
 | |
|         remainder = FFMIN(127 - size, size - 1);
 | |
|         calc_input_response(s, tilted_lpcs, fcb_type, coeffs, remainder);
 | |
| 
 | |
|         /* apply coefficients (in frequency spectrum domain), i.e. complex
 | |
|          * number multiplication */
 | |
|         memset(&synth_pf[size], 0, sizeof(synth_pf[0]) * (128 - size));
 | |
|         s->rdft.rdft_calc(&s->rdft, synth_pf);
 | |
|         s->rdft.rdft_calc(&s->rdft, coeffs);
 | |
|         synth_pf[0] *= coeffs[0];
 | |
|         synth_pf[1] *= coeffs[1];
 | |
|         for (n = 1; n < 64; n++) {
 | |
|             float v1 = synth_pf[n * 2], v2 = synth_pf[n * 2 + 1];
 | |
|             synth_pf[n * 2]     = v1 * coeffs[n * 2] - v2 * coeffs[n * 2 + 1];
 | |
|             synth_pf[n * 2 + 1] = v2 * coeffs[n * 2] + v1 * coeffs[n * 2 + 1];
 | |
|         }
 | |
|         s->irdft.rdft_calc(&s->irdft, synth_pf);
 | |
|     }
 | |
| 
 | |
|     /* merge filter output with the history of previous runs */
 | |
|     if (s->denoise_filter_cache_size) {
 | |
|         lim = FFMIN(s->denoise_filter_cache_size, size);
 | |
|         for (n = 0; n < lim; n++)
 | |
|             synth_pf[n] += s->denoise_filter_cache[n];
 | |
|         s->denoise_filter_cache_size -= lim;
 | |
|         memmove(s->denoise_filter_cache, &s->denoise_filter_cache[size],
 | |
|                 sizeof(s->denoise_filter_cache[0]) * s->denoise_filter_cache_size);
 | |
|     }
 | |
| 
 | |
|     /* move remainder of filter output into a cache for future runs */
 | |
|     if (fcb_type != FCB_TYPE_SILENCE) {
 | |
|         lim = FFMIN(remainder, s->denoise_filter_cache_size);
 | |
|         for (n = 0; n < lim; n++)
 | |
|             s->denoise_filter_cache[n] += synth_pf[size + n];
 | |
|         if (lim < remainder) {
 | |
|             memcpy(&s->denoise_filter_cache[lim], &synth_pf[size + lim],
 | |
|                    sizeof(s->denoise_filter_cache[0]) * (remainder - lim));
 | |
|             s->denoise_filter_cache_size = remainder;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Averaging projection filter, the postfilter used in WMAVoice.
 | |
|  *
 | |
|  * This uses the following steps:
 | |
|  * - A zero-synthesis filter (generate excitation from synth signal)
 | |
|  * - Kalman smoothing on excitation, based on pitch
 | |
|  * - Re-synthesized smoothened output
 | |
|  * - Iterative Wiener denoise filter
 | |
|  * - Adaptive gain filter
 | |
|  * - DC filter
 | |
|  *
 | |
|  * @param s WMAVoice decoding context
 | |
|  * @param synth Speech synthesis output (before postfilter)
 | |
|  * @param samples Output buffer for filtered samples
 | |
|  * @param size Buffer size of synth & samples
 | |
|  * @param lpcs Generated LPCs used for speech synthesis
 | |
|  * @param zero_exc_pf destination for zero synthesis filter (16-byte aligned)
 | |
|  * @param fcb_type Frame type (silence, hardcoded, AW-pulses or FCB-pulses)
 | |
|  * @param pitch Pitch of the input signal
 | |
|  */
 | |
| static void postfilter(WMAVoiceContext *s, const float *synth,
 | |
|                        float *samples,    int size,
 | |
|                        const float *lpcs, float *zero_exc_pf,
 | |
|                        int fcb_type,      int pitch)
 | |
| {
 | |
|     float synth_filter_in_buf[MAX_FRAMESIZE / 2],
 | |
|           *synth_pf = &s->synth_filter_out_buf[MAX_LSPS_ALIGN16],
 | |
|           *synth_filter_in = zero_exc_pf;
 | |
| 
 | |
|     av_assert0(size <= MAX_FRAMESIZE / 2);
 | |
| 
 | |
|     /* generate excitation from input signal */
 | |
|     ff_celp_lp_zero_synthesis_filterf(zero_exc_pf, lpcs, synth, size, s->lsps);
 | |
| 
 | |
|     if (fcb_type >= FCB_TYPE_AW_PULSES &&
 | |
|         !kalman_smoothen(s, pitch, zero_exc_pf, synth_filter_in_buf, size))
 | |
|         synth_filter_in = synth_filter_in_buf;
 | |
| 
 | |
|     /* re-synthesize speech after smoothening, and keep history */
 | |
|     ff_celp_lp_synthesis_filterf(synth_pf, lpcs,
 | |
|                                  synth_filter_in, size, s->lsps);
 | |
|     memcpy(&synth_pf[-s->lsps], &synth_pf[size - s->lsps],
 | |
|            sizeof(synth_pf[0]) * s->lsps);
 | |
| 
 | |
|     wiener_denoise(s, fcb_type, synth_pf, size, lpcs);
 | |
| 
 | |
|     adaptive_gain_control(samples, synth_pf, synth, size, 0.99,
 | |
|                           &s->postfilter_agc);
 | |
| 
 | |
|     if (s->dc_level > 8) {
 | |
|         /* remove ultra-low frequency DC noise / highpass filter;
 | |
|          * coefficients are identical to those used in SIPR decoding,
 | |
|          * and very closely resemble those used in AMR-NB decoding. */
 | |
|         ff_acelp_apply_order_2_transfer_function(samples, samples,
 | |
|             (const float[2]) { -1.99997,      1.0 },
 | |
|             (const float[2]) { -1.9330735188, 0.93589198496 },
 | |
|             0.93980580475, s->dcf_mem, size);
 | |
|     }
 | |
| }
 | |
| /**
 | |
|  * @}
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Dequantize LSPs
 | |
|  * @param lsps output pointer to the array that will hold the LSPs
 | |
|  * @param num number of LSPs to be dequantized
 | |
|  * @param values quantized values, contains n_stages values
 | |
|  * @param sizes range (i.e. max value) of each quantized value
 | |
|  * @param n_stages number of dequantization runs
 | |
|  * @param table dequantization table to be used
 | |
|  * @param mul_q LSF multiplier
 | |
|  * @param base_q base (lowest) LSF values
 | |
|  */
 | |
| static void dequant_lsps(double *lsps, int num,
 | |
|                          const uint16_t *values,
 | |
|                          const uint16_t *sizes,
 | |
|                          int n_stages, const uint8_t *table,
 | |
|                          const double *mul_q,
 | |
|                          const double *base_q)
 | |
| {
 | |
|     int n, m;
 | |
| 
 | |
|     memset(lsps, 0, num * sizeof(*lsps));
 | |
|     for (n = 0; n < n_stages; n++) {
 | |
|         const uint8_t *t_off = &table[values[n] * num];
 | |
|         double base = base_q[n], mul = mul_q[n];
 | |
| 
 | |
|         for (m = 0; m < num; m++)
 | |
|             lsps[m] += base + mul * t_off[m];
 | |
| 
 | |
|         table += sizes[n] * num;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @name LSP dequantization routines
 | |
|  * LSP dequantization routines, for 10/16LSPs and independent/residual coding.
 | |
|  * @note we assume enough bits are available, caller should check.
 | |
|  * lsp10i() consumes 24 bits; lsp10r() consumes an additional 24 bits;
 | |
|  * lsp16i() consumes 34 bits; lsp16r() consumes an additional 26 bits.
 | |
|  * @{
 | |
|  */
 | |
| /**
 | |
|  * Parse 10 independently-coded LSPs.
 | |
|  */
 | |
| static void dequant_lsp10i(GetBitContext *gb, double *lsps)
 | |
| {
 | |
|     static const uint16_t vec_sizes[4] = { 256, 64, 32, 32 };
 | |
|     static const double mul_lsf[4] = {
 | |
|         5.2187144800e-3,    1.4626986422e-3,
 | |
|         9.6179549166e-4,    1.1325736225e-3
 | |
|     };
 | |
|     static const double base_lsf[4] = {
 | |
|         M_PI * -2.15522e-1, M_PI * -6.1646e-2,
 | |
|         M_PI * -3.3486e-2,  M_PI * -5.7408e-2
 | |
|     };
 | |
|     uint16_t v[4];
 | |
| 
 | |
|     v[0] = get_bits(gb, 8);
 | |
|     v[1] = get_bits(gb, 6);
 | |
|     v[2] = get_bits(gb, 5);
 | |
|     v[3] = get_bits(gb, 5);
 | |
| 
 | |
|     dequant_lsps(lsps, 10, v, vec_sizes, 4, wmavoice_dq_lsp10i,
 | |
|                  mul_lsf, base_lsf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse 10 independently-coded LSPs, and then derive the tables to
 | |
|  * generate LSPs for the other frames from them (residual coding).
 | |
|  */
 | |
| static void dequant_lsp10r(GetBitContext *gb,
 | |
|                            double *i_lsps, const double *old,
 | |
|                            double *a1, double *a2, int q_mode)
 | |
| {
 | |
|     static const uint16_t vec_sizes[3] = { 128, 64, 64 };
 | |
|     static const double mul_lsf[3] = {
 | |
|         2.5807601174e-3,    1.2354460219e-3,   1.1763821673e-3
 | |
|     };
 | |
|     static const double base_lsf[3] = {
 | |
|         M_PI * -1.07448e-1, M_PI * -5.2706e-2, M_PI * -5.1634e-2
 | |
|     };
 | |
|     const float (*ipol_tab)[2][10] = q_mode ?
 | |
|         wmavoice_lsp10_intercoeff_b : wmavoice_lsp10_intercoeff_a;
 | |
|     uint16_t interpol, v[3];
 | |
|     int n;
 | |
| 
 | |
|     dequant_lsp10i(gb, i_lsps);
 | |
| 
 | |
|     interpol = get_bits(gb, 5);
 | |
|     v[0]     = get_bits(gb, 7);
 | |
|     v[1]     = get_bits(gb, 6);
 | |
|     v[2]     = get_bits(gb, 6);
 | |
| 
 | |
|     for (n = 0; n < 10; n++) {
 | |
|         double delta = old[n] - i_lsps[n];
 | |
|         a1[n]        = ipol_tab[interpol][0][n] * delta + i_lsps[n];
 | |
|         a1[10 + n]   = ipol_tab[interpol][1][n] * delta + i_lsps[n];
 | |
|     }
 | |
| 
 | |
|     dequant_lsps(a2, 20, v, vec_sizes, 3, wmavoice_dq_lsp10r,
 | |
|                  mul_lsf, base_lsf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse 16 independently-coded LSPs.
 | |
|  */
 | |
| static void dequant_lsp16i(GetBitContext *gb, double *lsps)
 | |
| {
 | |
|     static const uint16_t vec_sizes[5] = { 256, 64, 128, 64, 128 };
 | |
|     static const double mul_lsf[5] = {
 | |
|         3.3439586280e-3,    6.9908173703e-4,
 | |
|         3.3216608306e-3,    1.0334960326e-3,
 | |
|         3.1899104283e-3
 | |
|     };
 | |
|     static const double base_lsf[5] = {
 | |
|         M_PI * -1.27576e-1, M_PI * -2.4292e-2,
 | |
|         M_PI * -1.28094e-1, M_PI * -3.2128e-2,
 | |
|         M_PI * -1.29816e-1
 | |
|     };
 | |
|     uint16_t v[5];
 | |
| 
 | |
|     v[0] = get_bits(gb, 8);
 | |
|     v[1] = get_bits(gb, 6);
 | |
|     v[2] = get_bits(gb, 7);
 | |
|     v[3] = get_bits(gb, 6);
 | |
|     v[4] = get_bits(gb, 7);
 | |
| 
 | |
|     dequant_lsps( lsps,     5,  v,     vec_sizes,    2,
 | |
|                  wmavoice_dq_lsp16i1,  mul_lsf,     base_lsf);
 | |
|     dequant_lsps(&lsps[5],  5, &v[2], &vec_sizes[2], 2,
 | |
|                  wmavoice_dq_lsp16i2, &mul_lsf[2], &base_lsf[2]);
 | |
|     dequant_lsps(&lsps[10], 6, &v[4], &vec_sizes[4], 1,
 | |
|                  wmavoice_dq_lsp16i3, &mul_lsf[4], &base_lsf[4]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse 16 independently-coded LSPs, and then derive the tables to
 | |
|  * generate LSPs for the other frames from them (residual coding).
 | |
|  */
 | |
| static void dequant_lsp16r(GetBitContext *gb,
 | |
|                            double *i_lsps, const double *old,
 | |
|                            double *a1, double *a2, int q_mode)
 | |
| {
 | |
|     static const uint16_t vec_sizes[3] = { 128, 128, 128 };
 | |
|     static const double mul_lsf[3] = {
 | |
|         1.2232979501e-3,   1.4062241527e-3,   1.6114744851e-3
 | |
|     };
 | |
|     static const double base_lsf[3] = {
 | |
|         M_PI * -5.5830e-2, M_PI * -5.2908e-2, M_PI * -5.4776e-2
 | |
|     };
 | |
|     const float (*ipol_tab)[2][16] = q_mode ?
 | |
|         wmavoice_lsp16_intercoeff_b : wmavoice_lsp16_intercoeff_a;
 | |
|     uint16_t interpol, v[3];
 | |
|     int n;
 | |
| 
 | |
|     dequant_lsp16i(gb, i_lsps);
 | |
| 
 | |
|     interpol = get_bits(gb, 5);
 | |
|     v[0]     = get_bits(gb, 7);
 | |
|     v[1]     = get_bits(gb, 7);
 | |
|     v[2]     = get_bits(gb, 7);
 | |
| 
 | |
|     for (n = 0; n < 16; n++) {
 | |
|         double delta = old[n] - i_lsps[n];
 | |
|         a1[n]        = ipol_tab[interpol][0][n] * delta + i_lsps[n];
 | |
|         a1[16 + n]   = ipol_tab[interpol][1][n] * delta + i_lsps[n];
 | |
|     }
 | |
| 
 | |
|     dequant_lsps( a2,     10,  v,     vec_sizes,    1,
 | |
|                  wmavoice_dq_lsp16r1,  mul_lsf,     base_lsf);
 | |
|     dequant_lsps(&a2[10], 10, &v[1], &vec_sizes[1], 1,
 | |
|                  wmavoice_dq_lsp16r2, &mul_lsf[1], &base_lsf[1]);
 | |
|     dequant_lsps(&a2[20], 12, &v[2], &vec_sizes[2], 1,
 | |
|                  wmavoice_dq_lsp16r3, &mul_lsf[2], &base_lsf[2]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @}
 | |
|  * @name Pitch-adaptive window coding functions
 | |
|  * The next few functions are for pitch-adaptive window coding.
 | |
|  * @{
 | |
|  */
 | |
| /**
 | |
|  * Parse the offset of the first pitch-adaptive window pulses, and
 | |
|  * the distribution of pulses between the two blocks in this frame.
 | |
|  * @param s WMA Voice decoding context private data
 | |
|  * @param gb bit I/O context
 | |
|  * @param pitch pitch for each block in this frame
 | |
|  */
 | |
| static void aw_parse_coords(WMAVoiceContext *s, GetBitContext *gb,
 | |
|                             const int *pitch)
 | |
| {
 | |
|     static const int16_t start_offset[94] = {
 | |
|         -11,  -9,  -7,  -5,  -3,  -1,   1,   3,   5,   7,   9,  11,
 | |
|          13,  15,  18,  17,  19,  20,  21,  22,  23,  24,  25,  26,
 | |
|          27,  28,  29,  30,  31,  32,  33,  35,  37,  39,  41,  43,
 | |
|          45,  47,  49,  51,  53,  55,  57,  59,  61,  63,  65,  67,
 | |
|          69,  71,  73,  75,  77,  79,  81,  83,  85,  87,  89,  91,
 | |
|          93,  95,  97,  99, 101, 103, 105, 107, 109, 111, 113, 115,
 | |
|         117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139,
 | |
|         141, 143, 145, 147, 149, 151, 153, 155, 157, 159
 | |
|     };
 | |
|     int bits, offset;
 | |
| 
 | |
|     /* position of pulse */
 | |
|     s->aw_idx_is_ext = 0;
 | |
|     if ((bits = get_bits(gb, 6)) >= 54) {
 | |
|         s->aw_idx_is_ext = 1;
 | |
|         bits += (bits - 54) * 3 + get_bits(gb, 2);
 | |
|     }
 | |
| 
 | |
|     /* for a repeated pulse at pulse_off with a pitch_lag of pitch[], count
 | |
|      * the distribution of the pulses in each block contained in this frame. */
 | |
|     s->aw_pulse_range        = FFMIN(pitch[0], pitch[1]) > 32 ? 24 : 16;
 | |
|     for (offset = start_offset[bits]; offset < 0; offset += pitch[0]) ;
 | |
|     s->aw_n_pulses[0]        = (pitch[0] - 1 + MAX_FRAMESIZE / 2 - offset) / pitch[0];
 | |
|     s->aw_first_pulse_off[0] = offset - s->aw_pulse_range / 2;
 | |
|     offset                  += s->aw_n_pulses[0] * pitch[0];
 | |
|     s->aw_n_pulses[1]        = (pitch[1] - 1 + MAX_FRAMESIZE - offset) / pitch[1];
 | |
|     s->aw_first_pulse_off[1] = offset - (MAX_FRAMESIZE + s->aw_pulse_range) / 2;
 | |
| 
 | |
|     /* if continuing from a position before the block, reset position to
 | |
|      * start of block (when corrected for the range over which it can be
 | |
|      * spread in aw_pulse_set1()). */
 | |
|     if (start_offset[bits] < MAX_FRAMESIZE / 2) {
 | |
|         while (s->aw_first_pulse_off[1] - pitch[1] + s->aw_pulse_range > 0)
 | |
|             s->aw_first_pulse_off[1] -= pitch[1];
 | |
|         if (start_offset[bits] < 0)
 | |
|             while (s->aw_first_pulse_off[0] - pitch[0] + s->aw_pulse_range > 0)
 | |
|                 s->aw_first_pulse_off[0] -= pitch[0];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply second set of pitch-adaptive window pulses.
 | |
|  * @param s WMA Voice decoding context private data
 | |
|  * @param gb bit I/O context
 | |
|  * @param block_idx block index in frame [0, 1]
 | |
|  * @param fcb structure containing fixed codebook vector info
 | |
|  * @return -1 on error, 0 otherwise
 | |
|  */
 | |
| static int aw_pulse_set2(WMAVoiceContext *s, GetBitContext *gb,
 | |
|                          int block_idx, AMRFixed *fcb)
 | |
| {
 | |
|     uint16_t use_mask_mem[9]; // only 5 are used, rest is padding
 | |
|     uint16_t *use_mask = use_mask_mem + 2;
 | |
|     /* in this function, idx is the index in the 80-bit (+ padding) use_mask
 | |
|      * bit-array. Since use_mask consists of 16-bit values, the lower 4 bits
 | |
|      * of idx are the position of the bit within a particular item in the
 | |
|      * array (0 being the most significant bit, and 15 being the least
 | |
|      * significant bit), and the remainder (>> 4) is the index in the
 | |
|      * use_mask[]-array. This is faster and uses less memory than using a
 | |
|      * 80-byte/80-int array. */
 | |
|     int pulse_off = s->aw_first_pulse_off[block_idx],
 | |
|         pulse_start, n, idx, range, aidx, start_off = 0;
 | |
| 
 | |
|     /* set offset of first pulse to within this block */
 | |
|     if (s->aw_n_pulses[block_idx] > 0)
 | |
|         while (pulse_off + s->aw_pulse_range < 1)
 | |
|             pulse_off += fcb->pitch_lag;
 | |
| 
 | |
|     /* find range per pulse */
 | |
|     if (s->aw_n_pulses[0] > 0) {
 | |
|         if (block_idx == 0) {
 | |
|             range = 32;
 | |
|         } else /* block_idx = 1 */ {
 | |
|             range = 8;
 | |
|             if (s->aw_n_pulses[block_idx] > 0)
 | |
|                 pulse_off = s->aw_next_pulse_off_cache;
 | |
|         }
 | |
|     } else
 | |
|         range = 16;
 | |
|     pulse_start = s->aw_n_pulses[block_idx] > 0 ? pulse_off - range / 2 : 0;
 | |
| 
 | |
|     /* aw_pulse_set1() already applies pulses around pulse_off (to be exactly,
 | |
|      * in the range of [pulse_off, pulse_off + s->aw_pulse_range], and thus
 | |
|      * we exclude that range from being pulsed again in this function. */
 | |
|     memset(&use_mask[-2], 0, 2 * sizeof(use_mask[0]));
 | |
|     memset( use_mask,   -1, 5 * sizeof(use_mask[0]));
 | |
|     memset(&use_mask[5], 0, 2 * sizeof(use_mask[0]));
 | |
|     if (s->aw_n_pulses[block_idx] > 0)
 | |
|         for (idx = pulse_off; idx < MAX_FRAMESIZE / 2; idx += fcb->pitch_lag) {
 | |
|             int excl_range         = s->aw_pulse_range; // always 16 or 24
 | |
|             uint16_t *use_mask_ptr = &use_mask[idx >> 4];
 | |
|             int first_sh           = 16 - (idx & 15);
 | |
|             *use_mask_ptr++       &= 0xFFFFu << first_sh;
 | |
|             excl_range            -= first_sh;
 | |
|             if (excl_range >= 16) {
 | |
|                 *use_mask_ptr++    = 0;
 | |
|                 *use_mask_ptr     &= 0xFFFF >> (excl_range - 16);
 | |
|             } else
 | |
|                 *use_mask_ptr     &= 0xFFFF >> excl_range;
 | |
|         }
 | |
| 
 | |
|     /* find the 'aidx'th offset that is not excluded */
 | |
|     aidx = get_bits(gb, s->aw_n_pulses[0] > 0 ? 5 - 2 * block_idx : 4);
 | |
|     for (n = 0; n <= aidx; pulse_start++) {
 | |
|         for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) ;
 | |
|         if (idx >= MAX_FRAMESIZE / 2) { // find from zero
 | |
|             if (use_mask[0])      idx = 0x0F;
 | |
|             else if (use_mask[1]) idx = 0x1F;
 | |
|             else if (use_mask[2]) idx = 0x2F;
 | |
|             else if (use_mask[3]) idx = 0x3F;
 | |
|             else if (use_mask[4]) idx = 0x4F;
 | |
|             else return -1;
 | |
|             idx -= av_log2_16bit(use_mask[idx >> 4]);
 | |
|         }
 | |
|         if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) {
 | |
|             use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15));
 | |
|             n++;
 | |
|             start_off = idx;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fcb->x[fcb->n] = start_off;
 | |
|     fcb->y[fcb->n] = get_bits1(gb) ? -1.0 : 1.0;
 | |
|     fcb->n++;
 | |
| 
 | |
|     /* set offset for next block, relative to start of that block */
 | |
|     n = (MAX_FRAMESIZE / 2 - start_off) % fcb->pitch_lag;
 | |
|     s->aw_next_pulse_off_cache = n ? fcb->pitch_lag - n : 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Apply first set of pitch-adaptive window pulses.
 | |
|  * @param s WMA Voice decoding context private data
 | |
|  * @param gb bit I/O context
 | |
|  * @param block_idx block index in frame [0, 1]
 | |
|  * @param fcb storage location for fixed codebook pulse info
 | |
|  */
 | |
| static void aw_pulse_set1(WMAVoiceContext *s, GetBitContext *gb,
 | |
|                           int block_idx, AMRFixed *fcb)
 | |
| {
 | |
|     int val = get_bits(gb, 12 - 2 * (s->aw_idx_is_ext && !block_idx));
 | |
|     float v;
 | |
| 
 | |
|     if (s->aw_n_pulses[block_idx] > 0) {
 | |
|         int n, v_mask, i_mask, sh, n_pulses;
 | |
| 
 | |
|         if (s->aw_pulse_range == 24) { // 3 pulses, 1:sign + 3:index each
 | |
|             n_pulses = 3;
 | |
|             v_mask   = 8;
 | |
|             i_mask   = 7;
 | |
|             sh       = 4;
 | |
|         } else { // 4 pulses, 1:sign + 2:index each
 | |
|             n_pulses = 4;
 | |
|             v_mask   = 4;
 | |
|             i_mask   = 3;
 | |
|             sh       = 3;
 | |
|         }
 | |
| 
 | |
|         for (n = n_pulses - 1; n >= 0; n--, val >>= sh) {
 | |
|             fcb->y[fcb->n] = (val & v_mask) ? -1.0 : 1.0;
 | |
|             fcb->x[fcb->n] = (val & i_mask) * n_pulses + n +
 | |
|                                  s->aw_first_pulse_off[block_idx];
 | |
|             while (fcb->x[fcb->n] < 0)
 | |
|                 fcb->x[fcb->n] += fcb->pitch_lag;
 | |
|             if (fcb->x[fcb->n] < MAX_FRAMESIZE / 2)
 | |
|                 fcb->n++;
 | |
|         }
 | |
|     } else {
 | |
|         int num2 = (val & 0x1FF) >> 1, delta, idx;
 | |
| 
 | |
|         if (num2 < 1 * 79)      { delta = 1; idx = num2 + 1; }
 | |
|         else if (num2 < 2 * 78) { delta = 3; idx = num2 + 1 - 1 * 77; }
 | |
|         else if (num2 < 3 * 77) { delta = 5; idx = num2 + 1 - 2 * 76; }
 | |
|         else                    { delta = 7; idx = num2 + 1 - 3 * 75; }
 | |
|         v = (val & 0x200) ? -1.0 : 1.0;
 | |
| 
 | |
|         fcb->no_repeat_mask |= 3 << fcb->n;
 | |
|         fcb->x[fcb->n]       = idx - delta;
 | |
|         fcb->y[fcb->n]       = v;
 | |
|         fcb->x[fcb->n + 1]   = idx;
 | |
|         fcb->y[fcb->n + 1]   = (val & 1) ? -v : v;
 | |
|         fcb->n              += 2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @}
 | |
|  *
 | |
|  * Generate a random number from frame_cntr and block_idx, which will lief
 | |
|  * in the range [0, 1000 - block_size] (so it can be used as an index in a
 | |
|  * table of size 1000 of which you want to read block_size entries).
 | |
|  *
 | |
|  * @param frame_cntr current frame number
 | |
|  * @param block_num current block index
 | |
|  * @param block_size amount of entries we want to read from a table
 | |
|  *                   that has 1000 entries
 | |
|  * @return a (non-)random number in the [0, 1000 - block_size] range.
 | |
|  */
 | |
| static int pRNG(int frame_cntr, int block_num, int block_size)
 | |
| {
 | |
|     /* array to simplify the calculation of z:
 | |
|      * y = (x % 9) * 5 + 6;
 | |
|      * z = (49995 * x) / y;
 | |
|      * Since y only has 9 values, we can remove the division by using a
 | |
|      * LUT and using FASTDIV-style divisions. For each of the 9 values
 | |
|      * of y, we can rewrite z as:
 | |
|      * z = x * (49995 / y) + x * ((49995 % y) / y)
 | |
|      * In this table, each col represents one possible value of y, the
 | |
|      * first number is 49995 / y, and the second is the FASTDIV variant
 | |
|      * of 49995 % y / y. */
 | |
|     static const unsigned int div_tbl[9][2] = {
 | |
|         { 8332,  3 * 715827883U }, // y =  6
 | |
|         { 4545,  0 * 390451573U }, // y = 11
 | |
|         { 3124, 11 * 268435456U }, // y = 16
 | |
|         { 2380, 15 * 204522253U }, // y = 21
 | |
|         { 1922, 23 * 165191050U }, // y = 26
 | |
|         { 1612, 23 * 138547333U }, // y = 31
 | |
|         { 1388, 27 * 119304648U }, // y = 36
 | |
|         { 1219, 16 * 104755300U }, // y = 41
 | |
|         { 1086, 39 *  93368855U }  // y = 46
 | |
|     };
 | |
|     unsigned int z, y, x = MUL16(block_num, 1877) + frame_cntr;
 | |
|     if (x >= 0xFFFF) x -= 0xFFFF;   // max value of x is 8*1877+0xFFFE=0x13AA6,
 | |
|                                     // so this is effectively a modulo (%)
 | |
|     y = x - 9 * MULH(477218589, x); // x % 9
 | |
|     z = (uint16_t) (x * div_tbl[y][0] + UMULH(x, div_tbl[y][1]));
 | |
|                                     // z = x * 49995 / (y * 5 + 6)
 | |
|     return z % (1000 - block_size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse hardcoded signal for a single block.
 | |
|  * @note see #synth_block().
 | |
|  */
 | |
| static void synth_block_hardcoded(WMAVoiceContext *s, GetBitContext *gb,
 | |
|                                  int block_idx, int size,
 | |
|                                  const struct frame_type_desc *frame_desc,
 | |
|                                  float *excitation)
 | |
| {
 | |
|     float gain;
 | |
|     int n, r_idx;
 | |
| 
 | |
|     av_assert0(size <= MAX_FRAMESIZE);
 | |
| 
 | |
|     /* Set the offset from which we start reading wmavoice_std_codebook */
 | |
|     if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
 | |
|         r_idx = pRNG(s->frame_cntr, block_idx, size);
 | |
|         gain  = s->silence_gain;
 | |
|     } else /* FCB_TYPE_HARDCODED */ {
 | |
|         r_idx = get_bits(gb, 8);
 | |
|         gain  = wmavoice_gain_universal[get_bits(gb, 6)];
 | |
|     }
 | |
| 
 | |
|     /* Clear gain prediction parameters */
 | |
|     memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err));
 | |
| 
 | |
|     /* Apply gain to hardcoded codebook and use that as excitation signal */
 | |
|     for (n = 0; n < size; n++)
 | |
|         excitation[n] = wmavoice_std_codebook[r_idx + n] * gain;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse FCB/ACB signal for a single block.
 | |
|  * @note see #synth_block().
 | |
|  */
 | |
| static void synth_block_fcb_acb(WMAVoiceContext *s, GetBitContext *gb,
 | |
|                                 int block_idx, int size,
 | |
|                                 int block_pitch_sh2,
 | |
|                                 const struct frame_type_desc *frame_desc,
 | |
|                                 float *excitation)
 | |
| {
 | |
|     static const float gain_coeff[6] = {
 | |
|         0.8169, -0.06545, 0.1726, 0.0185, -0.0359, 0.0458
 | |
|     };
 | |
|     float pulses[MAX_FRAMESIZE / 2], pred_err, acb_gain, fcb_gain;
 | |
|     int n, idx, gain_weight;
 | |
|     AMRFixed fcb;
 | |
| 
 | |
|     av_assert0(size <= MAX_FRAMESIZE / 2);
 | |
|     memset(pulses, 0, sizeof(*pulses) * size);
 | |
| 
 | |
|     fcb.pitch_lag      = block_pitch_sh2 >> 2;
 | |
|     fcb.pitch_fac      = 1.0;
 | |
|     fcb.no_repeat_mask = 0;
 | |
|     fcb.n              = 0;
 | |
| 
 | |
|     /* For the other frame types, this is where we apply the innovation
 | |
|      * (fixed) codebook pulses of the speech signal. */
 | |
|     if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
 | |
|         aw_pulse_set1(s, gb, block_idx, &fcb);
 | |
|         if (aw_pulse_set2(s, gb, block_idx, &fcb)) {
 | |
|             /* Conceal the block with silence and return.
 | |
|              * Skip the correct amount of bits to read the next
 | |
|              * block from the correct offset. */
 | |
|             int r_idx = pRNG(s->frame_cntr, block_idx, size);
 | |
| 
 | |
|             for (n = 0; n < size; n++)
 | |
|                 excitation[n] =
 | |
|                     wmavoice_std_codebook[r_idx + n] * s->silence_gain;
 | |
|             skip_bits(gb, 7 + 1);
 | |
|             return;
 | |
|         }
 | |
|     } else /* FCB_TYPE_EXC_PULSES */ {
 | |
|         int offset_nbits = 5 - frame_desc->log_n_blocks;
 | |
| 
 | |
|         fcb.no_repeat_mask = -1;
 | |
|         /* similar to ff_decode_10_pulses_35bits(), but with single pulses
 | |
|          * (instead of double) for a subset of pulses */
 | |
|         for (n = 0; n < 5; n++) {
 | |
|             float sign;
 | |
|             int pos1, pos2;
 | |
| 
 | |
|             sign           = get_bits1(gb) ? 1.0 : -1.0;
 | |
|             pos1           = get_bits(gb, offset_nbits);
 | |
|             fcb.x[fcb.n]   = n + 5 * pos1;
 | |
|             fcb.y[fcb.n++] = sign;
 | |
|             if (n < frame_desc->dbl_pulses) {
 | |
|                 pos2           = get_bits(gb, offset_nbits);
 | |
|                 fcb.x[fcb.n]   = n + 5 * pos2;
 | |
|                 fcb.y[fcb.n++] = (pos1 < pos2) ? -sign : sign;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ff_set_fixed_vector(pulses, &fcb, 1.0, size);
 | |
| 
 | |
|     /* Calculate gain for adaptive & fixed codebook signal.
 | |
|      * see ff_amr_set_fixed_gain(). */
 | |
|     idx = get_bits(gb, 7);
 | |
|     fcb_gain = expf(avpriv_scalarproduct_float_c(s->gain_pred_err,
 | |
|                                                  gain_coeff, 6) -
 | |
|                     5.2409161640 + wmavoice_gain_codebook_fcb[idx]);
 | |
|     acb_gain = wmavoice_gain_codebook_acb[idx];
 | |
|     pred_err = av_clipf(wmavoice_gain_codebook_fcb[idx],
 | |
|                         -2.9957322736 /* log(0.05) */,
 | |
|                          1.6094379124 /* log(5.0)  */);
 | |
| 
 | |
|     gain_weight = 8 >> frame_desc->log_n_blocks;
 | |
|     memmove(&s->gain_pred_err[gain_weight], s->gain_pred_err,
 | |
|             sizeof(*s->gain_pred_err) * (6 - gain_weight));
 | |
|     for (n = 0; n < gain_weight; n++)
 | |
|         s->gain_pred_err[n] = pred_err;
 | |
| 
 | |
|     /* Calculation of adaptive codebook */
 | |
|     if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
 | |
|         int len;
 | |
|         for (n = 0; n < size; n += len) {
 | |
|             int next_idx_sh16;
 | |
|             int abs_idx    = block_idx * size + n;
 | |
|             int pitch_sh16 = (s->last_pitch_val << 16) +
 | |
|                              s->pitch_diff_sh16 * abs_idx;
 | |
|             int pitch      = (pitch_sh16 + 0x6FFF) >> 16;
 | |
|             int idx_sh16   = ((pitch << 16) - pitch_sh16) * 8 + 0x58000;
 | |
|             idx            = idx_sh16 >> 16;
 | |
|             if (s->pitch_diff_sh16) {
 | |
|                 if (s->pitch_diff_sh16 > 0) {
 | |
|                     next_idx_sh16 = (idx_sh16) &~ 0xFFFF;
 | |
|                 } else
 | |
|                     next_idx_sh16 = (idx_sh16 + 0x10000) &~ 0xFFFF;
 | |
|                 len = av_clip((idx_sh16 - next_idx_sh16) / s->pitch_diff_sh16 / 8,
 | |
|                               1, size - n);
 | |
|             } else
 | |
|                 len = size;
 | |
| 
 | |
|             ff_acelp_interpolatef(&excitation[n], &excitation[n - pitch],
 | |
|                                   wmavoice_ipol1_coeffs, 17,
 | |
|                                   idx, 9, len);
 | |
|         }
 | |
|     } else /* ACB_TYPE_HAMMING */ {
 | |
|         int block_pitch = block_pitch_sh2 >> 2;
 | |
|         idx             = block_pitch_sh2 & 3;
 | |
|         if (idx) {
 | |
|             ff_acelp_interpolatef(excitation, &excitation[-block_pitch],
 | |
|                                   wmavoice_ipol2_coeffs, 4,
 | |
|                                   idx, 8, size);
 | |
|         } else
 | |
|             av_memcpy_backptr((uint8_t *) excitation, sizeof(float) * block_pitch,
 | |
|                               sizeof(float) * size);
 | |
|     }
 | |
| 
 | |
|     /* Interpolate ACB/FCB and use as excitation signal */
 | |
|     ff_weighted_vector_sumf(excitation, excitation, pulses,
 | |
|                             acb_gain, fcb_gain, size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse data in a single block.
 | |
|  * @note we assume enough bits are available, caller should check.
 | |
|  *
 | |
|  * @param s WMA Voice decoding context private data
 | |
|  * @param gb bit I/O context
 | |
|  * @param block_idx index of the to-be-read block
 | |
|  * @param size amount of samples to be read in this block
 | |
|  * @param block_pitch_sh2 pitch for this block << 2
 | |
|  * @param lsps LSPs for (the end of) this frame
 | |
|  * @param prev_lsps LSPs for the last frame
 | |
|  * @param frame_desc frame type descriptor
 | |
|  * @param excitation target memory for the ACB+FCB interpolated signal
 | |
|  * @param synth target memory for the speech synthesis filter output
 | |
|  * @return 0 on success, <0 on error.
 | |
|  */
 | |
| static void synth_block(WMAVoiceContext *s, GetBitContext *gb,
 | |
|                         int block_idx, int size,
 | |
|                         int block_pitch_sh2,
 | |
|                         const double *lsps, const double *prev_lsps,
 | |
|                         const struct frame_type_desc *frame_desc,
 | |
|                         float *excitation, float *synth)
 | |
| {
 | |
|     double i_lsps[MAX_LSPS];
 | |
|     float lpcs[MAX_LSPS];
 | |
|     float fac;
 | |
|     int n;
 | |
| 
 | |
|     if (frame_desc->acb_type == ACB_TYPE_NONE)
 | |
|         synth_block_hardcoded(s, gb, block_idx, size, frame_desc, excitation);
 | |
|     else
 | |
|         synth_block_fcb_acb(s, gb, block_idx, size, block_pitch_sh2,
 | |
|                             frame_desc, excitation);
 | |
| 
 | |
|     /* convert interpolated LSPs to LPCs */
 | |
|     fac = (block_idx + 0.5) / frame_desc->n_blocks;
 | |
|     for (n = 0; n < s->lsps; n++) // LSF -> LSP
 | |
|         i_lsps[n] = cos(prev_lsps[n] + fac * (lsps[n] - prev_lsps[n]));
 | |
|     ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
 | |
| 
 | |
|     /* Speech synthesis */
 | |
|     ff_celp_lp_synthesis_filterf(synth, lpcs, excitation, size, s->lsps);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Synthesize output samples for a single frame.
 | |
|  * @note we assume enough bits are available, caller should check.
 | |
|  *
 | |
|  * @param ctx WMA Voice decoder context
 | |
|  * @param gb bit I/O context (s->gb or one for cross-packet superframes)
 | |
|  * @param frame_idx Frame number within superframe [0-2]
 | |
|  * @param samples pointer to output sample buffer, has space for at least 160
 | |
|  *                samples
 | |
|  * @param lsps LSP array
 | |
|  * @param prev_lsps array of previous frame's LSPs
 | |
|  * @param excitation target buffer for excitation signal
 | |
|  * @param synth target buffer for synthesized speech data
 | |
|  * @return 0 on success, <0 on error.
 | |
|  */
 | |
| static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, int frame_idx,
 | |
|                        float *samples,
 | |
|                        const double *lsps, const double *prev_lsps,
 | |
|                        float *excitation, float *synth)
 | |
| {
 | |
|     WMAVoiceContext *s = ctx->priv_data;
 | |
|     int n, n_blocks_x2, log_n_blocks_x2, av_uninit(cur_pitch_val);
 | |
|     int pitch[MAX_BLOCKS], av_uninit(last_block_pitch);
 | |
| 
 | |
|     /* Parse frame type ("frame header"), see frame_descs */
 | |
|     int bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)], block_nsamples;
 | |
| 
 | |
|     if (bd_idx < 0) {
 | |
|         av_log(ctx, AV_LOG_ERROR,
 | |
|                "Invalid frame type VLC code, skipping\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     block_nsamples = MAX_FRAMESIZE / frame_descs[bd_idx].n_blocks;
 | |
| 
 | |
|     /* Pitch calculation for ACB_TYPE_ASYMMETRIC ("pitch-per-frame") */
 | |
|     if (frame_descs[bd_idx].acb_type == ACB_TYPE_ASYMMETRIC) {
 | |
|         /* Pitch is provided per frame, which is interpreted as the pitch of
 | |
|          * the last sample of the last block of this frame. We can interpolate
 | |
|          * the pitch of other blocks (and even pitch-per-sample) by gradually
 | |
|          * incrementing/decrementing prev_frame_pitch to cur_pitch_val. */
 | |
|         n_blocks_x2      = frame_descs[bd_idx].n_blocks << 1;
 | |
|         log_n_blocks_x2  = frame_descs[bd_idx].log_n_blocks + 1;
 | |
|         cur_pitch_val    = s->min_pitch_val + get_bits(gb, s->pitch_nbits);
 | |
|         cur_pitch_val    = FFMIN(cur_pitch_val, s->max_pitch_val - 1);
 | |
|         if (s->last_acb_type == ACB_TYPE_NONE ||
 | |
|             20 * abs(cur_pitch_val - s->last_pitch_val) >
 | |
|                 (cur_pitch_val + s->last_pitch_val))
 | |
|             s->last_pitch_val = cur_pitch_val;
 | |
| 
 | |
|         /* pitch per block */
 | |
|         for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
 | |
|             int fac = n * 2 + 1;
 | |
| 
 | |
|             pitch[n] = (MUL16(fac,                 cur_pitch_val) +
 | |
|                         MUL16((n_blocks_x2 - fac), s->last_pitch_val) +
 | |
|                         frame_descs[bd_idx].n_blocks) >> log_n_blocks_x2;
 | |
|         }
 | |
| 
 | |
|         /* "pitch-diff-per-sample" for calculation of pitch per sample */
 | |
|         s->pitch_diff_sh16 =
 | |
|             ((cur_pitch_val - s->last_pitch_val) << 16) / MAX_FRAMESIZE;
 | |
|     }
 | |
| 
 | |
|     /* Global gain (if silence) and pitch-adaptive window coordinates */
 | |
|     switch (frame_descs[bd_idx].fcb_type) {
 | |
|     case FCB_TYPE_SILENCE:
 | |
|         s->silence_gain = wmavoice_gain_silence[get_bits(gb, 8)];
 | |
|         break;
 | |
|     case FCB_TYPE_AW_PULSES:
 | |
|         aw_parse_coords(s, gb, pitch);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
 | |
|         int bl_pitch_sh2;
 | |
| 
 | |
|         /* Pitch calculation for ACB_TYPE_HAMMING ("pitch-per-block") */
 | |
|         switch (frame_descs[bd_idx].acb_type) {
 | |
|         case ACB_TYPE_HAMMING: {
 | |
|             /* Pitch is given per block. Per-block pitches are encoded as an
 | |
|              * absolute value for the first block, and then delta values
 | |
|              * relative to this value) for all subsequent blocks. The scale of
 | |
|              * this pitch value is semi-logaritmic compared to its use in the
 | |
|              * decoder, so we convert it to normal scale also. */
 | |
|             int block_pitch,
 | |
|                 t1 = (s->block_conv_table[1] - s->block_conv_table[0]) << 2,
 | |
|                 t2 = (s->block_conv_table[2] - s->block_conv_table[1]) << 1,
 | |
|                 t3 =  s->block_conv_table[3] - s->block_conv_table[2] + 1;
 | |
| 
 | |
|             if (n == 0) {
 | |
|                 block_pitch = get_bits(gb, s->block_pitch_nbits);
 | |
|             } else
 | |
|                 block_pitch = last_block_pitch - s->block_delta_pitch_hrange +
 | |
|                                  get_bits(gb, s->block_delta_pitch_nbits);
 | |
|             /* Convert last_ so that any next delta is within _range */
 | |
|             last_block_pitch = av_clip(block_pitch,
 | |
|                                        s->block_delta_pitch_hrange,
 | |
|                                        s->block_pitch_range -
 | |
|                                            s->block_delta_pitch_hrange);
 | |
| 
 | |
|             /* Convert semi-log-style scale back to normal scale */
 | |
|             if (block_pitch < t1) {
 | |
|                 bl_pitch_sh2 = (s->block_conv_table[0] << 2) + block_pitch;
 | |
|             } else {
 | |
|                 block_pitch -= t1;
 | |
|                 if (block_pitch < t2) {
 | |
|                     bl_pitch_sh2 =
 | |
|                         (s->block_conv_table[1] << 2) + (block_pitch << 1);
 | |
|                 } else {
 | |
|                     block_pitch -= t2;
 | |
|                     if (block_pitch < t3) {
 | |
|                         bl_pitch_sh2 =
 | |
|                             (s->block_conv_table[2] + block_pitch) << 2;
 | |
|                     } else
 | |
|                         bl_pitch_sh2 = s->block_conv_table[3] << 2;
 | |
|                 }
 | |
|             }
 | |
|             pitch[n] = bl_pitch_sh2 >> 2;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         case ACB_TYPE_ASYMMETRIC: {
 | |
|             bl_pitch_sh2 = pitch[n] << 2;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         default: // ACB_TYPE_NONE has no pitch
 | |
|             bl_pitch_sh2 = 0;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         synth_block(s, gb, n, block_nsamples, bl_pitch_sh2,
 | |
|                     lsps, prev_lsps, &frame_descs[bd_idx],
 | |
|                     &excitation[n * block_nsamples],
 | |
|                     &synth[n * block_nsamples]);
 | |
|     }
 | |
| 
 | |
|     /* Averaging projection filter, if applicable. Else, just copy samples
 | |
|      * from synthesis buffer */
 | |
|     if (s->do_apf) {
 | |
|         double i_lsps[MAX_LSPS];
 | |
|         float lpcs[MAX_LSPS];
 | |
| 
 | |
|         for (n = 0; n < s->lsps; n++) // LSF -> LSP
 | |
|             i_lsps[n] = cos(0.5 * (prev_lsps[n] + lsps[n]));
 | |
|         ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
 | |
|         postfilter(s, synth, samples, 80, lpcs,
 | |
|                    &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx],
 | |
|                    frame_descs[bd_idx].fcb_type, pitch[0]);
 | |
| 
 | |
|         for (n = 0; n < s->lsps; n++) // LSF -> LSP
 | |
|             i_lsps[n] = cos(lsps[n]);
 | |
|         ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
 | |
|         postfilter(s, &synth[80], &samples[80], 80, lpcs,
 | |
|                    &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx + 80],
 | |
|                    frame_descs[bd_idx].fcb_type, pitch[0]);
 | |
|     } else
 | |
|         memcpy(samples, synth, 160 * sizeof(synth[0]));
 | |
| 
 | |
|     /* Cache values for next frame */
 | |
|     s->frame_cntr++;
 | |
|     if (s->frame_cntr >= 0xFFFF) s->frame_cntr -= 0xFFFF; // i.e. modulo (%)
 | |
|     s->last_acb_type = frame_descs[bd_idx].acb_type;
 | |
|     switch (frame_descs[bd_idx].acb_type) {
 | |
|     case ACB_TYPE_NONE:
 | |
|         s->last_pitch_val = 0;
 | |
|         break;
 | |
|     case ACB_TYPE_ASYMMETRIC:
 | |
|         s->last_pitch_val = cur_pitch_val;
 | |
|         break;
 | |
|     case ACB_TYPE_HAMMING:
 | |
|         s->last_pitch_val = pitch[frame_descs[bd_idx].n_blocks - 1];
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Ensure minimum value for first item, maximum value for last value,
 | |
|  * proper spacing between each value and proper ordering.
 | |
|  *
 | |
|  * @param lsps array of LSPs
 | |
|  * @param num size of LSP array
 | |
|  *
 | |
|  * @note basically a double version of #ff_acelp_reorder_lsf(), might be
 | |
|  *       useful to put in a generic location later on. Parts are also
 | |
|  *       present in #ff_set_min_dist_lsf() + #ff_sort_nearly_sorted_floats(),
 | |
|  *       which is in float.
 | |
|  */
 | |
| static void stabilize_lsps(double *lsps, int num)
 | |
| {
 | |
|     int n, m, l;
 | |
| 
 | |
|     /* set minimum value for first, maximum value for last and minimum
 | |
|      * spacing between LSF values.
 | |
|      * Very similar to ff_set_min_dist_lsf(), but in double. */
 | |
|     lsps[0]       = FFMAX(lsps[0],       0.0015 * M_PI);
 | |
|     for (n = 1; n < num; n++)
 | |
|         lsps[n]   = FFMAX(lsps[n],       lsps[n - 1] + 0.0125 * M_PI);
 | |
|     lsps[num - 1] = FFMIN(lsps[num - 1], 0.9985 * M_PI);
 | |
| 
 | |
|     /* reorder (looks like one-time / non-recursed bubblesort).
 | |
|      * Very similar to ff_sort_nearly_sorted_floats(), but in double. */
 | |
|     for (n = 1; n < num; n++) {
 | |
|         if (lsps[n] < lsps[n - 1]) {
 | |
|             for (m = 1; m < num; m++) {
 | |
|                 double tmp = lsps[m];
 | |
|                 for (l = m - 1; l >= 0; l--) {
 | |
|                     if (lsps[l] <= tmp) break;
 | |
|                     lsps[l + 1] = lsps[l];
 | |
|                 }
 | |
|                 lsps[l + 1] = tmp;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Test if there's enough bits to read 1 superframe.
 | |
|  *
 | |
|  * @param orig_gb bit I/O context used for reading. This function
 | |
|  *                does not modify the state of the bitreader; it
 | |
|  *                only uses it to copy the current stream position
 | |
|  * @param s WMA Voice decoding context private data
 | |
|  * @return < 0 on error, 1 on not enough bits or 0 if OK.
 | |
|  */
 | |
| static int check_bits_for_superframe(GetBitContext *orig_gb,
 | |
|                                      WMAVoiceContext *s)
 | |
| {
 | |
|     GetBitContext s_gb, *gb = &s_gb;
 | |
|     int n, need_bits, bd_idx;
 | |
|     const struct frame_type_desc *frame_desc;
 | |
| 
 | |
|     /* initialize a copy */
 | |
|     init_get_bits(gb, orig_gb->buffer, orig_gb->size_in_bits);
 | |
|     skip_bits_long(gb, get_bits_count(orig_gb));
 | |
|     av_assert1(get_bits_left(gb) == get_bits_left(orig_gb));
 | |
| 
 | |
|     /* superframe header */
 | |
|     if (get_bits_left(gb) < 14)
 | |
|         return 1;
 | |
|     if (!get_bits1(gb))
 | |
|         return AVERROR(ENOSYS);           // WMAPro-in-WMAVoice superframe
 | |
|     if (get_bits1(gb)) skip_bits(gb, 12); // number of  samples in superframe
 | |
|     if (s->has_residual_lsps) {           // residual LSPs (for all frames)
 | |
|         if (get_bits_left(gb) < s->sframe_lsp_bitsize)
 | |
|             return 1;
 | |
|         skip_bits_long(gb, s->sframe_lsp_bitsize);
 | |
|     }
 | |
| 
 | |
|     /* frames */
 | |
|     for (n = 0; n < MAX_FRAMES; n++) {
 | |
|         int aw_idx_is_ext = 0;
 | |
| 
 | |
|         if (!s->has_residual_lsps) {     // independent LSPs (per-frame)
 | |
|            if (get_bits_left(gb) < s->frame_lsp_bitsize) return 1;
 | |
|            skip_bits_long(gb, s->frame_lsp_bitsize);
 | |
|         }
 | |
|         bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)];
 | |
|         if (bd_idx < 0)
 | |
|             return AVERROR_INVALIDDATA; // invalid frame type VLC code
 | |
|         frame_desc = &frame_descs[bd_idx];
 | |
|         if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
 | |
|             if (get_bits_left(gb) < s->pitch_nbits)
 | |
|                 return 1;
 | |
|             skip_bits_long(gb, s->pitch_nbits);
 | |
|         }
 | |
|         if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
 | |
|             skip_bits(gb, 8);
 | |
|         } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
 | |
|             int tmp = get_bits(gb, 6);
 | |
|             if (tmp >= 0x36) {
 | |
|                 skip_bits(gb, 2);
 | |
|                 aw_idx_is_ext = 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* blocks */
 | |
|         if (frame_desc->acb_type == ACB_TYPE_HAMMING) {
 | |
|             need_bits = s->block_pitch_nbits +
 | |
|                 (frame_desc->n_blocks - 1) * s->block_delta_pitch_nbits;
 | |
|         } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
 | |
|             need_bits = 2 * !aw_idx_is_ext;
 | |
|         } else
 | |
|             need_bits = 0;
 | |
|         need_bits += frame_desc->frame_size;
 | |
|         if (get_bits_left(gb) < need_bits)
 | |
|             return 1;
 | |
|         skip_bits_long(gb, need_bits);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Synthesize output samples for a single superframe. If we have any data
 | |
|  * cached in s->sframe_cache, that will be used instead of whatever is loaded
 | |
|  * in s->gb.
 | |
|  *
 | |
|  * WMA Voice superframes contain 3 frames, each containing 160 audio samples,
 | |
|  * to give a total of 480 samples per frame. See #synth_frame() for frame
 | |
|  * parsing. In addition to 3 frames, superframes can also contain the LSPs
 | |
|  * (if these are globally specified for all frames (residually); they can
 | |
|  * also be specified individually per-frame. See the s->has_residual_lsps
 | |
|  * option), and can specify the number of samples encoded in this superframe
 | |
|  * (if less than 480), usually used to prevent blanks at track boundaries.
 | |
|  *
 | |
|  * @param ctx WMA Voice decoder context
 | |
|  * @return 0 on success, <0 on error or 1 if there was not enough data to
 | |
|  *         fully parse the superframe
 | |
|  */
 | |
| static int synth_superframe(AVCodecContext *ctx, AVFrame *frame,
 | |
|                             int *got_frame_ptr)
 | |
| {
 | |
|     WMAVoiceContext *s = ctx->priv_data;
 | |
|     GetBitContext *gb = &s->gb, s_gb;
 | |
|     int n, res, n_samples = 480;
 | |
|     double lsps[MAX_FRAMES][MAX_LSPS];
 | |
|     const double *mean_lsf = s->lsps == 16 ?
 | |
|         wmavoice_mean_lsf16[s->lsp_def_mode] : wmavoice_mean_lsf10[s->lsp_def_mode];
 | |
|     float excitation[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE + 12];
 | |
|     float synth[MAX_LSPS + MAX_SFRAMESIZE];
 | |
|     float *samples;
 | |
| 
 | |
|     memcpy(synth,      s->synth_history,
 | |
|            s->lsps             * sizeof(*synth));
 | |
|     memcpy(excitation, s->excitation_history,
 | |
|            s->history_nsamples * sizeof(*excitation));
 | |
| 
 | |
|     if (s->sframe_cache_size > 0) {
 | |
|         gb = &s_gb;
 | |
|         init_get_bits(gb, s->sframe_cache, s->sframe_cache_size);
 | |
|         s->sframe_cache_size = 0;
 | |
|     }
 | |
| 
 | |
|     if ((res = check_bits_for_superframe(gb, s)) == 1) {
 | |
|         *got_frame_ptr = 0;
 | |
|         return 1;
 | |
|     } else if (res < 0)
 | |
|         return res;
 | |
| 
 | |
|     /* First bit is speech/music bit, it differentiates between WMAVoice
 | |
|      * speech samples (the actual codec) and WMAVoice music samples, which
 | |
|      * are really WMAPro-in-WMAVoice-superframes. I've never seen those in
 | |
|      * the wild yet. */
 | |
|     if (!get_bits1(gb)) {
 | |
|         avpriv_request_sample(ctx, "WMAPro-in-WMAVoice");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     /* (optional) nr. of samples in superframe; always <= 480 and >= 0 */
 | |
|     if (get_bits1(gb)) {
 | |
|         if ((n_samples = get_bits(gb, 12)) > 480) {
 | |
|             av_log(ctx, AV_LOG_ERROR,
 | |
|                    "Superframe encodes >480 samples (%d), not allowed\n",
 | |
|                    n_samples);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
|     /* Parse LSPs, if global for the superframe (can also be per-frame). */
 | |
|     if (s->has_residual_lsps) {
 | |
|         double prev_lsps[MAX_LSPS], a1[MAX_LSPS * 2], a2[MAX_LSPS * 2];
 | |
| 
 | |
|         for (n = 0; n < s->lsps; n++)
 | |
|             prev_lsps[n] = s->prev_lsps[n] - mean_lsf[n];
 | |
| 
 | |
|         if (s->lsps == 10) {
 | |
|             dequant_lsp10r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
 | |
|         } else /* s->lsps == 16 */
 | |
|             dequant_lsp16r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
 | |
| 
 | |
|         for (n = 0; n < s->lsps; n++) {
 | |
|             lsps[0][n]  = mean_lsf[n] + (a1[n]           - a2[n * 2]);
 | |
|             lsps[1][n]  = mean_lsf[n] + (a1[s->lsps + n] - a2[n * 2 + 1]);
 | |
|             lsps[2][n] += mean_lsf[n];
 | |
|         }
 | |
|         for (n = 0; n < 3; n++)
 | |
|             stabilize_lsps(lsps[n], s->lsps);
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = 480;
 | |
|     if ((res = ff_get_buffer(ctx, frame, 0)) < 0)
 | |
|         return res;
 | |
|     frame->nb_samples = n_samples;
 | |
|     samples = (float *)frame->data[0];
 | |
| 
 | |
|     /* Parse frames, optionally preceded by per-frame (independent) LSPs. */
 | |
|     for (n = 0; n < 3; n++) {
 | |
|         if (!s->has_residual_lsps) {
 | |
|             int m;
 | |
| 
 | |
|             if (s->lsps == 10) {
 | |
|                 dequant_lsp10i(gb, lsps[n]);
 | |
|             } else /* s->lsps == 16 */
 | |
|                 dequant_lsp16i(gb, lsps[n]);
 | |
| 
 | |
|             for (m = 0; m < s->lsps; m++)
 | |
|                 lsps[n][m] += mean_lsf[m];
 | |
|             stabilize_lsps(lsps[n], s->lsps);
 | |
|         }
 | |
| 
 | |
|         if ((res = synth_frame(ctx, gb, n,
 | |
|                                &samples[n * MAX_FRAMESIZE],
 | |
|                                lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1],
 | |
|                                &excitation[s->history_nsamples + n * MAX_FRAMESIZE],
 | |
|                                &synth[s->lsps + n * MAX_FRAMESIZE]))) {
 | |
|             *got_frame_ptr = 0;
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Statistics? FIXME - we don't check for length, a slight overrun
 | |
|      * will be caught by internal buffer padding, and anything else
 | |
|      * will be skipped, not read. */
 | |
|     if (get_bits1(gb)) {
 | |
|         res = get_bits(gb, 4);
 | |
|         skip_bits(gb, 10 * (res + 1));
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     /* Update history */
 | |
|     memcpy(s->prev_lsps,           lsps[2],
 | |
|            s->lsps             * sizeof(*s->prev_lsps));
 | |
|     memcpy(s->synth_history,      &synth[MAX_SFRAMESIZE],
 | |
|            s->lsps             * sizeof(*synth));
 | |
|     memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE],
 | |
|            s->history_nsamples * sizeof(*excitation));
 | |
|     if (s->do_apf)
 | |
|         memmove(s->zero_exc_pf,       &s->zero_exc_pf[MAX_SFRAMESIZE],
 | |
|                 s->history_nsamples * sizeof(*s->zero_exc_pf));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the packet header at the start of each packet (input data to this
 | |
|  * decoder).
 | |
|  *
 | |
|  * @param s WMA Voice decoding context private data
 | |
|  * @return 1 if not enough bits were available, or 0 on success.
 | |
|  */
 | |
| static int parse_packet_header(WMAVoiceContext *s)
 | |
| {
 | |
|     GetBitContext *gb = &s->gb;
 | |
|     unsigned int res;
 | |
| 
 | |
|     if (get_bits_left(gb) < 11)
 | |
|         return 1;
 | |
|     skip_bits(gb, 4);          // packet sequence number
 | |
|     s->has_residual_lsps = get_bits1(gb);
 | |
|     do {
 | |
|         res = get_bits(gb, 6); // number of superframes per packet
 | |
|                                // (minus first one if there is spillover)
 | |
|         if (get_bits_left(gb) < 6 * (res == 0x3F) + s->spillover_bitsize)
 | |
|             return 1;
 | |
|     } while (res == 0x3F);
 | |
|     s->spillover_nbits   = get_bits(gb, s->spillover_bitsize);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Copy (unaligned) bits from gb/data/size to pb.
 | |
|  *
 | |
|  * @param pb target buffer to copy bits into
 | |
|  * @param data source buffer to copy bits from
 | |
|  * @param size size of the source data, in bytes
 | |
|  * @param gb bit I/O context specifying the current position in the source.
 | |
|  *           data. This function might use this to align the bit position to
 | |
|  *           a whole-byte boundary before calling #avpriv_copy_bits() on aligned
 | |
|  *           source data
 | |
|  * @param nbits the amount of bits to copy from source to target
 | |
|  *
 | |
|  * @note after calling this function, the current position in the input bit
 | |
|  *       I/O context is undefined.
 | |
|  */
 | |
| static void copy_bits(PutBitContext *pb,
 | |
|                       const uint8_t *data, int size,
 | |
|                       GetBitContext *gb, int nbits)
 | |
| {
 | |
|     int rmn_bytes, rmn_bits;
 | |
| 
 | |
|     rmn_bits = rmn_bytes = get_bits_left(gb);
 | |
|     if (rmn_bits < nbits)
 | |
|         return;
 | |
|     if (nbits > pb->size_in_bits - put_bits_count(pb))
 | |
|         return;
 | |
|     rmn_bits &= 7; rmn_bytes >>= 3;
 | |
|     if ((rmn_bits = FFMIN(rmn_bits, nbits)) > 0)
 | |
|         put_bits(pb, rmn_bits, get_bits(gb, rmn_bits));
 | |
|     avpriv_copy_bits(pb, data + size - rmn_bytes,
 | |
|                  FFMIN(nbits - rmn_bits, rmn_bytes << 3));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Packet decoding: a packet is anything that the (ASF) demuxer contains,
 | |
|  * and we expect that the demuxer / application provides it to us as such
 | |
|  * (else you'll probably get garbage as output). Every packet has a size of
 | |
|  * ctx->block_align bytes, starts with a packet header (see
 | |
|  * #parse_packet_header()), and then a series of superframes. Superframe
 | |
|  * boundaries may exceed packets, i.e. superframes can split data over
 | |
|  * multiple (two) packets.
 | |
|  *
 | |
|  * For more information about frames, see #synth_superframe().
 | |
|  */
 | |
| static int wmavoice_decode_packet(AVCodecContext *ctx, void *data,
 | |
|                                   int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     WMAVoiceContext *s = ctx->priv_data;
 | |
|     GetBitContext *gb = &s->gb;
 | |
|     int size, res, pos;
 | |
| 
 | |
|     /* Packets are sometimes a multiple of ctx->block_align, with a packet
 | |
|      * header at each ctx->block_align bytes. However, FFmpeg's ASF demuxer
 | |
|      * feeds us ASF packets, which may concatenate multiple "codec" packets
 | |
|      * in a single "muxer" packet, so we artificially emulate that by
 | |
|      * capping the packet size at ctx->block_align. */
 | |
|     for (size = avpkt->size; size > ctx->block_align; size -= ctx->block_align);
 | |
|     if (!size) {
 | |
|         *got_frame_ptr = 0;
 | |
|         return 0;
 | |
|     }
 | |
|     init_get_bits(&s->gb, avpkt->data, size << 3);
 | |
| 
 | |
|     /* size == ctx->block_align is used to indicate whether we are dealing with
 | |
|      * a new packet or a packet of which we already read the packet header
 | |
|      * previously. */
 | |
|     if (size == ctx->block_align) { // new packet header
 | |
|         if ((res = parse_packet_header(s)) < 0)
 | |
|             return res;
 | |
| 
 | |
|         /* If the packet header specifies a s->spillover_nbits, then we want
 | |
|          * to push out all data of the previous packet (+ spillover) before
 | |
|          * continuing to parse new superframes in the current packet. */
 | |
|         if (s->spillover_nbits > 0) {
 | |
|             if (s->sframe_cache_size > 0) {
 | |
|                 int cnt = get_bits_count(gb);
 | |
|                 copy_bits(&s->pb, avpkt->data, size, gb, s->spillover_nbits);
 | |
|                 flush_put_bits(&s->pb);
 | |
|                 s->sframe_cache_size += s->spillover_nbits;
 | |
|                 if ((res = synth_superframe(ctx, data, got_frame_ptr)) == 0 &&
 | |
|                     *got_frame_ptr) {
 | |
|                     cnt += s->spillover_nbits;
 | |
|                     s->skip_bits_next = cnt & 7;
 | |
|                     return cnt >> 3;
 | |
|                 } else
 | |
|                     skip_bits_long (gb, s->spillover_nbits - cnt +
 | |
|                                     get_bits_count(gb)); // resync
 | |
|             } else
 | |
|                 skip_bits_long(gb, s->spillover_nbits);  // resync
 | |
|         }
 | |
|     } else if (s->skip_bits_next)
 | |
|         skip_bits(gb, s->skip_bits_next);
 | |
| 
 | |
|     /* Try parsing superframes in current packet */
 | |
|     s->sframe_cache_size = 0;
 | |
|     s->skip_bits_next = 0;
 | |
|     pos = get_bits_left(gb);
 | |
|     if ((res = synth_superframe(ctx, data, got_frame_ptr)) < 0) {
 | |
|         return res;
 | |
|     } else if (*got_frame_ptr) {
 | |
|         int cnt = get_bits_count(gb);
 | |
|         s->skip_bits_next = cnt & 7;
 | |
|         return cnt >> 3;
 | |
|     } else if ((s->sframe_cache_size = pos) > 0) {
 | |
|         /* rewind bit reader to start of last (incomplete) superframe... */
 | |
|         init_get_bits(gb, avpkt->data, size << 3);
 | |
|         skip_bits_long(gb, (size << 3) - pos);
 | |
|         av_assert1(get_bits_left(gb) == pos);
 | |
| 
 | |
|         /* ...and cache it for spillover in next packet */
 | |
|         init_put_bits(&s->pb, s->sframe_cache, SFRAME_CACHE_MAXSIZE);
 | |
|         copy_bits(&s->pb, avpkt->data, size, gb, s->sframe_cache_size);
 | |
|         // FIXME bad - just copy bytes as whole and add use the
 | |
|         // skip_bits_next field
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| static av_cold int wmavoice_decode_end(AVCodecContext *ctx)
 | |
| {
 | |
|     WMAVoiceContext *s = ctx->priv_data;
 | |
| 
 | |
|     if (s->do_apf) {
 | |
|         ff_rdft_end(&s->rdft);
 | |
|         ff_rdft_end(&s->irdft);
 | |
|         ff_dct_end(&s->dct);
 | |
|         ff_dct_end(&s->dst);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void wmavoice_flush(AVCodecContext *ctx)
 | |
| {
 | |
|     WMAVoiceContext *s = ctx->priv_data;
 | |
|     int n;
 | |
| 
 | |
|     s->postfilter_agc    = 0;
 | |
|     s->sframe_cache_size = 0;
 | |
|     s->skip_bits_next    = 0;
 | |
|     for (n = 0; n < s->lsps; n++)
 | |
|         s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
 | |
|     memset(s->excitation_history, 0,
 | |
|            sizeof(*s->excitation_history) * MAX_SIGNAL_HISTORY);
 | |
|     memset(s->synth_history,      0,
 | |
|            sizeof(*s->synth_history)      * MAX_LSPS);
 | |
|     memset(s->gain_pred_err,      0,
 | |
|            sizeof(s->gain_pred_err));
 | |
| 
 | |
|     if (s->do_apf) {
 | |
|         memset(&s->synth_filter_out_buf[MAX_LSPS_ALIGN16 - s->lsps], 0,
 | |
|                sizeof(*s->synth_filter_out_buf) * s->lsps);
 | |
|         memset(s->dcf_mem,              0,
 | |
|                sizeof(*s->dcf_mem)              * 2);
 | |
|         memset(s->zero_exc_pf,          0,
 | |
|                sizeof(*s->zero_exc_pf)          * s->history_nsamples);
 | |
|         memset(s->denoise_filter_cache, 0, sizeof(s->denoise_filter_cache));
 | |
|     }
 | |
| }
 | |
| 
 | |
| AVCodec ff_wmavoice_decoder = {
 | |
|     .name             = "wmavoice",
 | |
|     .long_name        = NULL_IF_CONFIG_SMALL("Windows Media Audio Voice"),
 | |
|     .type             = AVMEDIA_TYPE_AUDIO,
 | |
|     .id               = AV_CODEC_ID_WMAVOICE,
 | |
|     .priv_data_size   = sizeof(WMAVoiceContext),
 | |
|     .init             = wmavoice_decode_init,
 | |
|     .init_static_data = wmavoice_init_static_data,
 | |
|     .close            = wmavoice_decode_end,
 | |
|     .decode           = wmavoice_decode_packet,
 | |
|     .capabilities     = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
 | |
|     .flush            = wmavoice_flush,
 | |
| };
 |