Files
FastDeploy/fastdeploy/cache_manager/multimodal_cache_manager.py
kevin 954a145d57
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Optimization] support mm prefill batch (#5313)
* support mm prefill batch

* update code

* update code

* update code

* update code

* fix encoder cache bug

* update code

* update code

* fix bug

* fix paddle ocr bug

* fix xpu bug

* update code
2025-12-11 22:21:14 +08:00

161 lines
5.3 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import pickle
import threading
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Any, Tuple
import numpy as np
import zmq
from fastdeploy import envs
from fastdeploy.engine.request import ImagePosition
from fastdeploy.utils import get_logger
logger = get_logger("prefix_cache_manager", "cache_manager.log")
class MultimodalLRUCache(ABC):
"""
General lru cache for multimodal data
"""
def __init__(self, max_cache_size):
self.cache = OrderedDict()
self.current_cache_size = 0
self.max_cache_size = max_cache_size
def apply_cache(self, mm_hashes: list[str], mm_items: list[Any]) -> list[str]:
"""
apply data cache, return evicted data
"""
assert len(mm_hashes) == len(mm_items), "mm_hashes and mm_items should have same length"
evicted_hashes = []
for idx in range(len(mm_hashes)):
if mm_hashes[idx] in self.cache:
self.cache.move_to_end(mm_hashes[idx])
else:
item_size = self.get_item_size(mm_items[idx])
if self.current_cache_size + item_size >= self.max_cache_size:
needed = item_size - (self.max_cache_size - self.current_cache_size)
evicted_hashes.extend(self.evict_cache(needed))
self.cache[mm_hashes[idx]] = mm_items[idx]
self.current_cache_size += item_size
return evicted_hashes
def evict_cache(self, needed: int) -> list[str]:
"""
evict data cache with needed size
"""
reduced_size, evicted_hashes = 0, []
while reduced_size < needed and len(self.cache):
mm_hash, mm_item = self.cache.popitem(last=False)
evicted_hashes.append(mm_hash)
reduced_size += self.get_item_size(mm_item)
self.current_cache_size -= self.get_item_size(mm_item)
return evicted_hashes
def get_cache(self, mm_hashes: list[str]) -> list[Any]:
"""
get cached data correspond to given hash values
"""
mm_items = []
for mm_hash in mm_hashes:
if mm_hash not in self.cache:
mm_items.append(None)
continue
mm_items.append(self.cache[mm_hash])
return mm_items
def clear_cache(self):
"""
clear all cached data
"""
evicted_hashes = list(self.cache.keys())
self.cache.clear()
self.current_cache_size = 0
return evicted_hashes
@abstractmethod
def get_item_size(self, item: Any) -> int:
raise NotImplementedError("Subclasses must define how to get size of an item")
class EncoderCacheManager(MultimodalLRUCache):
"""
EncoderCacheManager is used to cache image features
"""
def __init__(self, max_encoder_cache):
super().__init__(max_encoder_cache)
def get_item_size(self, item: ImagePosition) -> int:
return item.length
class ProcessorCacheManager(MultimodalLRUCache):
"""
ProcessorCacheManager is used to cache processed data
"""
def __init__(self, max_processor_cache):
super().__init__(max_processor_cache)
self.context = zmq.Context()
self.router = self.context.socket(zmq.ROUTER)
self.router.setsockopt(zmq.SNDHWM, int(envs.FD_ZMQ_SNDHWM))
self.router.setsockopt(zmq.ROUTER_MANDATORY, 1)
self.router.setsockopt(zmq.SNDTIMEO, -1)
self.router.bind("ipc:///dev/shm/processor_cache.ipc")
self.poller = zmq.Poller()
self.poller.register(self.router, zmq.POLLIN)
self.handler_thread = threading.Thread(target=self.cache_request_handler, daemon=True)
self.handler_thread.start()
def get_item_size(self, item: Tuple[np.ndarray, dict]) -> int:
return item[0].nbytes
def cache_request_handler(self):
try:
while True:
events = dict(self.poller.poll())
if self.router in events:
client, _, content = self.router.recv_multipart()
req = pickle.loads(content)
if isinstance(req, tuple):
# apply cache request, in format of (mm_hashes, mm_items)
self.apply_cache(req[0], req[1])
logger.info(f"Apply processor cache of mm_hashes: {req[0]}")
else:
# get cache request
resp = self.get_cache(req)
logger.info(f"Get processor cache of mm_hashes: {req}")
self.router.send_multipart([client, b"", pickle.dumps(resp)])
except Exception as e:
logger.error(f"Error happened while handling processor cache request: {e}")