Files
FastDeploy/tests/platforms/test_utils.py
Echo-Nie ff653503ff [Docs] Add License in Unittest (#4957)
* add copyright

* add CopyRight
2025-11-12 10:44:09 +08:00

48 lines
1.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import patch
import numpy as np
import paddle
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
class TestConvertToNpuDequantScale(unittest.TestCase):
def test_npu_not_available(self):
with patch("paddle.is_compiled_with_custom_device", return_value=False):
x = paddle.to_tensor([1.0, 2.0, 3.0], dtype=paddle.float32)
out = convert_to_npu_dequant_scale(x)
self.assertTrue((out.numpy() == x.numpy()).all())
def test_npu_available(self):
with patch("paddle.is_compiled_with_custom_device", return_value=True):
x = paddle.to_tensor([1, 2, 3], dtype=paddle.float32)
out = convert_to_npu_dequant_scale(x)
self.assertEqual(out.dtype, paddle.int64)
# Verify scaled output matches expected NPU dequantization format
arr = x.numpy()
new_deq_scale = np.stack([arr.reshape(-1, 1), np.zeros_like(arr).reshape(-1, 1)], axis=-1).reshape(-1)
expected = np.frombuffer(new_deq_scale.tobytes(), dtype=np.int64)
self.assertTrue((out.numpy() == expected).all())
if __name__ == "__main__":
unittest.main()