Files
cursor-api/patch/rustls-0.23.27/src/vecbuf.rs
2025-07-27 09:04:19 +08:00

375 lines
11 KiB
Rust

use alloc::collections::VecDeque;
use alloc::vec::Vec;
use core::{cmp, mem};
#[cfg(feature = "std")]
use std::io;
#[cfg(feature = "std")]
use std::io::Read;
#[cfg(feature = "std")]
use crate::msgs::message::OutboundChunks;
/// This is a byte buffer that is built from a deque of byte vectors.
///
/// This avoids extra copies when appending a new byte vector,
/// at the expense of more complexity when reading out.
pub(crate) struct ChunkVecBuffer {
/// How many bytes have been consumed in the first chunk.
///
/// Invariant: zero if `chunks.is_empty()`
/// Invariant: 0 <= `prefix_used` < `chunks[0].len()`
prefix_used: usize,
chunks: VecDeque<Vec<u8>>,
/// The total upper limit (in bytes) of this object.
limit: Option<usize>,
}
impl ChunkVecBuffer {
pub(crate) fn new(limit: Option<usize>) -> Self {
Self {
prefix_used: 0,
chunks: VecDeque::new(),
limit,
}
}
/// Sets the upper limit on how many bytes this
/// object can store.
///
/// Setting a lower limit than the currently stored
/// data is not an error.
///
/// A [`None`] limit is interpreted as no limit.
pub(crate) fn set_limit(&mut self, new_limit: Option<usize>) {
self.limit = new_limit;
}
/// If we're empty
pub(crate) fn is_empty(&self) -> bool {
self.chunks.is_empty()
}
/// How many bytes we're storing
pub(crate) fn len(&self) -> usize {
self.chunks
.iter()
.fold(0usize, |acc, chunk| acc + chunk.len())
- self.prefix_used
}
/// For a proposed append of `len` bytes, how many
/// bytes should we actually append to adhere to the
/// currently set `limit`?
pub(crate) fn apply_limit(&self, len: usize) -> usize {
if let Some(limit) = self.limit {
let space = limit.saturating_sub(self.len());
cmp::min(len, space)
} else {
len
}
}
/// Take and append the given `bytes`.
pub(crate) fn append(&mut self, bytes: Vec<u8>) -> usize {
let len = bytes.len();
if !bytes.is_empty() {
if self.chunks.is_empty() {
debug_assert_eq!(self.prefix_used, 0);
}
self.chunks.push_back(bytes);
}
len
}
/// Take one of the chunks from this object.
///
/// This function returns `None` if the object `is_empty`.
pub(crate) fn pop(&mut self) -> Option<Vec<u8>> {
let mut first = self.chunks.pop_front();
if let Some(first) = &mut first {
// slice off `prefix_used` if needed (uncommon)
let prefix = mem::take(&mut self.prefix_used);
first.drain(0..prefix);
}
first
}
#[cfg(read_buf)]
/// Read data out of this object, writing it into `cursor`.
pub(crate) fn read_buf(&mut self, mut cursor: core::io::BorrowedCursor<'_>) -> io::Result<()> {
while !self.is_empty() && cursor.capacity() > 0 {
let chunk = &self.chunks[0][self.prefix_used..];
let used = cmp::min(chunk.len(), cursor.capacity());
cursor.append(&chunk[..used]);
self.consume(used);
}
Ok(())
}
/// Inspect the first chunk from this object.
pub(crate) fn peek(&self) -> Option<&[u8]> {
self.chunks
.front()
.map(|ch| ch.as_slice())
}
}
#[cfg(feature = "std")]
impl ChunkVecBuffer {
pub(crate) fn is_full(&self) -> bool {
self.limit
.map(|limit| self.len() > limit)
.unwrap_or_default()
}
/// Append a copy of `bytes`, perhaps a prefix if
/// we're near the limit.
pub(crate) fn append_limited_copy(&mut self, payload: OutboundChunks<'_>) -> usize {
let take = self.apply_limit(payload.len());
self.append(payload.split_at(take).0.to_vec());
take
}
/// Read data out of this object, writing it into `buf`
/// and returning how many bytes were written there.
pub(crate) fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut offs = 0;
while offs < buf.len() && !self.is_empty() {
let used = (&self.chunks[0][self.prefix_used..]).read(&mut buf[offs..])?;
self.consume(used);
offs += used;
}
Ok(offs)
}
pub(crate) fn consume_first_chunk(&mut self, used: usize) {
// this backs (infallible) `BufRead::consume`, where `used` is
// user-supplied.
assert!(
used <= self
.chunk()
.map(|ch| ch.len())
.unwrap_or_default(),
"illegal `BufRead::consume` usage",
);
self.consume(used);
}
fn consume(&mut self, used: usize) {
// first, mark the rightmost extent of the used buffer
self.prefix_used += used;
// then reduce `prefix_used` by discarding wholly-covered
// buffers
while let Some(buf) = self.chunks.front() {
if self.prefix_used < buf.len() {
return;
} else {
self.prefix_used -= buf.len();
self.chunks.pop_front();
}
}
debug_assert_eq!(
self.prefix_used, 0,
"attempted to `ChunkVecBuffer::consume` more than available"
);
}
/// Read data out of this object, passing it `wr`
pub(crate) fn write_to(&mut self, wr: &mut dyn io::Write) -> io::Result<usize> {
if self.is_empty() {
return Ok(0);
}
let mut prefix = self.prefix_used;
let mut bufs = [io::IoSlice::new(&[]); 64];
for (iov, chunk) in bufs.iter_mut().zip(self.chunks.iter()) {
*iov = io::IoSlice::new(&chunk[prefix..]);
prefix = 0;
}
let len = cmp::min(bufs.len(), self.chunks.len());
let bufs = &bufs[..len];
let used = wr.write_vectored(bufs)?;
let available_bytes = bufs.iter().map(|ch| ch.len()).sum();
if used > available_bytes {
// This is really unrecoverable, since the amount of data written
// is now unknown. Consume all the potentially-written data in
// case the caller ignores the error.
// See <https://github.com/rustls/rustls/issues/2316> for background.
self.consume(available_bytes);
return Err(io::Error::new(
io::ErrorKind::Other,
std::format!("illegal write_vectored return value ({used} > {available_bytes})"),
));
}
self.consume(used);
Ok(used)
}
/// Returns the first contiguous chunk of data, or None if empty.
pub(crate) fn chunk(&self) -> Option<&[u8]> {
self.chunks
.front()
.map(|chunk| &chunk[self.prefix_used..])
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use alloc::vec;
use alloc::vec::Vec;
use super::ChunkVecBuffer;
#[test]
fn short_append_copy_with_limit() {
let mut cvb = ChunkVecBuffer::new(Some(12));
assert_eq!(cvb.append_limited_copy(b"hello"[..].into()), 5);
assert_eq!(cvb.append_limited_copy(b"world"[..].into()), 5);
assert_eq!(cvb.append_limited_copy(b"hello"[..].into()), 2);
assert_eq!(cvb.append_limited_copy(b"world"[..].into()), 0);
let mut buf = [0u8; 12];
assert_eq!(cvb.read(&mut buf).unwrap(), 12);
assert_eq!(buf.to_vec(), b"helloworldhe".to_vec());
}
#[test]
fn read_byte_by_byte() {
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(b"test fixture data".to_vec());
assert!(!cvb.is_empty());
for expect in b"test fixture data" {
let mut byte = [0];
assert_eq!(cvb.read(&mut byte).unwrap(), 1);
assert_eq!(byte[0], *expect);
}
assert_eq!(cvb.read(&mut [0]).unwrap(), 0);
}
#[test]
fn every_possible_chunk_interleaving() {
let input = (0..=0xffu8)
.cycle()
.take(4096)
.collect::<Vec<u8>>();
for input_chunk_len in 1..64usize {
for output_chunk_len in 1..65usize {
std::println!("check input={input_chunk_len} output={output_chunk_len}");
let mut cvb = ChunkVecBuffer::new(None);
for chunk in input.chunks(input_chunk_len) {
cvb.append(chunk.to_vec());
}
assert_eq!(cvb.len(), input.len());
let mut buf = vec![0u8; output_chunk_len];
for expect in input.chunks(output_chunk_len) {
assert_eq!(expect.len(), cvb.read(&mut buf).unwrap());
assert_eq!(expect, &buf[..expect.len()]);
}
assert_eq!(cvb.read(&mut [0]).unwrap(), 0);
}
}
}
#[cfg(read_buf)]
#[test]
fn read_buf() {
use core::io::BorrowedBuf;
use core::mem::MaybeUninit;
{
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(b"test ".to_vec());
cvb.append(b"fixture ".to_vec());
cvb.append(b"data".to_vec());
let mut buf = [MaybeUninit::<u8>::uninit(); 8];
let mut buf: BorrowedBuf<'_> = buf.as_mut_slice().into();
cvb.read_buf(buf.unfilled()).unwrap();
assert_eq!(buf.filled(), b"test fix");
buf.clear();
cvb.read_buf(buf.unfilled()).unwrap();
assert_eq!(buf.filled(), b"ture dat");
buf.clear();
cvb.read_buf(buf.unfilled()).unwrap();
assert_eq!(buf.filled(), b"a");
}
{
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(b"short message".to_vec());
let mut buf = [MaybeUninit::<u8>::uninit(); 1024];
let mut buf: BorrowedBuf<'_> = buf.as_mut_slice().into();
cvb.read_buf(buf.unfilled()).unwrap();
assert_eq!(buf.filled(), b"short message");
}
}
}
#[cfg(bench)]
mod benchmarks {
use alloc::vec;
use super::ChunkVecBuffer;
#[bench]
fn read_one_byte_from_large_message(b: &mut test::Bencher) {
b.iter(|| {
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(vec![0u8; 16_384]);
assert_eq!(1, cvb.read(&mut [0u8]).unwrap());
});
}
#[bench]
fn read_all_individual_from_large_message(b: &mut test::Bencher) {
b.iter(|| {
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(vec![0u8; 16_384]);
loop {
if let Ok(0) = cvb.read(&mut [0u8]) {
break;
}
}
});
}
#[bench]
fn read_half_bytes_from_large_message(b: &mut test::Bencher) {
b.iter(|| {
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(vec![0u8; 16_384]);
assert_eq!(8192, cvb.read(&mut [0u8; 8192]).unwrap());
assert_eq!(8192, cvb.read(&mut [0u8; 8192]).unwrap());
});
}
#[bench]
fn read_entire_large_message(b: &mut test::Bencher) {
b.iter(|| {
let mut cvb = ChunkVecBuffer::new(None);
cvb.append(vec![0u8; 16_384]);
assert_eq!(16_384, cvb.read(&mut [0u8; 16_384]).unwrap());
});
}
}