Files
FastDeploy/csrcs/fastdeploy/core/fd_tensor.h
Jason ffbc5cc42d Move cpp code to directory csrcs (#42)
* move cpp code to csrcs

* move cpp code to csrcs
2022-07-26 17:59:02 +08:00

85 lines
2.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "fastdeploy/core/fd_type.h"
namespace fastdeploy {
struct FASTDEPLOY_DECL FDTensor {
std::vector<int8_t> data;
std::vector<int64_t> shape;
std::string name = "";
FDDataType dtype;
// This use to skip memory copy step
// the external_data_ptr will point to the user allocated memory
// user has to maintain the memory, allocate and release
void* external_data_ptr = nullptr;
// The internal data will be on CPU
// Some times, the external data is on the GPU, and we are going to use
// GPU to inference the model
// so we can skip data transfer, which may improve the efficience
Device device = Device::CPU;
// if the external data is not on CPU, we use this temporary buffer
// to transfer data to CPU at some cases we need to visit the
// other devices' data
std::vector<int8_t> temporary_cpu_buffer;
// Get data buffer pointer
void* MutableData();
// Use this data to get the tensor data to process
// Since the most senario is process data in CPU
// this function weill return a pointer to cpu memory
// buffer.
// If the original data is on other device, the data
// will copy to cpu store in `temporary_cpu_buffer`
void* Data();
// Set user memory buffer for Tensor, the memory is managed by
// the user it self, but the Tensor will share the memory with user
// So take care with the user buffer
void SetExternalData(const std::vector<int>& new_shape,
const FDDataType& data_type, void* data_buffer);
// Initialize Tensor
// Include setting attribute for tensor
// and allocate cpu memory buffer
void Allocate(const std::vector<int>& new_shape, const FDDataType& data_type,
const std::string& tensor_name = "");
// Total size of tensor memory buffer in bytes
int Nbytes() const;
// Total number of elements in this tensor
int Numel() const;
// Debug function
// Use this function to print shape, dtype, mean, max, min
// prefix will also be printed as tag
void PrintInfo(const std::string& prefix = "TensorInfo: ");
FDTensor() {}
explicit FDTensor(const std::string& tensor_name);
};
} // namespace fastdeploy