mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
129 lines
4.2 KiB
Python
129 lines
4.2 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||
parser.add_argument(
|
||
"--cls_model",
|
||
required=True,
|
||
help="Path of Classification model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_model",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_label_file",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--backend",
|
||
type=str,
|
||
default="default",
|
||
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
|
||
)
|
||
parser.add_argument(
|
||
"--device_id",
|
||
type=int,
|
||
default=0,
|
||
help="Define which GPU card used to run model.")
|
||
parser.add_argument(
|
||
"--cpu_thread_num",
|
||
type=int,
|
||
default=9,
|
||
help="Number of threads while inference on CPU.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu(0)
|
||
|
||
option.set_cpu_thread_num(args.cpu_thread_num)
|
||
|
||
if args.backend.lower() == "trt":
|
||
assert args.device.lower(
|
||
) == "gpu", "TensorRT backend require inference on device GPU."
|
||
option.use_trt_backend()
|
||
elif args.backend.lower() == "ort":
|
||
option.use_ort_backend()
|
||
elif args.backend.lower() == "paddle":
|
||
option.use_paddle_backend()
|
||
elif args.backend.lower() == "openvino":
|
||
assert args.device.lower(
|
||
) == "cpu", "OpenVINO backend require inference on device CPU."
|
||
option.use_openvino_backend()
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# Detection模型, 检测文字框
|
||
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
||
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
||
# Classification模型,方向分类,可选
|
||
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
|
||
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
|
||
# Recognition模型,文字识别模型
|
||
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
||
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
||
rec_label_file = args.rec_label_file
|
||
|
||
# 对于三个模型,均采用同样的部署配置
|
||
# 用户也可根据自行需求分别配置
|
||
runtime_option = build_option(args)
|
||
|
||
det_model = fd.vision.ocr.DBDetector(
|
||
det_model_file, det_params_file, runtime_option=runtime_option)
|
||
cls_model = fd.vision.ocr.Classifier(
|
||
cls_model_file, cls_params_file, runtime_option=runtime_option)
|
||
rec_model = fd.vision.ocr.Recognizer(
|
||
rec_model_file,
|
||
rec_params_file,
|
||
rec_label_file,
|
||
runtime_option=runtime_option)
|
||
|
||
# 创建OCR系统,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
||
ocr_system = fd.vision.ocr.PPOCRSystemv2(
|
||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||
|
||
# 预测图片准备
|
||
im = cv2.imread(args.image)
|
||
|
||
#预测并打印结果
|
||
result = ocr_system.predict(im)
|
||
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_ppocr(im, result)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("Visualized result save in ./visualized_result.jpg")
|