mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 4a9c04a746
			
		
	
	4a9c04a746
	
	
	
		
			
			* [Feature] Pass through the `chat_template_kwargs` to the data processing module (#3421)
* fix chat_template_args
* fix args
* add offline
* add offline
* fix
* fix
* fix default enable_thinking value
* fix default enable_thinking value
* modify condition
* Revert "modify condition"
This reverts commit 26430bdeb1.
* fix unit test
* add Tool Parser (#3272)
* add tool-parser
* add tool-parser
* add tool parser
* add tool parser
* fix
* add offline
* add offline
* fix
* parsers:tool&reasoning
* 修改tool parser名称·
* update
* fix reasoning-parser
* add requirements
* fix finish reason
* fix
* fix reasoning-parser
* fix
* fix
* fix
* fix
* fix
---------
Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>
* [Feature] add tool parser (#3483)
* add tool parser
* add x1 enable_thinking
* restart ci
* fix vl reasoning parser
* modify call style
* modify call style
* add offline enablethinking
* fix completion
* fix
* fix unit test
* fix unit test
* fix unit test
* fix vl reasoning parser
* fix vl reasoning parser
* fix unit test
---------
Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>
		
	
		
			
				
	
	
		
			430 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import json
 | |
| import os
 | |
| from datetime import datetime
 | |
| from typing import Any, Dict, List, Optional
 | |
| 
 | |
| from fastdeploy.config import (
 | |
|     CacheConfig,
 | |
|     CommitConfig,
 | |
|     LoadConfig,
 | |
|     ModelConfig,
 | |
|     ParallelConfig,
 | |
| )
 | |
| from fastdeploy.platforms import current_platform
 | |
| from fastdeploy.scheduler import SchedulerConfig
 | |
| from fastdeploy.utils import ceil_div, get_host_ip, is_port_available, llm_logger
 | |
| 
 | |
| 
 | |
| class Config:
 | |
|     """
 | |
|     Initial configuration class.
 | |
| 
 | |
|     Attributes:
 | |
|         model_config (ModelConfig): Model configuration object.
 | |
|         cache_config (CacheConfig): Cache configuration object.
 | |
|         model_name_or_path (str): Directory path to the model or the model name.
 | |
|         tokenizer (Optional[str]): Default is the model.
 | |
|         max_num_batched_tokens (Optional[int]): Maximum number of batched tokens.
 | |
|         tensor_parallel_size (int): Tensor parallel size.
 | |
|         nnode (int): Number of nodes.
 | |
|         max_model_len (int): Maximum model length. Default is 8192.
 | |
|         max_num_seqs (int): Maximum number of sequences. Default is 8.
 | |
|         mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor.
 | |
|         speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration.
 | |
|         use_warmup (bool): Flag to use warmup.
 | |
|         engine_worker_queue_port (int): Port for engine worker queue.
 | |
|         enable_mm (bool): Flag to enable multi-modal processing.
 | |
|         reasoning_parser(str): Flag specifies the reasoning parser to use for
 | |
|             extracting reasoning content from the model output
 | |
|         splitwise_role (str): Splitwise role.
 | |
|         innode_prefill_ports (Optional[List[int]]): Innode prefill ports.
 | |
|             Temporary configuration, will be removed in the future.
 | |
|         load_choices(str):The format of the model weights to load. .Default is default
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         model_config: ModelConfig,
 | |
|         cache_config: CacheConfig,
 | |
|         scheduler_config: SchedulerConfig,
 | |
|         parallel_config: ParallelConfig,
 | |
|         load_config: LoadConfig,
 | |
|         commit_config: CommitConfig = CommitConfig(),
 | |
|         model_name_or_path: str = None,
 | |
|         tokenizer: str = None,
 | |
|         tensor_parallel_size: int = 8,
 | |
|         max_model_len: int = 8192,
 | |
|         max_num_seqs: int = 8,
 | |
|         max_num_batched_tokens: Optional[int] = None,
 | |
|         ips: str = None,
 | |
|         speculative_config: Optional[Dict[str, Any]] = None,
 | |
|         graph_optimization_config: Optional[Dict[str, Any]] = None,
 | |
|         use_warmup: bool = False,
 | |
|         engine_worker_queue_port: int = 8002,
 | |
|         limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
 | |
|         mm_processor_kwargs: Optional[Dict[str, Any]] = None,
 | |
|         enable_mm: bool = False,
 | |
|         splitwise_role: str = "mixed",
 | |
|         innode_prefill_ports: Optional[List[int]] = None,
 | |
|         max_num_partial_prefills: int = 1,
 | |
|         max_long_partial_prefills: int = 1,
 | |
|         long_prefill_token_threshold: int = 0,
 | |
|         reasoning_parser: str = None,
 | |
|         tool_parser: str = None,
 | |
|         guided_decoding_backend: Optional[str] = None,
 | |
|         disable_any_whitespace: bool = False,
 | |
|         enable_logprob: bool = False,
 | |
|         early_stop_config: Optional[Dict[str, Any]] = None,
 | |
|         load_choices: str = "default",
 | |
|     ):
 | |
|         """
 | |
|         Initialize the Config class.
 | |
| 
 | |
|         Args:
 | |
|             model_config (ModelConfig): Model configuration object.
 | |
|             cache_config (CacheConfig): Cache configuration object.
 | |
|             parallel_config (ParallelConfig): Parallel configuration object.
 | |
|             scheduler_config (SchedulerConfig): Scheduler configuration object.
 | |
|             model_name_or_path (str): Model directory path or model name.
 | |
|             tokenizer (str): Default is the model.
 | |
|             tensor_parallel_size (int): Tensor parallel size. Default is 8.
 | |
|             max_model_len (int): Maximum model length. Default is 8192.
 | |
|             max_num_seqs (int): Maximum number of sequences. Default is 8.
 | |
|             max_num_batched_tokens (Optional[int]): Maximum number of batched tokens. Default is None.
 | |
|             mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor. Default is None.
 | |
|             speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration. Default is None.
 | |
|             graph_optimization_config (Optional[Dict[str, Any]]): Graph optimizaion backend execution configuration. Default is None.
 | |
|             use_warmup (bool): Flag to use warmup. Default is False.
 | |
|             engine_worker_queue_port (int): Engine worker queue port. Default is 8002.
 | |
|             enable_mm (bool): Flag to enable multi-modal processing. Default is False.
 | |
|             splitwise_role (str): Splitwise role. Default is "mixed".
 | |
|             innode_prefill_ports (Optional[List[int]]): Innode prefill ports. Default is None.
 | |
|             reasoning_parser (str): Flag specifies the reasoning parser to use for
 | |
|                    extracting reasoning content from the model output. Default is None.
 | |
|             guided_decoding_backend(str): Guided decoding backend. Default is None.
 | |
|             disable_any_whitespace(bool): Disable any whitespace when using guided decoding.
 | |
|                 Default is False.
 | |
|             enable_logprob(bool): Enable logprob. Default is False.
 | |
|             early_stop_config (Optional[Dict[str, Any]]): Early stop configuration. Default is None.
 | |
|             load_choices(str):The format of the model weights to load. .Default is default
 | |
|         """
 | |
|         self.model_config = model_config
 | |
|         self.cache_config = cache_config
 | |
|         self.scheduler_config = scheduler_config
 | |
|         self.parallel_config = parallel_config
 | |
|         self.load_config = load_config
 | |
|         self.commit_config = commit_config
 | |
|         self.model_name_or_path = model_name_or_path
 | |
|         self.tokenizer = tokenizer
 | |
|         self.max_num_batched_tokens = max_num_batched_tokens
 | |
|         self.tensor_parallel_size = tensor_parallel_size
 | |
|         self.ips = ips
 | |
| 
 | |
|         if self.ips is None:
 | |
|             self.master_ip = "0.0.0.0"
 | |
|         elif isinstance(self.ips, list):
 | |
|             self.master_ip = self.ips[0]
 | |
|         else:
 | |
|             self.ips = self.ips.split(",")
 | |
|             self.master_ip = self.ips[0]
 | |
| 
 | |
|         if self.ips is None:
 | |
|             self.nnode = 1
 | |
|             self.node_rank = 0
 | |
|         else:
 | |
|             self.nnode = len(self.ips)
 | |
| 
 | |
|             for idx, ip in enumerate(self.ips):
 | |
|                 if ip == self.master_ip:
 | |
|                     self.node_rank = idx
 | |
| 
 | |
|         self.max_model_len = max_model_len
 | |
|         self.max_num_seqs = max_num_seqs
 | |
|         self.limit_mm_per_prompt = limit_mm_per_prompt
 | |
|         self.mm_processor_kwargs = mm_processor_kwargs
 | |
|         self.enable_mm = enable_mm
 | |
|         self.speculative_config = speculative_config
 | |
|         self.use_warmup = use_warmup
 | |
|         self.splitwise_role = splitwise_role
 | |
|         self.innode_prefill_ports = innode_prefill_ports
 | |
|         self.max_num_partial_prefills = max_num_partial_prefills
 | |
|         self.max_long_partial_prefills = max_long_partial_prefills
 | |
|         self.long_prefill_token_threshold = long_prefill_token_threshold
 | |
|         self.reasoning_parser = reasoning_parser
 | |
|         self.tool_parser = tool_parser
 | |
|         self.graph_optimization_config = graph_optimization_config
 | |
|         self.early_stop_config = early_stop_config
 | |
|         self.guided_decoding_backend = guided_decoding_backend
 | |
|         self.disable_any_whitespace = disable_any_whitespace
 | |
|         self._str_to_list("innode_prefill_ports", int)
 | |
|         self.load_choices = load_choices
 | |
| 
 | |
|         assert self.splitwise_role in ["mixed", "prefill", "decode"]
 | |
| 
 | |
|         # TODO
 | |
|         self.max_prefill_batch = 3
 | |
|         if current_platform.is_xpu():
 | |
|             self.max_prefill_batch = 1
 | |
|         if enable_mm:
 | |
|             self.max_prefill_batch = 1  # TODO:当前多模prefill阶段只支持并行度为1,待优化
 | |
| 
 | |
|         # TODO(@wufeisheng): TP and EP need to be supported simultaneously.
 | |
|         assert (self.tensor_parallel_size == 1 and self.parallel_config.expert_parallel_size >= 1) or (
 | |
|             self.tensor_parallel_size >= 1 and self.parallel_config.expert_parallel_size == 1
 | |
|         ), "TP and EP cannot be enabled at the same time"
 | |
| 
 | |
|         num_ranks = self.tensor_parallel_size * self.parallel_config.expert_parallel_size
 | |
|         self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
 | |
|         if num_ranks > self.max_chips_per_node:
 | |
|             self.worker_num_per_node = self.max_chips_per_node
 | |
|             nnode = ceil_div(num_ranks, self.worker_num_per_node)
 | |
|             assert nnode == self.nnode, f"nnode: {nnode}, but got {self.nnode}"
 | |
|         else:
 | |
|             self.worker_num_per_node = num_ranks
 | |
| 
 | |
|         self.engine_worker_queue_port = engine_worker_queue_port
 | |
|         self.device_ids = ",".join([str(i) for i in range(self.worker_num_per_node)])
 | |
|         self.device_ids = os.getenv("CUDA_VISIBLE_DEVICES", self.device_ids)
 | |
|         if current_platform.is_xpu():
 | |
|             self.device_ids = os.getenv("XPU_VISIBLE_DEVICES", self.device_ids)
 | |
| 
 | |
|         self.enable_logprob = enable_logprob
 | |
| 
 | |
|         self.read_from_config()
 | |
|         self.postprocess()
 | |
|         self.check()
 | |
|         self.print()
 | |
| 
 | |
|     def postprocess(self):
 | |
|         """
 | |
|         calculate some parameters
 | |
|         """
 | |
|         assert (
 | |
|             self.device_ids.split(",").__len__() == self.worker_num_per_node
 | |
|         ), f"invalid CUDA_VISIBLE_DEVICES, should be equal to {self.worker_num_per_node}"
 | |
| 
 | |
|         self.local_device_ids = self.device_ids.split(",")[: self.tensor_parallel_size]
 | |
| 
 | |
|         self.host_ip = get_host_ip()
 | |
| 
 | |
|         if self.ips is None or self.host_ip == self.master_ip:
 | |
|             self.is_master = True
 | |
|         else:
 | |
|             self.is_master = False
 | |
| 
 | |
|         if self.tensor_parallel_size <= self.worker_num_per_node:
 | |
|             self.is_master = True
 | |
| 
 | |
|         import paddle
 | |
| 
 | |
|         self.paddle_commit_id = paddle.version.commit
 | |
| 
 | |
|         if self.max_num_batched_tokens is None:
 | |
|             if self.cache_config.enable_chunked_prefill:
 | |
|                 self.max_num_batched_tokens = 2048
 | |
|             else:
 | |
|                 if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
 | |
|                     self.max_num_batched_tokens = self.max_model_len
 | |
|                 else:
 | |
|                     if paddle.is_compiled_with_xpu():
 | |
|                         self.max_num_batched_tokens = self.max_model_len
 | |
|                     else:
 | |
|                         self.max_num_batched_tokens = 8192
 | |
| 
 | |
|         if self.long_prefill_token_threshold == 0:
 | |
|             self.long_prefill_token_threshold = int(self.max_model_len * 0.04)
 | |
| 
 | |
|         self.cache_config.postprocess(self.max_num_batched_tokens, self.max_num_seqs)
 | |
|         self.cache_config.max_block_num_per_seq = int(self.max_model_len // self.cache_config.block_size)
 | |
| 
 | |
|         if self.guided_decoding_backend == "auto":
 | |
|             if self.enable_mm:
 | |
|                 self.guided_decoding_backend = "off"
 | |
|             else:
 | |
|                 self.guided_decoding_backend = "xgrammar"
 | |
| 
 | |
|     def check(self):
 | |
|         """
 | |
|         check the legality of config
 | |
|         """
 | |
|         assert self.max_num_seqs <= 256, (
 | |
|             "The parameter `max_num_seqs` is not allowed to exceed 256, " f"but now it's {self.max_num_seqs}."
 | |
|         )
 | |
|         assert is_port_available(
 | |
|             "0.0.0.0", self.engine_worker_queue_port
 | |
|         ), f"The parameter `engine_worker_queue_port`:{self.engine_worker_queue_port} is already in use."
 | |
|         assert self.nnode >= 1, f"nnode: {self.nnode} should no less than 1"
 | |
|         assert self.max_model_len >= 16, f"max_model_len: {self.max_model_len} should be larger than 16"
 | |
|         assert self.max_num_seqs >= 1, f"max_num_seqs: {self.max_num_seqs} should be larger than 1"
 | |
|         assert self.max_num_batched_tokens >= self.max_num_seqs, (
 | |
|             f"max_num_batched_tokens: {self.max_num_batched_tokens} "
 | |
|             f"should be larger than or equal to max_num_seqs: {self.max_num_seqs}"
 | |
|         )
 | |
|         assert self.max_num_batched_tokens <= self.max_model_len * self.max_num_seqs, (
 | |
|             f"max_num_batched_tokens: {self.max_num_batched_tokens} should be larger"
 | |
|             f"than or equal to max_num_seqs: {self.max_num_seqs} * max_model_len: {self.max_model_len}"
 | |
|         )
 | |
|         assert (
 | |
|             self.max_num_partial_prefills >= 1
 | |
|         ), f"max_num_partial_prefills: {self.max_num_partial_prefills} should be larger than or equal to 1"
 | |
| 
 | |
|         assert (
 | |
|             self.max_long_partial_prefills >= 1
 | |
|         ), f"max_long_partial_prefills: {self.max_long_partial_prefills} should be larger than or equal to 1"
 | |
|         assert self.max_long_partial_prefills <= self.max_num_partial_prefills, (
 | |
|             f"max_long_partial_prefills: {self.max_long_partial_prefills} should "
 | |
|             f"be less than or equal to max_num_partial_prefills: {self.max_num_partial_prefills}"
 | |
|         )
 | |
| 
 | |
|         if not self.cache_config.enable_chunked_prefill:
 | |
|             if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
 | |
|                 assert self.max_num_batched_tokens >= self.max_model_len, (
 | |
|                     f"max_num_batched_tokens: {self.max_num_batched_tokens} "
 | |
|                     f"should be larger than or equal to max_model_len: {self.max_model_len}"
 | |
|                 )
 | |
|         else:
 | |
|             assert self.max_num_batched_tokens >= self.cache_config.block_size, (
 | |
|                 f"max_num_batched_tokens: {self.max_num_batched_tokens} "
 | |
|                 f"should be larger than or equal to block_size: {self.cache_config.block_size}"
 | |
|             )
 | |
| 
 | |
|         if self.max_num_partial_prefills > 1:
 | |
|             assert (
 | |
|                 self.cache_config.enable_chunked_prefill is True
 | |
|             ), "Chunked prefill must be enabled to set max_num_partial_prefills > 1"
 | |
|             assert self.long_prefill_token_threshold < self.max_model_len, (
 | |
|                 f"long_prefill_token_threshold: {self.long_prefill_token_threshold} should be less than"
 | |
|                 f" max_model_len: {self.max_model_len}"
 | |
|             )
 | |
| 
 | |
|         if self.guided_decoding_backend is not None:
 | |
|             assert self.guided_decoding_backend in [
 | |
|                 "xgrammar",
 | |
|                 "XGrammar",
 | |
|                 "auto",
 | |
|                 "off",
 | |
|             ], f"Only support xgrammar、auto guided decoding backend, but got {self.guided_decoding_backend}."
 | |
| 
 | |
|             if self.guided_decoding_backend != "off":
 | |
|                 # TODO: mm support guided_decoding
 | |
|                 assert self.enable_mm is False, "Multimodal model currently do not support guided_decoding"
 | |
| 
 | |
|                 # TODO: speculative decoding support guided_decoding
 | |
| 
 | |
|                 # TODO: xpu support guided_decoding
 | |
|                 assert not current_platform.is_xpu(), "XPU currently do not support guided_decoding"
 | |
| 
 | |
|                 try:
 | |
|                     import xgrammar  # noqa
 | |
|                 except Exception as e:
 | |
|                     raise Exception(
 | |
|                         f"import XGrammar failed, please install XGrammar use `pip install xgrammar==0.1.19`. \n\t {e}"
 | |
|                     )
 | |
| 
 | |
|         self.scheduler_config.check()
 | |
| 
 | |
|     def print(self, file=None):
 | |
|         """
 | |
|         print all config
 | |
| 
 | |
|         Args:
 | |
|             file (str): the path of file to save config
 | |
|         """
 | |
|         llm_logger.info("=================== Configuration Information ===============")
 | |
|         for k, v in self.__dict__.items():
 | |
|             if k == "generation_config" and v is not None:
 | |
|                 for gck, gcv in v.to_dict().items():
 | |
|                     llm_logger.info("{:<20}:{:<6}{}".format(gck, "", gcv))
 | |
|             elif (
 | |
|                 k == "cache_config"
 | |
|                 or k == "model_config"
 | |
|                 or k == "scheduler_config"
 | |
|                 or k == "parallel_config"
 | |
|                 or k == "commit_config"
 | |
|             ):
 | |
|                 v.print()
 | |
|             else:
 | |
|                 llm_logger.info("{:<20}:{:<6}{}".format(k, "", v))
 | |
|         llm_logger.info("=============================================================")
 | |
|         if file is not None:
 | |
|             f = open(file, "a")
 | |
|             now_time = datetime.now()
 | |
|             f.write(f"{now_time} configuration information as below,\n")
 | |
|             for k, v in self.__dict__.items():
 | |
|                 f.write("{:<20}:{:<6}{}\n".format(k, "", v))
 | |
|             f.close()
 | |
| 
 | |
|     def init_cache_info(self):
 | |
|         """
 | |
|         initialize cache info
 | |
|         """
 | |
|         disaggregate_info = {}
 | |
|         if self.splitwise_role != "mixed":
 | |
|             disaggregate_info["role"] = self.splitwise_role
 | |
|             disaggregate_info["cache_info"] = dict()
 | |
|             current_protocol = self.cache_config.cache_transfer_protocol.split(",")
 | |
|             disaggregate_info["transfer_protocol"] = current_protocol
 | |
|             for protocol in current_protocol:
 | |
|                 if protocol == "ipc":
 | |
|                     disaggregate_info["cache_info"][protocol] = {
 | |
|                         "ip": self.host_ip,
 | |
|                         "port": self.engine_worker_queue_port,
 | |
|                         "device_ids": self.local_device_ids,
 | |
|                     }
 | |
|                 elif protocol == "rdma":
 | |
|                     disaggregate_info["cache_info"][protocol] = {
 | |
|                         "ip": self.host_ip,
 | |
|                         "port": self.cache_config.pd_comm_port[0],
 | |
|                         "rdma_port": self.cache_config.rdma_comm_ports,
 | |
|                     }
 | |
|         self.disaggregate_info = disaggregate_info
 | |
|         llm_logger.info(f"disaggregate_info: {self.disaggregate_info}")
 | |
| 
 | |
|     def read_from_config(self):
 | |
|         """
 | |
|         reset model config from json file
 | |
|         """
 | |
| 
 | |
|         def reset_value(cls, value_name, key):
 | |
|             if hasattr(cls, key):
 | |
|                 value = getattr(cls, key)
 | |
|                 setattr(cls, value_name, value)
 | |
|                 llm_logger.info(f"Reset parameter {value_name} = {value} from configuration.")
 | |
| 
 | |
|         reset_value(self.cache_config, "block_size", "infer_model_block_size")
 | |
|         reset_value(
 | |
|             self.model_config,
 | |
|             "return_full_hidden_states",
 | |
|             "return_full_hidden_states",
 | |
|         )
 | |
|         reset_value(self.cache_config, "cache_dtype", "infer_model_dtype")
 | |
| 
 | |
|     def _check_master(self):
 | |
|         return self.is_master
 | |
| 
 | |
|     def _str_to_list(self, attr_name, default_type):
 | |
|         if hasattr(self, attr_name):
 | |
|             val = getattr(self, attr_name)
 | |
|             if type(val) is str:
 | |
|                 setattr(self, attr_name, [default_type(i) for i in val.split(",")])
 | |
|             else:
 | |
|                 setattr(self, attr_name, val)
 | |
| 
 | |
|     def __str__(self) -> str:
 | |
|         return json.dumps(self.__dict__, indent=4)
 |